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ABSTRACT
In this paper we derive a frequency selective extrapolationmethod
for three-dimensional signals. Extending a signal beyond alimited
number of known samples is commonly referred to as signal extrap-
olation. We provide an extrapolation technique which enables to
estimate image areas by exploiting simultaneously spatialand tem-
poral correlations of the video signal. Lost areas caused bytrans-
mission errors are concealed by extrapolation from the surrounding.
The missing areas in the video sequence are estimated convention-
ally from either the spatial or temporal surrounding. Our approach
approximates the known signal by a weighted linear combination of
3-D basis functions from spatial as well as temporal direction and
extrapolates it into the missing area. The algorithm is ableto ex-
trapolate smooth and structured areas and to inherently compensate
motion and changes in luminance from frame to frame.

1. INTRODUCTION

Estimating image areas from the surrounding image or video signal
is an important topic of various applications in image and video
communications. The surrounding consists of spatial information,
i.e. within the image, or temporal data, i.e. previous or following
frames.

Extending a signal beyond a limited number of known samples
is commonly referred to as signal extrapolation. For example, the
problem of concealing corrupted video data caused by transmission
errors in mobile video communications can be seen as an extrap-
olation of the surrounding available video signal into the missing
area. In hybrid video coding, prediction of the video signalis ap-
plied in order to increase coding efficiency. This step can also be
interpreted as extrapolation of the known signal in order topredict
the following pixels.

Commonly, the unknown signal areas are either predicted spa-
tially or temporally. In case of spatial prediction the block is pre-
dicted from surrounding data within the image. Motion compen-
sated prediction exploits the similarity of subsequent frames. For
block based techniques, the displacement for each block of the im-
age from one frame to the next one is described by a motion vector.
In [1] an overview of different spatial as well as temporal error con-
cealment methods is given.

The Boundary Matching Algorithm (BMA) [2] takes advantage
of temporal information in order to conceal lost blocks. Theerror
across block boundaries for the block compensated with different
motion vectors and its neighbouring correctly received blocks is
measured. The zero motion vector, the vector of the block in the
previous frame, the vectors of the neighbouring blocks, themedian
and the average of the neighbouring vectors are tested. The vector
which results in a minimum boundary error is selected. The Ex-
tended Boundary Matching Algorithm (EBMA) is applied, if also
the prediction error signal is lost. Additionally to the motion vec-
tors the prediction error signals of the neighbouring blocks and an
assumed zero prediction error are used. The combination of pre-
diction error and motion vector is selected which is minimising the
boundary error.

The temporal concealment method of the reference software of
the most recent video coding standard H.264/AVC [3] is basedon
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Figure 1: Image areas used for 3-D extrapolation consistingof the
area to be estimated and its known surrounding.

the BMA algorithm. As test vectors all motion vectors of the cor-
rectly received neighbouring blocks are used. A MB can be split
into several blocks down to a size of 4�4 which is rate-distortion
optimised. Thus, multiple vectors per MB can be transmitted. Fur-
ther, five reference frames can be used for prediction. However, the
prediction error signal is lost and the surrounding prediction error
signals are not used for the motion vector selection.

In [4], missing image areas are estimated from the surround-
ing with help of 2-D frequency selective extrapolation applied to
concealment problems in image communications. In [5] results are
shown for uncoded data comparing the performance of different al-
gorithms known from literature (amongst others [6], [7]). Our algo-
rithm showed superior results due to its ability to extrapolate smooth
areas, as well as edges and noise-like areas. This ability isfurther
used to remove TV logos [8].

However, conventional techniques useeitherspatialor tempo-
ral information. Encouraged by the excellent extrapolation prop-
erties for two dimensions, we developed the 3-D algorithm. We
introduce a mathematical description of the video signal inspatial
and temporaldirectionat the same time. Therefore, we provide an
extrapolation technique which enables to estimate image areas by
exploiting simultaneouslyspatialand temporal correlations of the
video signal. We apply this principle to concealment in video com-
munications.

