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ABSTRACT 

This work presents an algorithm for segmentation of 
ultrasound images based on the statistics of the radio-
frequency (RF) signal. We first show that the Generalized 
Gaussian distribution can reliably model both fully (blood 
pool) and partially (tissue area) developed speckle in 
echocardiographic RF images. We then show that this 
probability density function (pdf) may be used in a maximum 
likelihood framework for tissue segmentation. Results are 
presented on both simulations and ultrasound cardiac 
images of clinical interest. 

1. INTRODUCTION 

Segmentation of medical ultrasound is generally based on 
the analysis of B-scan images that are constructed from the 
envelope of the echo signal. In this context, different 
methods such as Markov random field [1], snakes and active 
contours [2], active shape and appearance models [3] or 
level set techniques [4] [5] have been proposed to deal with 
segmentation of echocardiographic images. In this work we 
propose to deal with ultrasound tissue segmentation using a 
statistical framework. Statistics of the ultrasound echo 
envelope have been extensively studied for both 
segmentation [1], [4] and tissue characterization [6], [7], [8] 
purposes. The most commonly used statistical model for the 
envelope signal is the conventional Rayleigh distribution 
which relies on the assumption of a large number of 
scatterers per resolution cell. In echocardiography, this 
model is particularly well suited to characterize reflections 
from blood but fails to model more complex structures such 
as myocardial tissue. K distributions have therefore been 
proposed to model different kinds of tissue in ultrasound 
envelope imaging [9], [10], [11]. This distribution has also 
the advantage to model both fully and partially developed 
speckle. 
With the introduction of digital ultrasound devices, the 
radio-frequency signal has become more readily available. 
The interest of such signal resides in the fact that it 
potentially contains more information than the envelope 
echo. While it is well-known that the assumption of a large 
number of scatterers per range cell yields Gaussian statistics 
for the RF signal [7], very few studies have been devoted to 

the statistics of the RF signal in the case of partially 
developed speckle. Thus, from K distribution framework, we 
derived in [12] expressions for such statistics and applied 
them to echocardiographic RF data. In [13] we also 
demonstrated that this model can faithfully be approximated 
by the Generalized Gaussian (G.G.) distribution. This 
distribution has the advantage to yield simple expressions 
and robust parameters estimation for both fully and partially 
developed speckle. In section 2, a summary of the statistical 
modelling of the RF signal is presented. In section 3 we 
propose to exploit the Generalized Gaussian distribution in a 
maximum likelihood framework in order to perform tissue 
segmentation. Finally, the ability of the proposed method to 
segment echocardiographic images from RF signal is 
evaluated in section 4 from both simulations and data 
acquired in vivo. 

2. STATISTICAL MODEL 

The K distribution has been initially designed for the 
envelope signal [8]. The interest of such distribution in 
echocardiographic images relies on its ability to model both 
fully speckle (blood pool) and partially developed speckle 
(tissue area) situations. We briefly recall in this section the 
assumptions attached to the K distribution and give the 
corresponding pdf for the RF signal (detailed derivation can 
be found in [12]). The backscattered ultrasonic signal results 
from the individual energy contributions of each scatterer 
embedded in the resolution cell. This situation can 
mathematically be described as a random walk in the 
complex plane [9]. From this random flight model, the 
analytic signal can be expressed as a random process 
depending on the number of scatterers present inside the 
resolution cell, their relative position and contribution. Thus, 
a joint density function of the envelope and phase can be 
obtained by expressing both statistical properties of the 
phase and amplitude of each scatterer. This results in a K 
distribution when the scatterers phase is assumed to be 
uniformly distributed [10] and when their amplitude is 
modelled as a K distribution itself [11]. 
 
