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ABSTRACT the statistics of the RF signal in the case of igiart
This work presents an algorithm for segmentation off€Veloped speckle. Thus, frdtlistribution framework, we
ultrasound images based on the statistics of thaiora derived in [12] expressions for such statistics apglied

frequency (RF) signal. We first show that the Gefiged ~them to echocardiographic RF data. In [13] we also
Gaussian distribution can reliably model both fufylood ~ demonstrated that this model can faithfully be appnated
pool) and partially (tissue area) developed speckie by 'Fhe _ Generalized Gaussian (G_.G.) Q|str|but|or_1.|sTh
echocardiographic RF images. We then show that thidiStribution has the advantage to yield simple esgions
probability density function (pdf) may be used imaximum and robust parameters estllmat|0n for both fully aa_dlglly
likelihood framework for tissue segmentation. Resare developed speckle. In section 2, a summary of titesscal

presented on both simulations and ultrasound cardiaModelling of the RF signal is presented. In secGome

images of clinical interest. propose to exploit the Generalized Gaussian digtdb in a
maximum likelihood framework in order to perfornsdiie
1 INTRODUCTION segmentation. Finally, the ability of the proposeethod to

segment echocardiographic images from RF signal is

Segmentation of medical ultrasound is generallyelasn  evaluated in section 4 from both simulations andada
the analysis of B-scan images that are construfobed the  acquired in vivo.

envelope of the echo signal. In this context, dffe

methods such as Markov random field [1], snakesaatigie 2. STATISTICAL MODEL

contours [2], active shape and appearance modgler[3 o — .

level set techniques [4] [5] have been proposedet with The K dlst_rlbutlon has bgen initially deS|gr.1eq. for the
segmentation of echocardiographic images. In tliskwe €NVvelope signal [8]. The interest of such distitutin

; ; o hocardiographic images relies on its ability tdei both
propose to deal with ultrasound tissue segmentatsimg a  ©¢ )
statistical framework. Statistics of the ultrasouedho fUlly speckle (blood pool) and partially developspeckle

envelope have been extensively studied for botftissue area) situations. We briefly recall in théction the
segmentation [1], [4] and tissue characterizat&n[[], [8] assumptions attached to tle _d|str|but|on_ and give the
purposes. The most commonly used statistical miodehe ~ O'esponding pdf for the RF signal (detailed dstfen can
envelope signal is the conventional Rayleigh distion be found in [_12_]). The backscattered _uItrasonmaigesults
which relies on the assumption of a large number ofom the individual energy contributions of eacfatserer
scatterers per resolution cell. In echocardiograpthis embedded in the resolution cell. This situation can
model is particularly well suited to characterigflections ~Mathematically be described as a random walk in the

from blood but fails to model more complex struegisuch COMPlex plane [9]. From this random flight modefie t
as myocardial tissuek distributions have therefore been @nalytic signal can be expressed as a random proces

proposed to model different kinds of tissue inagound depending on the number of scatterers presenteirtsie
envelope imaging [9], [10], [11]. This distributidras also resolution cell, their relative position and cootrion. Thus,

the advantage to model both fully and partially eleped & Joint density function of the envelope and phease be
speckle. obtained by expressing both statistical propertésthe

With the introduction of digital ultrasound devicethe Phase and amplitude of each scatterer. This resuliskK

radio-frequency signal has become more readilylatiai dis_tribution _Wh_en the scatterers phase i_s assurpedet
The interest of such signal resides in the fact tha uniformly distributed [10] and when their amplituds
potentially contains more information than the eope Modelled as & distribution itself [11].

echo. While it is well-known that the assumptionaofarge _ o

number of scatterers per range cell yields Gausatistics 21  Physical Model: Kge distribution

for the RF signal [7], very few studies have beewnated to
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The RF signal corresponds to the real part of teyéc 3000 — . . :
signal. The pdf of the RF signal thus corresporashe o
marginal distribution obtained by integrating thelfp  2%9°f A — GG
corresponding to the analytic signal with respextits 2000} —— Gaussian
imaginary part, which yields the following expressi(see
[12] for details): 1500} { W
b b‘X‘ v-05 1000 u
£ (x) = -1 K,_os (0]X 2 i
X Jarwn| 2 0.5(‘ D 500
0 o il dlj Th—r

wherel is the Gamma function arid,_,s is the modified -3000 2000 1000 O 1000 2000 3000