2. SPATIO-TEMPORAL EXTRAPOLATION

The method of spatio-temporal extrapolation is applied to three-
dimensional signals in order to gain additional information from
previous and following frames about the image content to be esti-
mated. In contrary to the two-dimensional approach [4], we do not
only exploit the surrounding image content within the imageof the
signal to be predicted but also the image content of preceding and/or
proceeding frames.

Fig. 1 shows a possible sequence of seven frames where the
spatial dimensions are depicted bym,n and the temporal dimension
by t. The blockB shaded gray in imageτ is to be extrapolated from
the areaA . The support areaA ranges from the three previous to
the three subsequent frames including the surrounding of the area
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Figure 2: Red: Search area for 3-D-DFT basis functions. Green:
conjugate complex values.

to be estimated in the actual frame. Only the respective areas which
are used for the reconstruction of the missing area are shown. The
entire regionL - consisting of the region to be estimatedB and the
support areaA - is described by a volume.

The known pixelsf [m,n, t] are approximated by the parametric
model g[m,n, t]. The spatio-temporal description byg[m,n, t] ap-
proximates the support area by a linear combination of basisfunc-
tionsϕk,l ,p[m,n, t] weighted by expansion coefficientsck,l ,p

g[m,n, t] = ∑
(k,l ,p)2K ck,l ,p �ϕk,l ,p[m,n, t]. (1)

The setK describes the basis functions used. The basis functions
are defined in the entire areaL and its number of basis functions
M�N�T equals the number of pixels inL . Here, the principle is
described for real valued basis functions and expansion coefficients.

In order to determine the expansion coefficients, the weighted
error energy between the original signal and its approximation by
the parametric model is evaluated with respect to the support area

EA = ∑
(m,n,t)2A w[m,n, t] � ( f [m,n, t]�g[m,n, t])2 , (2)

where the weighting functionw[m,n, t] has only positive amplitudes
in the support area and is zero elsewhere

w[m,n, t] =

{

ρ[m,n, t], (m,n, t) 2A
0, (m,n, t) 2B (3)

Generally,w[m,n, t] allows to emphasise pixels which are more im-
portant for the extrapolation and is specified for the application of
concealment in Sec. 4.

The weighted error criterion is minimised by taking the deriva-
tive with respect to the unknown coefficients and setting it to zero.
We approximate the known area successively because the consid-
ered problem is underdetermined. The coefficients are obtained by
an iterative algorithm. The approximation in iterationν is given by

g(ν)[m,n, t] = ∑
(k,l ,p)2Kν

c(ν)
k,l ,p

�ϕk,l ,p[m,n, t]. (4)

The setKν consists of all basis functions used for the approxima-
tion so far. With help of the window functionb[m,n, t]

b[m,n, t] =

{

1, (m,n, t) 2A
0, (m,n, t) 2B (5)

Figure 3: Volume of a 3-D isotropic function for 7 images (ρ̂=0.8).

the residual error signal in the support area is calculated in this step

r(ν)[m,n, t] = b[m,n, t] �( f [m,n, t]�g(ν)[m,n, t]
)

. (6)

Assuming an appropriate basis functionϕu,v,w[m,n, t] is already se-
lected, the residual error signal is further approximated by

r(ν+1)[m,n, t] = r(ν)[m,n, t]�b[m,n, t] (∆c �ϕu,v,w[m,n, t]) .(7)

Per iteration, we choose that basis functionϕu,v,w[m,n, t] which
leads to a maximum reduction of the residual error criterion

∆E(ν)A = ∑
(m,n,t)2A w[m,n, t]

(

∆c �ϕu,v,w[m,n, t]
)2 (8)

=) (u,v,w) = argmax
(k,l)

∆E(ν)A . (9)

Then, the respective coefficient is computed by minimising (2)

∆c =

∑
(m,n,t)2L w[m,n, t]r(ν)[m,n, t] ϕu,v,w[m,n, t]

∑
(m,n,t)2L w[m,n, t] ϕu,v,w[m,n, t]ϕu,v,w[m,n, t]

(10)

and subsequently updated

c(ν+1)
u,v,w = c(ν+1)

u,v,w +∆c. (11)

The index of the selected basis function is included in the set of
used basis functions

Kν+1 =Kν [fu,v,wg i f u,v,w /2Kν . (12)

The algorithm terminates if the reduction of the residual error
energy drops below a pre-specified threshold.