2.1 Physical Model: KRF distribution 
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The RF signal corresponds to the real part of the analytic 
signal. The pdf of the RF signal thus corresponds to the 
marginal distribution obtained by integrating the pdf 
corresponding to the analytic signal with respect to its 
imaginary part, which yields the following expression (see 
[12] for details): 
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where Γ is the Gamma function and Kν−0.5 is the modified 
Bessel function of the second kind of order ν−0.5. 
This expression is completely specified by its two 
parameters ν & b, such that ν controls the shape and b the 
scale of the pdf. 
The corresponding distribution is called KRF distribution in 
the following. This pdf may thus provide the basis for 
segmentation of echocardiographic images in the case of 
partially developed speckle, using for instance statistics-
based active contours [5]. KRF distribution however has the 
following drawbacks: 

• Numerical simulation show that estimation bias 
grows rapidly as parameter ν increases, yielding 
unreliable estimates in blood regions (i.e. ν >> 1); 

• Equation (2) implies repeated evaluation of a Bessel 
function, increasing the computational cost of the 
algorithm. 

 
2.2 Modelling RF signal statistics using Generalized 

Gaussian 
 
From the observation that fully speckle situations 
correspond to a Gaussian pdf and non-fully speckle 
situations yields Laplacian-like distribution, we showed in 
[13] that the Generalized Gaussian distribution (G.G.) is a 
good candidate for approximating (2). G.G. has the 
following expression: 
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β &α are the two parameters of the distribution where β 
controls the shape and α the scale of the pdf. The G.G. pdf 
corresponds to a Gaussian distribution when β = 2 and to a 
Laplace distribution when β = 1. 
This distribution has the advantage to have a simple 
expression with robust parameters estimation. In Figure 1, 
an example of the fit obtained for a parasternal long axis 
view in the myocardial tissue is given. This example 
illustrates qualitatively how the KRF and Generalized 
Gaussian distributions better fits the data than the reference 
Gaussian. The ability of the proposed distributions to model 
the RF data has also been evaluated quantitavely through the 
root mean square error (RMSE). The results shown in Figure 
1 yields a lower RMSE for the KRF (57) and the Generalized 
Gaussian (67) than the Gaussian (311). KRF and Generalized 
Gaussian distributions are so closed that it is difficult to 
separate them from the graph. 

 
 

Figure 1 - Fits of the proposed distributions to the RF data from a 
parasternal long axis view in the myocardial tissue. The resulting 

RMSE associated to the KRF, Generalized Gaussian and the 
Gaussian is respectively 57, 67 and 311.  

 
The ability of the G.G. to model cardiac RF data observed on 
the example given in Figure 1 has been validated on a set of 
ultrasound cardiac images including every orientations used 
in clinical practice [13]. 

3. SEGMENTATION METHOD 

We showed that the G.G. distribution is an interesting model 
for both tissue and blood characterisation. Thus, we propose 
in this part to exploit this distribution for ultrasound tissue 
segmentation. 

 
3.1 Energy Functional 
 
The framework we use for segmentation is based on the 
approach described by Zhu & Yuille in [14]. In order to 
evaluate the performance of the chosen distribution, we use 
the statistics of the image as the only information source, 
without any additional terms (as for example the a priori 
knowledge about the shape of the object to be detected). 
One of the common approaches in this context is the use of 
the Maximum Likelihood (ML) method [15]. Let us 
consider an ultrasound image as a random field where the 
values of the signal at each pixel are assumed to be 
independent. Now consider an active contour Г partitioning 
the image into two domains Ωin and Ωout. The ML method 
consists in finding the minimum of the following energy 
criterion: 
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where pin and pout are some a priori distributions with 
respectively parameters αin and αout. Using gradient descent 
method, a local minimum of (4) can be obtained using the 
following evolution equation: 
 

( ) NIpIp outcoutincin

�

.)/(log)/(log αα
τ

+−=
∂
Γ∂         (5) 

 
where N is the inward normal to the contour, τ is the 
temporal evolution parameter and Ic is a pixel lying on Г. 
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The evolution term given in (5) allows to reliably segment 
two regions, provided the corresponding statistics have 
distinct, well-separated means.  
In the case of echocardiographic RF data, the statistics of the 
two regions to be segmented (i.e. blood pool and 
myocardium) have equal zero means. As shown by Zhu & 
Yuille [14], this specificity can be easily accounted for by 
using the joint probability of the intensities included in a 
window centred on each pixel. This is equivalent to replace 

)/( ),( αyxIp  in equation (5) by the following joint 

probability:  
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where  
),( yxW  represents a circular window centred at pixel 

I(x,y) of size m.  
 
