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ABSTRACT

In this paper we investigate the problem of recovering
the motion blur point spread function (PSF) by fusing
the information available in two differently exposed im-
age frames of the same scene. The proposed method
exploits the difference between the degradations which
affect the two images due to their different exposure
times. One of the images is mainly affected by noise
due to low exposure whereas the other one is mainly af-
fected by motion blur caused by camera motion during
the exposure time. Assuming certain models for the ob-
served images and the blur PSF, we propose a maximum
a posteriory (MAP) estimator of the motion blur. The
experimental results show that the proposed method has
the ability to estimate the motion blur PSF caused by
rather complex motion trajectories, allowing a signifi-
cant increase in the signal to noise ratio of the restored
image.

1. INTRODUCTION

The image degradation, known as motion blur, is caused
by the relative motion between the camera and the scene
during the exposure time. In the context of ongoing de-
velopment and miniaturization of the consumer devices
that have image acquisition capabilities, there is an im-
minent need for robust and efficient solutions able to
correct or prevent the motion blur degradation. The
main driven factors for this requirement are: (i) the
difficulty to avoid camera motion during the integration
time when using a small hand-held device (like a camera
phone), and (ii) the need for longer integration times due
to the small pixel area resulted from the miniaturization
of the image sensors in conjunction with the increase in
image resolution.

In general, if the point spread function (PSF) of the
motion blur is known the original image could be re-
stored up to some level of accuracy, by applying an im-
age restoration approach [1]. However, the main dif-
ficulty is that in most practical situations the motion
blur PSF is not known. Moreover, since the PSF de-
pends of the camera motion during the exposure time,
it is rather difficult to establish a universal model for
the blur process. The lack of knowledge about the blur
PSF suggests the use of blind deconvolution approaches
in order to restore the motion blurred images [2, 3]. Un-
fortunately, most of these methods rely on rather simple
motion models, e.g. linear constant speed motion, and
hence their potential use in consumer products is rather
limited. Another category of approaches consists of uti-
lizing either additional hardware or special sensors [4]

in order to estimate and correct for the motion of the
camera during the exposure time. For instance in [5]
the authors proposed the use of an additional camera
in order to acquire motion information during the expo-
sure time of the principal camera. The resulted motion
information is subsequently used to estimate the motion
blur PSF and to recover the blurred image of the main
camera. Additional hardware is also used in optical im-
age stabilization solutions that are present in high-end
consumer devices. These solutions consists of moving
either the image sensor or the optics in the opposite di-
rection of the camera motion such that to maintain a
stable image projected on the sensor during exposure.

In this paper we propose an approach to motion blur
estimation by utilizing two image frames acquired at
different exposure times. One frame is captured with
a small exposure time in order to avoid motion blur,
whereas a second frame is captured using the normal
exposure time in the given conditions. When a long ex-
posure time is required, like it is the case in low light
conditions, the second image may be degraded by ar-
bitrary motion blur. Our objective is to estimate the
motion blur PSF in order to recover the original image
by applying a deconvolution procedure onto the high
exposed image frame.

2. THE PROPOSED METHOD

We formulate a model of the two observed images by
taking into consideration their different degradations
caused by the difference between their exposure times.
Thus, the low exposed image is likely to be heavily cor-
rupted by sensor noises [6], whereas the normal exposed
image might be affected by motion blur due to camera
motion during the exposure time.

In accordance to this model we have the following
relations for the low and high exposed image frames de-
noted respectively by g1 and g2:

αg1(x) = f(x) + n1(x),
g2(x) = d(x) ∗ f(x) + n2(x)

(1)

where x = (x, y) denotes the coordinates of an im-
age pixel, f denotes the original image, α accounts for
the difference in illumination between the two observed
images, d(x) denotes the motion blur PSF, ni(x), for
i = 1, 2, denote zero mean additive noise, and the sym-
bol ∗ stands for the 2D convolution operation.