Bessel function of the second kind of orge0.5 Figure 1- Fits of the proposed distributions to the RF daienfa

This expression is completely specified by its two parasternal long axis view in the myocardial tis§ure resulting
parameters & b, such thatv controls the shape aruthe RMSE associated to thérp, Generalized Gaussiamd the

scale of the pdf
The corresponding distribution is call&gg distribution in
the following. This pdf may thus provide the bafis  The ability of the G.G. to model cardiac RF dataesed on
segmentation of echocardiographic images in the cds the example given in Figure 1 has been validated set of
partially developed speckle, using for instanceisttes- ultrasound cardiac images including every orieatetiused
based active contours [Hxr distribution however has the in clinical practice [13].
following drawbacks:

« Numerical simulation show that estimation bias 3. SEGMENTATION METHOD

grows rapidly as parameter increases, yielding e showed that the G.G. distribution is an inténgstodel
unreliable estimates in blood regions (&> 1); for both tissue and blood characterisation. Thuespvopose

* Equation (2) implies repeated evaluation of a Blessén this part to exploit this distribution for ulsaund tissue
function, increasing the computational cost of thesegmentation.

algorithm.

Gaussians respectively 57, 67 and 311.

3.1 Energy Functional
22 Moddling RF signal statistics using Generalized
Gaussian The framework we use for segmentation is basedhen t
approach described by Zhu & Yuille in [14]. In ord®
From the observation that fully speckle situationsevaluate the performance of the chosen distribptienuse
correspond to a Gaussian pdf and non-fully specklghe statistics of the image as the only informatouirce,
situations yields Laplacian-like distribution, whosved in  without any additional terms (as for example theriri
[13] that the Generalized Gaussian distributior5(Gis a knowledge about the shape of the object to be thetec
good candidate for approximating (2). G.G. has the@ne of the common approaches in this context isitieeof

following expression: the Maximum Likelihood (ML) method [15]. Let us
g B M B 3) consider an ultra_sound image as a random field eviies
9x :Wex _[a] values of the signal at each pixel are assumedeto b
- independent. Now consider an active contByrartitioning

B&a are the two parameters of the distribution whgre the image into two domair®;, and Q. The ML method
controls the shape amalthe scale of the pdf. The G.G. pdf consists in finding the minimum of the following exgy
corresponds to a Gaussian distribution wifen 2 and to a  criterion:

Laplace distribution whefg= 1.

This distribution has the advantage to have a smpl!(I,l)= J'j—log pa (1 /a,) dxdy+ jj—log Po(l /0, dxdy  (4)
expression with robust parameters estimation. gure 1, Qin Qou

an example of the fit obtained for a parasternablaxis o .
view in the myocardial tissue is given. This exanpl where fh and R, are some a priori d's“'k_’“t'ons with
ilustrates qualitatively how the g¢ and Generalized respectively parametecs, anddo,. Using gradient descent
Gaussian distributions better fits the data thanréference Method, a local minimum of (4) can be obtained gishre
Gaussian. The ability of the proposed distributimenodel ~ following evolution equation:

the RF data has also been evaluated quantitavelygh the

root mean square error (RMSE). The results shoviigare o _ (-logp, (I /a,)+logp,,(./a,,). N (5)

1 yields a lower RMSE for thedfk (57) and the Generalized or

Gaussian (67) than the Gaussian (31%): &d Generalized

Gaussian distributions are so closed that it ificdif to  where N is the inward normal to the contour,is the
separate them from the graph. temporal evolution parameter ahds a pixel lying orn.
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The evolution term given in (5) allows to reliatdggment N o B s

two regions, provided the corresponding statistics/e W p) ;Iog\x\.\x\ O{N;‘ j (7)
distinct, well-separated means. 1+ B TR + B =

