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ABSTRACT of the sequence of simpler optimization problems. The resulting al-
This paper proposes a new algorithm for total variation (Tv)gorithm for TV deblurring is related to iteratively reweighted least

image deconvolution under the assumptions of linear observatiorgiuares. For finite support convolutional kernels, the obtained al-
and additive white Gaussian noise. By adopting a Bayesian point f°nithm haso(N) computational complexity. Experimental results
view, the regularization parameter, modeled with a Jeffreys’ priorrepor’[ed in [18] show that the method achieves state-of-the-art per-
is integrated out. Thus, the resulting crietrion adapts itself to th ormgrrllce.f th ntral i in reqularization and B an
data and the critical issue of selecting the regularization parameter 2N€ O tN€ central ISSUes in regularization and Bayesian ap-

is sidestepped. To implement the resulting criterion, we propos?roaches is the selection of the so-calfedularization parame-
amajorization-minimizatiorapproach, which consists in replacing - °F hyper-parameterwhich controls the relative weights of the

a difficult optimization problem with a sequence of simpler ones.daﬁarrigf";y Sndn]re%ylalrirza;tion ﬁ?rﬂ]ls' lg ptaper [}jgg, W?thivet’ Iusid
The computational complexity of the proposed algorithn®{#N) a hand-tuned empirical rule, which leads 1o good resuts but lacks

e . .. any formal support. In this paper, we adopt a Bayesian approach
IISirtr?rr“et(?esnlipspt)gtré-%?‘?tngl-uz;:'?rr]r?eltﬁ)rgse Is. The results are CC)'m)m'tlvea:;\nd (asin previous work [22, 24, 25, 26, 27]) integrate out this regu-

larization parameter under a Jeffreys’ prior. Naturally, the resulting
marginal prior is different from the original TV prior. Nevertheless,
1.  INTRODUCTION we show that an MM-type algorithm, which is a simple variant of
Image deconvolution is a classical linear inverse problem, appearini§ie one proposed in [18], can be used to minimize the new objec-
in many application areas such as remote sensing, medical imagin@/e function. Experimental results show that the proposed algo-
astronomy, digital photography [1]. The challenge in most inversdithm achieves state-of-the-art performance, even when compared
problems (linear or not) is that they are ill-posed, i.e., either thewith approaches where the regularization parameter is hand tuned
direct operator does not have an inverse, or it is nearly singulai‘,or optimal performance.
with its inverse thus being highly noise sensitive. To cope with the
ill-posed nature of these problems, a large number of techniques 2. PROBLEM FORMULATION
gg?eb;gg ffé%pgviggk‘sm%t of them under the regularization or tI‘_Leet x andy denote vectors containing the true and the observed
Both the regularizétion and Bayesian approaches are supportI age gray levels, respectively, arranged in column lexicographic
. 4 oS BYder. Herein, we consider the linear observation model
on some form of priori knowledge about the original image to be
estimated. Wavelet-based approaches are considered the state-of- — Hx 4+ )
the-art on this respect [2, 3, 4, 5, 6, 7, 8]. y =X

Total variation (TV) regularization was introduced by Rudin,

Osher, and Fatemi in [9] and has become popular in recent yeaygh_ereH IS th_e obsgrvatlon matrlx andls_a sample of a zero-mean
[9, 10, 11, 12, 13, 14]. Recently, the range of application of Tv-White Gaussian noise vector with covariancd (wherel denotes

based methods has been successfully extended to inpainting, bl identity matrix). o
deconvolution [15], and processing of vector-valued images (e.g,, AS in many recent publications [9, 10, 11, 12, 13, 14], we adopt
color) [16]. Arguably, the success of TV-based regularization reliedhe TV regularizer to handle the ill-posed nature of the problem
on a good balance between the ability to describe piecewise smooff inferring x. This amounts to computing the herein termed TV
images and the complexity of the resulting algorithms. In fact, the2Stimate, which is given by
TV regularizer favors images of bounded variation, without penal- R )
izing possible discontinuities. Furthermore, the TV regularizer is x=arg ”)‘('nL(X% (2)
convex, though not differentiable, and has stimulated a good amount
of research on efficient algorithms for computing optimal or nearlyith
optimal solutions [16, 17]. 1