In addition to the model described in (1) we can
also assume the energy conservation and positivity con-
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straints on the PSF:
∑

x∈Ψ

d(x) = 1, and d(x) ≥ 0, x ∈ Ψ, (2)

where Ψ denotes the 2D support of the blur PSF.
The posterior probability density function (p.d.f.) of

the bur PSF given the two observed images can be ex-
pressed by:

p(d|g1, g2) =
p(g2|g1, d)p(d)p(g1)

p(g1, g2)
, (3)

from where, retaining only the terms which depend on
d, we can write an objective function to be minimized by
the maximum a posteriori (MAP) estimate of the blur
PSF:

J(d, α) = − log p(g2|g1, d) − log p(d). (4)

We assume that the terms n1 and n2 in (1) are
white Gaussian noises of variances σ2

1 and σ2
2 respec-

tively, with σ2
1 � σ2

2 . Consequently, the conditional
p.d.f. p(g2|g1, d), included in the first term of (4), is
a multivariate Gaussian with mean αd ∗ g1 and a non-
diagonal covariance matrix. For tractability of the solu-
tion we will consider only the diagonal elements of the
covariance matrix which are given by:

σ2(d) = σ2

2 + σ2

1

∑

x∈Ψ

d(x)2 (5)

resulting in the following simplified model for the con-
ditional p.d.f

− log p(g2|g1, d) ∼
1

2σ2(d)

∑

x∈Ω

n(x)2+
N

2
log σ2(d), (6)

where N denotes the number of image pixels and

n(x) = g2(x) − αd(x) ∗ g1(x). (7)

The second term in (4) describes the model of the
motion blur PSF. Assuming that the camera undergoes
only translational motion during the exposure time we
may consider that the PSF is space invariant. Thus, the
motion blur PSF can be regarded as the projection of
the camera motion trajectory onto the image plane, re-
sembling thereby the appearance of a ridge that follows
a curved trajectory inside the PSF support (e.g. Fig.
1). In our model of the motion blur PSF we impose this
ridge appearance of the PSF by defining the prior p.d.f.
as:

− log p(d) ∼
λ

2

∑

x∈Ψ

[1 − m(x)] d(x)2, (8)

where m(x) denotes the indicator function for the PSF
ridge path, i.e. m(x) = 1 if x belongs to the PSF ridge,
and m(x) = 0 otherwise.

Due to physical constraints on camera motion speed
and acceleration, the PSF ridge path trajectory can be
assumed continuous and differentiable. Consequently, in
most of its points x, the direction θ(x), tangent to the
ridge path is well defined. Based on this observation,

and aiming for a ridge like appearance of the motion
blur PSF, we define the path function

m(x) =

{

1 if d(x) ≥ d(y) for any y ∈ N (x)
0 otherwise

(9)

where N (x) denotes a local neighborhood of x selected
along the direction orthogonal to the local ridge orien-
tation (θ(x)).

In practice we do not know the blur PSF in order
to calculate m, as shown above. However we can apply
the same approach on an intermediate estimate of the
blur PSF, where the local ridge orientation θ(x) in the
neighborhood of any point x ∈ Ψ can be calculated using
a texture orientation estimator (e.g. [7]).

Joining (6) and (8) we obtain the final form of the
objective function (4). This function can be minimized
by employing an iterative minimization procedure. In
our work we used a gradient descent approach, imposing
the constraint (2) at each iteration.