3.2 Parameters estimation 
 
The evolution given in (5) implies estimation of the 
parameters of the a priori distributions pin and pout at each 
iteration. The estimation of the G.G. parameters has been 
thoroughly investigated [16] [17]. Basically two different 
ways to estimate the scale and shape parameters from 
available sample data exist. Maximum likelihood-based 
method gives the optimal estimation parameters given 
observed samples. For the G.G. case, this method leads to a 
closed form solution whose expressions are complex and 
time consuming. To overcome these difficulties, a method 
based on the first and second moment of the G.G. 
distribution has been proposed [17]. The consistency of 
these two estimators has been evaluated in terms of bias and 
variance. Data distributed according to the pdf given in 
equation (3) were generated using the Cumulative 
Distribution Function (CDF) method [18]. The number of 
data samples (N) was chosen to be 1024. This procedure 
was repeated 1000 times and the corresponding bias and 
variance are presented in table 1.  
 

 ML method Moment method 
β Bias Variance Bias Variance 

0.4 0.0267 0.00037 0.0815 0.00047 
0.8 0.0166 0.0021 0.0319 0.0020 
1.2 0.0106 0.0055 0.0115 0.0056 
1.6 0.0168 0.0115 0.0168 0.0115 
2.0 0.0203 0.0215 0.0240 0.0248 

 
Table 1 - Comparison of the estimated Bias and Sample Variance 

of β for ML and moment methods for N=1024 
 
Table 1 shows that the results of the moment-based method 
converge to the results of the ML method for values of β 
ranging between 1.2 and 2.0. For β lower than 1, the bias 
estimated from the moment method increases dramatically 
in comparison with the bias obtained from the ML method. 
From these results, we decided to use the ML method to 
ensure good parameters estimation during the evolution 
process. The ML expressions used to estimate β &α from a 
sample {x1,x2,…,xN} of size N are the following: 
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where Ψ is the digamma function. 
 
3.3 Implementation of the evolution using level sets 
 
The evolution of the active contour Г has been implemented 
using a Level Set approach. This technique has the 
advantage to be topology free which makes the algorithm 
less sensitive to the initialisation. Moreover, we 
implemented our algorithm using a sparse-field technique 
proposed by Whitaker in [19]. This technique has the 
advantage to significantly decrease the computing time by 
working on a narrow band. 

4. RESULTS 

4.1 Simulation results 
 
The proposed method has been tested on a simulated image 
given in figure 2. This image consists of three regions 
generated using G.G. distributions with different parameters. 
These parameters have been chosen from real data 
corresponding to a parasternal long axis orientation. Thus 
region 1 has parameters values corresponding to blood pool 
and region 2 and 3 have parameters values corresponding to 
tissue area. Table 2 summarizes parameters values 
associated with each region. 
 

Region β α Simulated cardiac area 
1 2.0 85 Blood 

2 0.58 180 
Interventricular 

Septum 

3 1.45 555 
Left Ventricle infero-

lateral wall 
 
Table 2 - G.G. parameters values describing the different regions of 

the simulated image 
 
 

 
 

Figure 2 - Simulated image from G.G. distributions.  
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(a) (b) (c) 

 
Figure 3 - Segmentation of the simulated image. (a) Initialisation. 
(b) Segmentation result obtained when a Gaussian pdf is used for 

the evolution. (c) Segmentation result obtained when a Generalized 
Gaussian pdf is used for the evolution. 