Summarising the main points of the algorithm, the image con-
tent in the spatio-temporal volume is describedsimultaneously
in spatio-temporaldirection by dominant features in terms of
weighted basis functions.

The basis functions are defined in the entire volume, therefore
each approximation provides at the same time an estimation of the
missing samples. Finally, the extrapolated area is cut out of the
parametric model.

3. 3-D FREQUENCY SELECTIVE EXTRAPOLATION

We use 3-D DFT basis functions for the approximation since they
are especially suited to extrapolate monotonous areas, edges and
noise-like areas

ϕk,l ,p[m,n, t] = ej 2π
M mk�ej 2π

N nl �ej 2π
T t p. (13)

For real valued video signals the expansion coefficients or DFT co-
efficients, respectively, fulfil the following conjugate complex sym-
metry

c(ν)
M�k,N�l ,T�t

= c(ν)�
k,l ,t

as well as (14)

ϕM�k,N�l ,T�t [m,n, t] = ϕ�
k,l ,t [m,n, t]. (15)
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Sequence Flower Flower Crew Crew
Param. set A B A B
∆Emin = 0.1 27.94 dB 26.03 dB 32.40 dB 30.82 dB

177.80 It. 177.24 It. 147.40 It. 148.72 It.
∆Emin = 1.0 27.35 dB 25.48 dB 31.50 dB 30.60 dB

116.68 It. 103.96 It. 30.0 It. 30.76 It.
∆Emin = 2.0 26.57 dB 24.84 dB 30.98 dB 30.19 dB

73.8 It. 66.48 It. 17.44 It. 17.40 It.

Table 1: PSNR results and average number of iterations per block
for block losses. Parameter set A: 2 previous and 2 subsequent
frames. Parameter set B: 2 previous frames.

Taking the symmetry properties into account, we can rewritethe
parametric model to

g(ν)[m,n, t] =
1

2MNT ∑
(k,l ,p)2Kν

(

c(ν)
k,l ,p

�ϕk,l ,p[m,n, t]

+c(ν)
M�k,N�l ,T�p

�ϕM�k,N�l ,T�p[m,n, t]
)

.(16)

Using 3-D DFT basis functions allows us to express the computa-
tionally expensive equations as (10 in the frequency domain. This
enables an efficient implementation of the extrapolation algorithm.
The multiplication of the weighting function with the complex ex-
ponentialϕu,v,w[m,n, t] is equivalent to a shift of its DFT byu,v,w

∑
(m,n,t)2A w[m,n, t]ϕk,l ,p[m,n, t]ϕu,v,w[m,n, t] = W�[k+u, l +v, p+w]

Hence, the update equation for∆c (10) can be expressed with help
of r(ν)

w [m,n, t] = w[m,n, t] � r(ν)[m,n, t] by

∆c =







MNT � R(ν)
W

[u,v,w]

W[0,0,0]
, if (u,v,w) 2M

2MNT � R(ν)
W

[u,v,w]�W[0,0,0]�R(ν)�
W

[u,v,w]�W[2u,2v,2w]

W[0,0,0]2�jW[2u,2v,2w]j2 , else

(17)

with a real-valued spectrum for the setM consisting of the dis-
crete frequencies(0,0,0), (M

2 ,0,0), (0, N
2 ,0), (0,0, T

2 ), (M
2

N
2 ,0),

(M
2 ,0, T

2 ), (0, N
2 , T

2 ) and (M
2 , N

2 , T
2 ) resulting from symmetry re-

quirements (14),(15) and the definition ofg(ν)[m,n, t]. For ∆c� we
obtain a conjugate complex equation.

We select that basis function which is maximising

∆E(ν)A =
1

2M2N2T2 �(j∆cj2 �W[0,0,0]+ℜ
{

∆c2 �W�[2u,2v,2w]
})

(18)

Due to the symmetry properties of the DFT the search area is limited
to approximately half of the volume as illustrated in red in Fig. 2.
This holds also for the number of expansion coefficients which have
to be updated.