The gradient of the objective function is given by:

Jd(d, α) =
∂J(d, α)

∂d

=
−αg1(−x) ∗ n(x)

σ2(d)

+
d(x)σ2

1

σ2(d)

[

N −

∑

x∈Ω
n(x)2

σ2(d)

]

+ λ[1 − m(x)]d(x), (10)

and

Jα(d, α) =
∂J(d, α)

∂α
=

∑

x∈Ω
[g1(x) ∗ d(x)] n(x)

σ2(d)
, (11)

where Ω ⊂ R2 denotes the image support.
The parameter α is estimated at each iteration by

equating with zero the equation (11). This is:

α =

∑

x∈Ω
g2(x) [g1(x) ∗ d(x)]

∑

x∈Ω
[g1(x) ∗ d(x)]

2
. (12)

and, in the first iteration, a first estimate of α can be
obtained as the ratio between the means of the two im-
ages:

α0 =
∑

x∈Ω

g2(x)/
∑

x∈Ω

g1(x). (13)

Noting that the prior term (8) is highly dependent of
the current estimate of d, we start the minimization pro-
cedure with λ = 0. Next, after a number of iterations, λ
is set to a high value in order to force the ridge like ap-
pearance of the current estimate. The local orientation
in the neighborhood of each pixel x ∈ Ψ, is calculated
using the the least-square estimator proposed by Rao in
[7].

The iterative minimization of the objective function
could start from an arbitrary initial guess of the motion
blur PSF. However, in order to speed up the process we
can use an initial value of the blur PSF whose compu-
tation is described in the following section.
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Figure 1: The motion blur PSFs used in the experi-
ments.

2.1 The initial estimate of the motion blur PSF

Based on the model (1) we can write

g2(x) = αd(x) ∗ g1(x) + n(x), (14)

where n(x) = n2(x)− d(x) ∗n1(x). Neglecting the non-
diagonal terms of the covariance matrix of n(x), and
using the fact that σ2

2 � σ2
1 , we obtain the Wienner

filter estimate of the blur PSF

D(ω) =
αG∗

1(ω)G2(ω)

α2|G1(ω)|2 + σ2
1

, (15)

where the capital letters stand for the Fourier trans-
forms of the corresponding signals, and the value of α is
calculated using the estimator (13).

An initial estimate of the blur PSF is thereby ob-
tained from the inverse Fourier transform of (15). In
the following we present an algorithm that describes a
practical implementation of this estimate.
Input: The two images g1 and g2 and a rough estimate
of the PSF support size, i.e. S1 × S2.
Otput: The initial estimate of the blur PSF.

• Register the images g1 and g2, such that to mini-
mize the translational displacement between them,
and to cancel other motion parameters (e.g. rota-
tion, scale). In order to obtain a good result the im-
age registration approach used in this step must be
robust to image degradations. Such methods have
been proposed by several authors [8, 9] and could
be employed for image registration in the context of
this application. In our work we used the method
proposed in [9].

• Select multiple image blocks of size W1 × W2 (i.e.
W1 > S1, and W2 > S2) from the blurred image (g2).
The selection process is based on the variance of each
image block, being preferred blocks that have higher
variance, and hence higher likelihood to contain sig-
nificant transitions or prominent image details. Let

us denote by gk
2 , for k = 1,K, the K image blocks

selected from the image. Similarly, their correspond-
ing blocks in the low exposed image are denoted by
gk
1 .

• Average the K estimates (15) obtained from all pairs
of corresponding image blocks gk

1 and gk
2 . In this op-

eration, the Fourier transforms are calculated using
Fast Fourier Transform algorithm, and the artifacts
due to block boundary are reduced by windowing.

• Extract the blur PSF estimate by selecting the S1 ×
S2 central part from the W1 × W2 inverse Fourier
transform of the average calculate in the previous
point.
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Figure 2: Example of motion blur estimation: (a) the
noisy image frame, (b) the blurred image frame, (c) the
image restored in the ideal case when the blur PSF is
exactly known, (d) the restored image based on the es-
timated PSF, (e) the real PSF, and (f) the estimated
PSF.