P 16,171 L) = 5y Iy~ HIx|P +A TV (30, ®)
1.1 Contribution . o

. where A is a hyper-parameter, or regularization parameter, and

In a recent paper [18], we have developed a new algorithm, of thg/ (x) is next defined. Since we are assuming, from the beginning,

majorization-minimizatiorfMM) class [19, Ch.6], to perform im-  h5t images are defined on discrete domains, we use the discrete
age deconvolution under TV regularization. The MM rationale Con'f(isotropic) definition of TV given by

sists in replacing a difficult optimization problem by a sequence o

simpler ones, usually by relying on convexity arguments. In this N
sense, MM is similar in spirit t@xpectation-maximizatio(EM). TV(x) = 3 1/ (A'%)? + (4)%)?, (4)
The advantage of the former resides in the flexibility in the design I
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Aihx = X —X;j; (wherej; is the first order neighbor to the left of  to solving linear systems; second, we do not need to solve exactly
andAYx = x — X, (wherek; is the first order neighbor abovge each linear system, but simply to decrease the associated quadratic
It should be mentioned that quite often thenorm, I1(x) = function, which can be achieved by running a few steps of the con-
i [(APx)| + |(AVx)|, has been used to approximate (RY, or even  jugate gradient (CG) algorithm.
wrongly considered itself as the TV regularizer. However, the dis-  Note that the ternjy — Hx||?, present in the definition df in
tinction between these two regularizers should be kept in mind(3), is already quadratic. Let us then focus our attention on each
since, as least in deconvolution problems, (kY leads to signifi- term of TV(x) given by (4). Using the fact that
cantly better results, as illustrated in [18].
The TV estimate given by (2) favors images with bounded 1
variation without penalizing possible discontinuities. Since both VX< Vo + 2\/%()(*)(0)7 ©)
smooth and sharp edges have the saméxJMhis does not mean
that total variation favors sharp edges relatively to smooth ones, b > i i 3
rather that, for a given value of T¥), the presence of absence of li;ésr anyx 2 0 andx >0, it follows that the functiorQry defined
an edge (sharp transition) in the estimated image depends funda-

mentally on the observed image t)y — (t)
The objective functior.(x) is convex, though nor strictly con- Qrv (xx) VGT)
vex neither differentiable. Its minimization represents a significant A {(Alhx)2 — (Aihx(t))Z]
numerical optimization challenge, owing to the non-differentiability + = Z
of TV(x). In the next section, we review the MM algorithm intro- 24 \/(Apx(t>)2+ (AYx ()2
duce in [18] for solving (2) in the case of fixed. Then, in the
following section, we extend the approach for the case of unknown A [(A?/X)Z — (A}’x(t))2]
A by adopting a Bayesian framework. + 3 Z
I \/(APX(U)ZHAvx(t))Z

3. AN MM APPROACH TO TV DECONVOLUTION

Consider the objective function (3) with fixed and, for notational satisfies TVx) < QTV(X\X(”), for x # x® . and TVx) =
simplicity, let 2 = 1/2. Let x denote the current image iterate QTV(X‘X(I))y forx = x, FunctionQTV(x|x<t>) is thus a quadratic
andQ(x|x(1)) a function that satisfies the following two conditions: majorizer for TV(x).