The residual error signal can then be expressed by

R(ν+1)
W

[k, l , p] = R(ν)
W

[k, l , p]� (19)

1
2MNT

� (∆c �W[k�u, l �v, p�w]+∆c� �W[k+u, l +v, p+w]
)

Finally, the parametric model is obtained by an inverse DFT

g[m,n, t] = IDFTM,N,T fG[k, l , p]g (20)

and the missing block cut out. Since all equations are expressed in
the frequency domain, there is only one DFT transform required in
the beginning and an inverse DFT in the end.

Flower Foreman Table Tennis Crew
TR 17.79 dB 28.77 dB 19.75 dB 19.55 dB
BMA 28.99 dB 36.40 dB 25.19 dB 26.46 dB
EBMA 22.95 dB 32.13 dB 22.25 dB 24.44 dB
2-D 17.04 dB 27.43 dB 19.94 dB 27.62 dB
3-D 27.94 dB 37.06 dB 30.07 dB 32.40 dB

Flower Foreman Table Tennis Crew
TR 17.99 dB 28.64 dB 20.40 dB 19.25 dB
BMA 26.16 dB 33.22 dB 25.16 dB 25.89 dB
EBMA 25.22 dB 33.46 dB 24.06 dB 24.02 dB
2-D 16.12 dB 22.47 dB 19.25 dB 26.15 dB
3-D 28.60 dB 36.11 dB 30.56 dB 32.09 dB

Table 2: Comparison of different concealment techniques. Top:
Isolated block losses. Bottom: Consecutive block losses.

4. WEIGHTING OF THE ERROR CRITERION

As already mentioned, the weighting function (3) allows to empha-
sise important regions for the extrapolation by weighting the error
criterion in (2). We incorporate a model taking pixels closer to the
missing area more into account as more distant pixels. Hence, we
choose a radial symmetric decaying isotropic 3-D model

ρisotrop[m,n, t] = ρ
√

(m�M�1
2 )

2
+(n� N�1

2 )
2
+(t� T�1

2 )
2

, ρ̂ < 1 (21)

where the loci of constant correlation are globes as depicted for a
cut-out of 7 frames in Fig. 3.

5. RESULTS FOR CONCEALMENT

The application of 3-D extrapolation to concealment of MB block
losses is investigated for uncoded YUV-sequences. The PSNRis
evaluated only for the lost areas. First of all, the impact ofdifferent
parameters is analysed for images of the sequences Flowergarden,
Foreman, Table Tennis and Crew in CIF-format (352�288 pixels).
We simulated isolated and consecutive MB losses. In the follow-
ing, we only show the analysis of a few parameters, the uncritical
parameters are kept fixed.

The correlation coefficient of the 3-D windowing function in
(21) showed for all sequences a similar behaviour and was therefore
set toρ̂ = 0.8. The support area consists of 13 pixels in spatial di-
rection surrounding the block to be estimated which coincides with
the results reported in [5]. In spatial direction the next larger FFT
size of 64�64 was applied. The FFT size in temporal direction is
set to 32 but could be reduced to 16 at the sacrifice of a marginal
loss in PSNR. Hence, the FFT size was chosen to 64�64�32. If a
maximum number of 200 iterations is reached the algorithm termi-
nates in order to limit the computational cost.

The iterative algorithm terminates if either the reductionof the
residual error energy drops below a prespecified threshold∆Emin
per pixel or the maximum number of 200 iterations is exceeded. In
the following, we evaluate the effect of the parameter∆Emin on the
performance and the average number of iterations per block.Pa-
rameter set A takes two previousNv = 2 and two subsequent frames
NN = 2 into account and parameter set B only two previous frames
Nv = 2 in case no following frames are available in order to estimate
the parametric model. Table 1 shows the PSNR result and the aver-
age number of iterations for∆Emin = 0.1,1.0,2.0. The PSNR is the
better the lower the threshold is because more iterations lead to a
better approximation of the parametric model. In the first iteration,
the DC component is chosen. Then, subsequently higher frequen-
cies are selected with respect to the image content. The average
number of iterations per block depends on the image content.The
detailed flowering meadow needs more iterations than smoother ar-
eas. For our further investigations, we choose∆Emin = 0.1. How-
ever, reducing the number of iterations and thus the load provides
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Figure 4: PSNR with respect to involved number of frames.

still satisfying results. Obviously, PSNR increases if notonly the
causal previous but also subsequent frames are involved.