3. EXPERIMENTS

In this section we demonstrate the proposed algorithm
through a series of motion blur identification experi-
ments. The motion blur PSFs that are used in this
simulations are shown in Fig. 1. These PSFs are more
realistic than a simple linear and uniform motion, in-
cluding non-uniform power distributions caused by vari-
able motion speed, as well as curved trajectories.
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SNR (dB) SNR (dB) SNR (dB)
Noisy img. Blurred img. Restored img.

PSF1
12.01 (0.03) 14.90 25.03 (0.53)
7.86 (0.02) 14.90 24.38 (0.98)
2.85 (0.03) 14.90 23.91 (0.76)
0.10 (0.02) 14.90 20.37 (1.09)

PSF2
12.02 (0.02) 14.67 27.53 (0.38)
7.88 (0.02) 14.67 25.90 (0.57)
2.82 (0.02) 14.67 23.57 (0.88)
0.10 (0.03) 14.67 21.60 (1.03)

PSF3
12.01 (0.03) 13.74 24.46 (0.30)
7.87 (0.04) 13.74 23.54 (0.53)
2.85 (0.01) 13.74 20.84 (1.28)
0.10 (0.02) 13.74 18.71 (0.74)

PSF4
12.01 (0.02) 13.11 27.43 (1.58)
7.86 (0.03) 13.11 26.08 (1.06)
2.85 (0.03) 13.11 23.47 (1.88)
0.09 (0.02) 13.11 19.98 (1.32)

Table 1: Image restoration performance for different
noise levels in the low exposed image, and different mo-
tion blur PSFs in the high exposed image. The first
and last columns show the average and standard de-
viations of the corresponding image SNRs in multiple
experiments.

In each experiment we create the two input images
starting from the original ”cameraman” image of size
256 × 256 on 256 gray levels. The image g1 is obtained
by adding white Gaussian noise of different variances
plus Poisson noise. The level of noise in each example
is then measured by means of the signal-to-noise ratio
(SNR) with respect to the original image. The second
image (g2) is obtained by applying one of the the motion
blur PSFs onto the original image. The SNR is also
used in this case in order to evaluate the degradation
of the image in comparison with the original image. In
each experiment, the PSF estimated by the algorithm
was used to restore the original image by applying the
Richardson-Lucy algorithm [1] onto the image g2.

The ability of the proposed algorithm to estimate the
motion blur PSF is evaluated based on the improvement
in SNR achieved after deconvolution. We consider that
this is a more realistic evaluation of the algorithm than
comparing directly the estimated and real PSFs. This
is because small differences in PSF may result in sig-
nificant degradations of the result due to inverse nature
of the deconvolution problem. The results obtained in
several experiments when using different motion blurs
and noise levels are shown in Table 1. For each level
of noise and PSF we performed a number of 10 exper-
iments. The average and standard deviation of SNR
results obtained in these experiments are shown in the
table.

We note that the PSF estimated by the proposed al-
gorithm allows a significant improvement of the restored
image SNR. As expected the level of noise in g1 is in-

fluencing the results by reducing the ability to recover
the exact PSF. However we remark that the proposed
algorithm estimates the blur PSF quite accurately even
in very heavy noise conditions (e.g. SNR < 0.1dB) as
long as it always resulted in an improvement of several
decibels of the restored image.

A visual example of motion blur identification is
shown in Fig. 2, where the blur PSF4 was used in con-
junction with a noisy image of SNR 2.8dB. The esti-
mated PSF is quite close to the real one as it is reveal
also by the visual inspection of the restored image which
achieves an SNR of 23dB in comparison to the original
image.

4. CONCLUSIONS

We proposed a method to recover the motion blur PSF
by exploiting the difference between the degradation
models which affect two differently exposed images of
the same scene. The proposed method is able to esti-
mate more realistic motion blur PSFs than simple lin-
ear motion, including non-uniform power distributions
caused by variable motion speed, as well as curved tra-
jectories. The algorithm was evaluated through a series
of experiments that reveal its ability to detect the mo-
tion blur PSF even in the presence of heavy degradations
of the two observed image frames.
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