Let D" andDV denote matrices such thB"x andDVx yield

Lx®) = Qx®xW) (5) the first order horizontal and vertical differences, respectively. De-
Lx) < Oxx®),  x£x) © fine alsoW () = diagw®, w®)), where
i.e, Q(x|x(V)), as a function ofx, majorizes ie., upper bounds) - A/2 1 10)
(t+1) is obtai wit) = Ji=12..|.
L(x). Suppose now that is obtained by \/(Aihx“))2+ (A}’x(f))Z
xD = argminQ(x|xY); )
* With these definitionsQrv (x|x(")) can be written in a compact
then, notation as
L) < QY x) < QW jx) =L(x ), (8) Qrv(x[x") =x"DTWDx + ¢, (11)

where the left hand inequality follows from the definition@fand  whereD = [(D"T (DY)T]T, andct® stands for a constant, irrele-
the right hand inequality from the definition efttY). The se-  vant for the MM algorithm.
quenceL(x(‘)), fort =1,2,..., is, therefore, nonincreasing. Un- Finally, adding the ternly — Hx||? to Q—rv(x|x<t>), the fol-
der mild conditions, namely assuming tf@¢x|x’) is continuous lowing quadratic bound function fdr(x) is obtained:
in both x and x/, all limit points of the MM sequencé (x(t))
are stationary points df, andL(x(t)) converges monotonically to Q(x[xY) = |y — Hx||> + Qrv(x[x)). (12)
L* =L(x*), for some stationary point*. If, in addition,L is strictly
convex, thenx(t) converges to the global minimum bf The proof ~ Recall that matridW®), in Qry (x|x)), is computed fromx (V).
of these properties parallels that of the EM algorithm, which can be ~ The minimization of (12) leads to the following update equa-
found in [20]. tion:

Observe that in order to have(x(t1)) < L(x(), it is not x(t+1) (HTH+DTW(t)D> 71HTy. (13)
necessary to minimizQ(x|x(t)) w.r.t x, but only to assure that
Q(xtV|xM) < Q(xM|xV)). This has a relevant impact, namely ~ Obtainingx %) via (13) is hard from the computational point
when the minimum of can not be found exactly or it is hard to of view, as it amounts to solving the huge linear systefiix = y’,
compute. A similar property underlies the generalized EM algoyynere A1) = H'H + DTWUD andy’ = Hy. We tackle this

rithm [20]; we thus use the designatiganeralizedM (GMM) to oo : L O wi
refer to such an algorithm. FilffICU|ty by replacing the minimization d(x|x'") with a few CG

The majorization relation between functions is closed undefterations, thus assuring the decreas€@(k|x")), with respect to
sums, products by nonnegative constants, limits, and compositio¥ thus obtaining a GMM algorithm.
with increasing functions [19, Ch.6], [7]. These properties allow us
to tailor goodbound functionsQ, a crucial step in designing MM 4. UNKNOWN A

algorithms. This topic is extensively addressed in [19]. In this paper, we assume thaf is known; excellent off-line es-
. . timates of this parameter can be obtained, for example, using the
3.1 Aquadratic bound function for L(x) MAD rule [6]. In this scenario, only parametércontrols the de-
We now derive a quadratic bound function fofx). The motiva-  gree of regularization. Too small valueshofield overly oscillatory
tion is twofold: first, minimizing quadratic functions is equivalent estimates owing to either noise or discontinuities; too large values
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of A yield oversmoothed estimates. The selection of the regularAlgorithm 1

ization parameter is thus a critical issue to which much attention1: Sett =0

has been devoted. Popular approaches, in a regularization framep- Computey’ = H'y

work, are the unbiased predictive risk estimator, generalized crosss: Set initial estimatexg; for examplexg =y’

validation, and the L-curve methog; see %21& for an overvieI;N and 4: while “stopping criterion not mettio

references. In Bayesian frameworks, methods to estimate the regus. (t) — 2 (t)

larization parameter have been proposed in [22, 23, 24, 25, 26, 27].5: gompute)\ o B.N UléTV.()I;\ )—}\ )
In a probabilistic view, the first term of the right hand side of omputtew .usmgt( )tW't -