Hence, we take a closer look at the impact of the number of pre-
vious and/or subsequent frames involved for extrapolation. Fig. 4
depicts on the left hand side the results for the sequence Flower-
garden evaluated for block losses and on the right hand side for the
sequence Crew evaluated for consecutive losses. The best results
can be obtained for two or three previous and subsequent frames
depending on the motion of the sequence. In case only previous
frames are available, one previous frame yields the worst result.
Two or three previous frames lead to a similar result depending on
the motion of the sequence obtaining still satisfying results. In the
following, we chooseNV = NN = 2.

In the sequel, we evaluate the concealment performance with
respect to other concealment techniques. Therefore, we imple-
mented theTemporal Blockreplacement (TR)algorithm copying
simply the block from the previous frame. Further, theBoundary
Matching Algorithm (BMA)and theExtended Boundary Matching
Algorithm (EBMA)described in [2] are used for comparison. Mo-
tion compensated prediction with a search area of�8 pixels, full
search and pixel accuracy is performed in order to obtain themo-
tion vectors and the prediction error. In case of BMA the motion
vectors of the blocks to be concealed and in case of EBMA addi-
tionally the prediction error signal are discarded. Further, the results
of the spatial 2-D extrapolation [5] are displayed.

In Table 3 the comparison for block losses is shown at the top
and for consecutive losses at the bottom. The 3-D extrapolation
yields the best results for all sequences and loss cases except for
isolated block losses in Flowergarden. There, the BMA algorithm
is 1 dB better than the 3-D extrapolation. The vector of the homoge-
nous motion can be reconstructed very well from the vectors of all
surrounding MBs. To receive all surrounding vectors is unlikely in
a real-world scenario because several blocks in a row are commonly
coded in a packet. Additionally, usually the prediction error signal

is lost and not reconstructed. Otherwise, the concealment perfor-
mance of 3-D extrapolation outperforms the other algorithms up to
several dBs in PSNR. The performance of 3-D extrapolation does
not decrease for consecutive losses even if less data is available for
estimation.

Next, we want to confirm the gained insights subjectively with
Fig. 6 and Fig. 7, respectively. Fig. 6 depicts on top the concealed
image Flowergarden by EBMA and on bottom by 3-D extrapolation
for isolated block losses shown in Fig. 5. Obviously, the EBMA
algorithm is not able to compensate the motion which is apparent at
the right edge of the tree. In contrary to the 3-D extrapolation which
inherently compensates the motion. Also details like the branches
of the tree or the flowers in the meadow can be extrapolated.

The top image of Fig. 7 shows the concealment of consecutive
losses of Fig. 5, right hand side, by BMA. The algorithm is not
able to compensate the change in luminance to the previous frame
caused by a flash of a camera. Therefore, wrong motion vectorsare
found. As opposed to the spatio-temporal extrapolation which can
compensate the variations in luminance and additionally reconstruct
detailed areas like badges on the uniforms proven by the bottom
image of Fig. 7.

6. CONCLUSION

We derived a 3-D extrapolation algorithm which allows to exploit
spatial and temporalcorrelations of the video signalat the same
time. The algorithm was applied to the extrapolation problem con-
cealment in video communications and showed excellent extrapola-
tion performance. In order to finally evaluate the performance, the
method has to be integrated in a video coder like H.264/AVC. Cur-
rent research focusses further on applying the extrapolation princi-
ple to prediction having the advantage that no motion vectors have
to be transmitted.
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Figure 5: MB losses. Left: Isolated losses. Right: Consecutive losses.

Figure 6: Concealed isolated MB losses. Top: EBMA. Bottom: 3-D
extrapolation.

Figure 7: Concealed consecutive MB losses. Top: BMA. Bottom:
3-D extrapolation.
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