 
Figure 3 shows the initialisation of the active contour on the 
simulation image and shows a comparison of the results 
obtained when a standard Gaussian or the proposed 
Generalized Gaussian is used as the a priori pdf in the 
evolution term given in (5). 
It is seen from figure 3(b) that the active contour properly 
segments region 1 but fails to segment region 3 (bottom of 
the image) when the evolution is driven through a Gaussian 
pdf. This is easily explained by the fact that region 3 is 
statistically close to adjacent region 1: the shape parameter 
β of the G.G. used to generate region 1 is set to 2 (i.e. 
Gaussian statistics corresponding to blood) and region 3 (left 
ventricle infero-lateral wall) was generated using β=1.45. 
These two regions can therefore not be separated using 
simple Gaussian pdf in the evolution term. 
On the opposite, figure 3(c) shows that the flexibility of the 
G.G. used in the evolution allows for proper segmentation of 
regions 2 and 3 from region 1. 
 
4.2 Results from in vivo data 
 
The ability of the proposed method to segment 
echocardiographic images from RF signal using Generalized 
Gaussian was tested on ultrasound cardiac images acquired 
in vivo. Data were acquired using Toshiba Powervision 
6000 (Toshiba Medical Systems Europe, Zoetermeer, the 
Netherlands) equipped with an RF interface for research 
purposes and a 3.75 MHz-probe. The RF sample frequency 
varied between 25 and 32 MHz according to the acquisition 
mode. 
Figure 4 shows the result obtained for a parasternal long axis 
view. Figure 4(a) shows the initialisation of the active 
contour and figure 4(b) and 4(c) show the results obtained 
when respectively a standard Gaussian and a Generalized 
Gaussian distribution are used as the a priori pdfs. This 
configuration is close to the simulation experiment 
previously discussed: the myocardium is seen as two 
disconnected regions (interventricular septum and infero-
lateral wall) with dissimilar statistical properties. Result 
shows in figure 4(b) is in agreement with the ones obtained 
in the simulation part: the Gaussian distribution is not  

 
(a) 

  
(b) (c) 

 
Figure 4 - Segmentation of an echocardiographic image acquired in 

vivo for a Parasternal long axis orientation. (a) Initialisation. (b) 
Segmentation result obtained when a Gaussian pdf is used for the 
evolution. (c) Segmentation result obtained when a Generalized 

Gaussian pdf is used for the evolution. 
 
appropriate to characterize myocardium region in a 
maximum likelihood approach. On the opposite, figure 4(c) 
indicates that the proposed approach yields proper 
segmentation of the myocardium, owing again to the G.G. 
pdf modelling of the RF signal. As previously mentioned, it 
is to be noted that the algorithm purposely uses the statistics 
of the RF image as the only information source, without any 
additional terms (such as the conventional curvature term), 
which explains the fact that the obtained contours are not 
smooth. Such terms could obviously be added to the 
evolution term (5) to enforce smoothness of the contour. 
Figure 5 shows the results obtained for an apical 4 chamber 
view. Figure 5(a) shows the initialisation of the active 
contour and figure 5(b) and 5(c) show the results obtained 
when respectively a standard Gaussian and a Generalized 
Gaussian distribution are used as the a priori pdfs. Here 
again the active contour driven by the G.G. pdf provides a 
better segmentation of the septum. 
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(a) 

  
(b) (c) 

 
Figure 5 - Segmentation of an echocardiographic image acquired in 

vivo for an Apical 4 chamber orientation. (a) Initialisation. (b) 
Segmentation result obtained when a Gaussian pdf is used for the 
evolution. (c) Segmentation result obtained when a Generalized 

Gaussian pdf is used for the evolution. 
 

5. CONCLUSION 

We have presented in this paper a maximum-likelihood 
approach for segmentation of echocardiographic images 
based on modelling the statistics of the radio-frequency (RF) 
signal through a Generalized Gaussian distribution.  
The interest of this distribution relies on the fact that it 
provides a reliable model for both fully and partially 
developed speckle, which occurs respectively in blood and 
myocardial regions of the cardiac images. 
Simulation results indicate that this versatility allows to 
segment regions which would be otherwise statistically too 
close to be properly separated by using a conventional 
Gaussian modelling. Results obtained from in vivo 
echocardiographic data acquired in parasternal long axis and 
apical 4 chamber views show that the proposed approach 
yields proper segmentation of the myocardial tissue. 
Future work includes enhancing the proposed segmentation 
approach by constraining the evolution of the active contour 
through shape and motion a priori. 
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