(3) is the negative logarithm of a Gaussian density with nian 7. SetW() = diagw ) w]

and covariance matrig2I, while the second term is the negative 8 ComputeA) = HTH+DTWUD

logarithm of the priomp(x|A) O exp(—ATV(x)). Asin [22, 24,25, 9: Setx(D :=x®

26, 27], we will proceed in Bayesian fashion, by assigning a prior1o:  while [[AOx D — /|| > ¢||y’|| do

to A and integrating it out. In particular, we take a non-informative 1 1. x(t+1) :— next CG iteration
Jeffeys’ prior; sincel is a scale parametep(A) O 1/A, whichis 12 end while
equivalent to a flat prior on a logarithmic-scale. 13- end while

The difficulty in performing the marginalization w.rA. is that
the partition function (or normalization constant) pfx|A ) is not
easily computed. To approximate it, we assume that each pair of
differences(Alx, AVx is independent of all the other pairs. This
resembles the pseudo-likelihood method approximation proposed
in [28]. Using this approximation and the fact that

/R2 exp{—)\ vV u2+v2} dudv= 2m

A2’

we can write

™~ aN
/RN p(x|A)dx £ AIN,

where(] stands for “is approximately proportional to” aadis an
unknown constant which depends on the exact form of the normal-
ization constant op(x|A ); see [26] for a related derivation. In all
the experiments reported below, we wse- 1/2.

Using this approximate partition function, we are lead to

px) = [ peld) ) A BTVG) M. 4)

©)

Using this prior to obtain a maximum a posteriori (MAP) estimate
involves the minimization of the following objective function
Figure 1: a) original Shepp-Logan phantom; b) blurred noisy image
E(x)=|y— Hx||2+ﬁ N g? logTV(x), (15) (9 x 9 uniform, BSNR=40dB); c) Image restored using Algorithm
1 (ISNR = 14.23dB).
wheref3 = 2a.
The minimization ofE(x) in (15) can be performed by a new

GMM algorithm. To this end, notice that, for aay- 0 andzy > 0, Experiment 3: the original image is famous “Lena266x 256);
72— 2 the blur kernel is[1,4,6,4,1]" [1,4,6,4,1]/256 the BSNR is
logz<logzy+ = 17dB, corresponding to a noise standard deviatioa ef 7.

In Table 1 we show the improvements of SNR (defined as
Inserting this inequality in the previously derived bound for theISNR= ||y — x||?/[|X — x||2) of the proposed approach and of the
fixed A case yields an upper bound féfx) with exactly the same methods describedin[3, 6, 7, 18, 29, 30], for the three experimental
form as given in (11) and (10), but with the fixddn (10) replaced conditions presented. These results show that, in these experiments,
by A = BN a2/TV(x1), which depends on the current estimate. Our new algorithm performs basically as well as the one in [18],
The final GMM algorithm is summarized in Algorithm 1 (with whereA was chosen with a hand-tuned empirical fulllotice that

£ in line 10 implicitly controlling the number of CG iterations). the largest ISNR values are obtained for the Shepp-Logan phantom;
this is in agreement with the type of regularization used, which, ba-
5. EXPERIMENTAL RESULTS sically, enforces piecewise smooth solutions. Figure 1 shows the

. . . Shepp-Logan phantom of si256x 256, a degraded version (uni-
We now present a set of three experiments illustrating the perfor,m 9 « 9 blur BSNR=40dB), and the image restored with the
mance of propos_ed algorithm; to assess its r(_alative merit, the res_ulﬁoposed algorlithm. ’
are compared with those of our recent work in [18] as well as wWith" ¢ tha observation mechanism is a finite support convolution