In the case of echocardiographic RF data, thesttatiof the IZ;M

two regions to be segmented (i.e. blood pool an%nd

myocardium) have equal zero means. As shown by&hu

Yuille [14], this specificity can be easily accoedtfor by ”:['Bi’ﬁﬁj
using the joint probability of the intensities inded in a N <
window centred on each pixel. This is equivalenteplace

p(l, /@) 1N equation (5) by the following joint whereis the digamma function.
probability:

R

(8)

3.3 Implementation of the evolution using level sets

M P(l /@) (6) : . ,
(VW xy) - 2RSS _ The evolution of the active contofithas been implemented
where W,,, represents a circular window centred at pixelysing a Level Set approach. This technique has the

| xy) OF Size m. advantage to be topology free which makes the idhgor
' less sensitive to the initialisation. Moreover, we
3.2  Parametersestimation implemented our algorithm using a sparse-field répie

proposed by Whitaker in [19]. This technique hag th
The evolution given in (5) implies estimation ofeth advantage to significantly decrease the computimg by
parameters of the a priori distributiong and . at each working on a narrow band.
iteration. The estimation of the G.G. parameters been
thoroughly investigated [16] [17]. Basically twoffdrent 4. RESULTS
ways to estimate the scale and shape parametems frg ¢
available sample data exist. Maximum likelihooddahs

method gives the optimal estimation parameters ngiveThe proposed method has been tested on a simiadeg
observed samples. For the G.G. case, this metlzald ® a given in figure 2. This image consists of threeioeg

closed form solution whose expressions are complek  generated using G.G. distributions with differeatameters.
time consuming. To overcome these difficulties, ethod  Tpege parameters have been chosen from real data
based on the first and second moment of the GGgrresponding to a parasternal long axis oriematithus
distribution has been proposed [17]. The consigtesic yagion 1 has parameters values corresponding ool
these two estimators has been evaluated in teriig®fnd 5,4 region 2 and 3 have parameters values COreismpio

variance. Data distributed according to the pdfegivin  iissye area. Table 2 summarizes parameters values
equation (3) were generated using the Cumulativgsgociated with each region.

Distribution Function (CDF) method [18]. The numhsr
data samples (N) was chosen to be 1024. This puoeed Region B p Simulated cardiac area
was repeated 1000 times and the corresponding anids 1 20 85 Blood
variance are presented in table 1.

Simulation results

Interventricular

2 0.58 180
Septum
ML method Moment method Left Ventricle infero-
B Bias Variance Bias Variance 3 145 555 lateral wall
04 0.0267 0.00037 0.0815 0.0004}
0.8 0.0166 0.0021 0.0319 0.002(¢ Table 2- G.G. parameters values describing the differenbnsgf
1.2 0.0106 0.0055 0.0115 0.0056 the simulated image
1.6 0.0168 0.0115 0.0168 0.0115
2.0 0.0203 0.0215 0.0240 0.0248

Table 1- Comparison of thestimated Bias and Sample Variance
of Sfor ML and moment methods for N=1024

Table 1 shows that the results of the moment-bassttiod
converge to the results of the ML method for valoé®g
ranging between 1.2 and 2.0. F®lower than 1, the bias
estimated from the moment method increases draatigtic
in comparison with the bias obtained from the MLtimoel.
From these results, we decided to use the ML metbod
ensure good parameters estimation during the e®plut
process. The ML expressions used to estingaiey from a
sample {x1,x2,...,xN} of size N are the following:

Figure 2- Simulated image from G.G. distributions.
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(b)

Figure 3- Segmentation of the simulated image. (a) Initisiisa
(b) Segmentation result obtained when a Gaussigis pded for
the evolution. (c) Segmentation result obtainedmén&eneralized

Gaussian pdf is used for the evolution.

Figure 3 shows the initialisation of the active toom on the
simulation image and shows a comparison of thelteesu
obtained when a standard Gaussian or the proposed
Generalized Gaussian is used as the a priori pdhén
evolution term given in (5).