several other recent wavelet-based [3, 6, 7, 30] and non-waveleg(-emel’ then the produddx can be computed with complexity
based [29] techniques. _ O(N). If the support is not finite, this product can still be computed
Experiment 1: the original image is the well-known “camera- efficiently with complexityO(NlogN) via FFT, by embeddingl in
man” (size256 x 256); the blur is uniform of sized x 9; the 3 Jarger block-circulant matrix [31]. Thus, for convolution kernels,
noise standard deviation &= 0.56, corresponding to an SNR  the complexity of the proposed algorithm@N) andO(NlogN)
of the blurred image (BSNR varfHx]/0?) of 40dB.
Experiment 2: the original image is the “Shepp-Logan” phan-  1The ISNR value reported in [18] for Experiment 2 is wrong; the correct
tom (256 x 256); the blur is uniform of sizé x 9; the BSNR is  value obtained by the algorithm therein proposetSKR= 16.25 dB, as
40dB, in this case corresponding o~ 0.4. shown in Table 1




Table 1: SNR improvement obtained by the proposed algorithm,
compared to several other methods.
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norm,” SIAM Multiscale Modeling and Simulatipwol. 1,
pp. 349-370, 2003.

SNR improvement (dB) [12] 1. PoII_ak, A. Willsky, and Y. Huang, “Non_linea}r evolution
Meth E ; 1 E ; 2 E : equations as fast and exact solvers of estimation problems,”

ourige(t)r?od xp%rllﬂent xpi%r.gent szegg‘ ent 3 IEEE Trans. on Signal Processingpl. 53, pp. 484498, 2005.

[18] 8.52 16.25 2.97 [13] H. Fu, M. Ng, M. Nikolova, and J. Barlow, “Efficient mini-

[6] 8.10 12.02 2.94 mization methods of mixeld. — 11 andl1—12 norms for image

[7] 8.16 12.00 - restoration,”SIAM Journal on Scientific Computing006 (to

[29] 8.04 - - appear).

(30] 7.30 - - [14] E. Tadmor, S. Nezzar, and L. Vese, “A multiscale image rep-

3] 6.70 - - resentation using hierarchicgsV, 12) decompositions, Mul-

tiscale Modeling & Simulatioyvol. 2, pp. 554-579, 2004.
[15] T. Chan and C. Wong, “Total variation blind deconvolution,”

for finite and non-finite support convolution kernels, respectively. If
the observation mechanism is not a convolution, the complexity 0[
the algorithm is mainly determined by the complexity of the prod- 16]
uctsHx andH x.

In this paper, we have extended our recent work on the use
majorization-minimization (MM) algorithms for image deconvolu-
tion under total variation (TV) regularization [18]. In particular, we
have adopted a Bayesian approach to sidestep the need to adjust W@
regularization parameter, by integrating out this parameter, under a
Jeffreys prior. We have then shown how the resulting MAP estimate
can also be obtained by an MM algorithm, which is a simple variant

IEEE Trans. on Image Processingpl. 7, pp. 370-365, 1998.

T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent devel-
opments in total variation image restoration,” Mathemati-
cal Models of Cmputer Vision Computer Visjdw. Paragios,

Y. Chen, and O. Faugeras (Eds), Springer Verlag, 2005.

A. Chambolle, “An algorithm for total variation minimiza-
tion and applications,Journal of Mathematical Imaging and
Vision vol. 20, pp. 89-97, 2004.

J. Bioucas-Dias, M. Figueiredo, J. Oliveira, “Total varia-
tion image deconvolution: A majorization-minimization ap-
proach,”|IEEE Intern. Conf. on Acoustics, Speech, and Signal
Processing - ICASSP’200&oulouse, 2006 (to appear).

6. CONCLUDING REMARKS [17]
of

of the one presented in [18]. The complexity of the algorithm is[19] K. Lange,Optimization Springer-Verlag, 2004.

O(N) for finite support convolution kernels, whelkeis the number
of image pixels. In the set of experiments carried out, the proposed
method reaches a level of performance very close to the one in [18
whereA was chosen with a hand-tuned empirical rule.
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