It is seen from figure 3(b) that the active contpupperly
segments region 1 but fails to segment region &dboof
the image) when the evolution is driven throughaaussian
pdf. This is easily explained by the fact that oegi3 is
statistically close to adjacent region 1: the shp@@ameter
Lof the G.G. used to generate region 1 is set ta.e2 (
Gaussian statistics corresponding to blood) anidme®) (left
ventricle infero-lateral wall) was generated usjfgl.45.

These two regions can therefore not be separated us Figure 4- Segmentation of an echocardiographic image acqirired

simple Gaussian pdf in the evolution term. vivo for a Parasternal long axis orientation. afidlisation. (b)

On the opposite, figure 3(c) shows that the flditibof the Segmentation result obtained when a Gaussian pegis for the

G.G. used in the evolution allows for proper segui@m of evolution. (c) Segmentation result obtained wh&eaeralized
regions 2 and 3 from region 1. Gaussian pdf is used for the evolution.

42 Resultsfromin vivo data appropriate to characterize myocardium region in a

maximum likelihood approach. On the opposite, #gd(c)

The ability of the proposed method to segmentndicates that the proposed approach vyields proper
echocardiographic images from RF signal using Geized ~ Ssegmentation of the myocardium, owing again to &®@.
Gaussian was tested on ultrasound cardiac imaggsred ~ Pdf modelling of the RF signal. As previously mentd, it

in vivo. Data were acquired using Toshiba Poweovisi is to be noted that the algorithm purposely usessthtistics
6000 (Toshiba Medical Systems Europe, Zoeterméer, t Of the RF image as the only information sourceheit any
Netherlands) equipped with an RF interface for asge additional terms (such as the conventional cureaterm),
purposes and a 3.75 MHz-probe. The RF sample fregue which explains the fact that the obtained contanes not
varied between 25 and 32 MHz according to the aitipn smooth. Such terms could obviously be added to the
mode. evolution term (5) to enforce smoothness of theaan

Figure 4 shows the result obtained for a paradtéong axis ~ Figure 5 shows the results obtained for an apiaziaimber
view. Figure 4(a) shows the initialisation of thetiae View. Figure 5(a) shows the initialisation of thetize
contour and figure 4(b) and 4(c) show the resuittined ~contour and figure 5(b) and 5(c) show the resultsioed
when respectively a standard Gaussian and a Gizeeral When respectively a standard Gaussian and a Gezeeral
Gaussian distribution are used as the a priori.plifss ~ Gaussian distribution are used as the a priori. ptre
configuration is close to the simulation experimentadain the active contour driven by the G.G. pdivites a
previously discussed: the myocardium is seen as twletter segmentation of the septum.

disconnected regions (interventricular septum anfero-

lateral wall) with dissimilar statistical propesie Result

shows in figure 4(b) is in agreement with the ooktined

in the simulation part: the Gaussian distributi®mot
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Figure 5- Segmentation of an echocardiographic image acqirred
vivo for an Apical 4 chamber orientation. (a) laligation. (b)
Segmentation result obtained when a Gaussian pdeid for the
evolution. (c) Segmentation result obtained wh&eaeralized
Gaussian pdf is used for the evolution.

5. CONCLUSION

We have presented in this paper a maximume-liketihoo
approach for segmentation of echocardiographic @wmag

based on modelling the statistics of the radiodesgry (RF)
signal through a Generalized Gaussian distribution.

The interest of this distribution relies on the tfalgat it
provides a reliable model for both fully and pdlyia
developed speckle, which occurs respectively irodbland
myocardial regions of the cardiac images.

Simulation results indicate that this versatilithows to
segment regions which would be otherwise statititao
close to be properly separated by using a convmatio
Gaussian modelling. Results obtained from in viv
echocardiographic data acquired in parasternal éomgand
apical 4 chamber views show that the proposed appro
yields proper segmentation of the myocardial tissue
Future work includes enhancing the proposed segatient
approach by constraining the evolution of the &ctentour
through shape and motion a priori.
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