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ABSTRACT

This paper presents a novel method for classification of
power quality events in voltage signals which makes use of
higher order statistics based technique for extracting a re-
duced and representative event signature vector. The signa-
ture vectors composed of samples from the diagonal slices of
the second and forth order cummulants, which are selected
with Fisher’s discriminant ratio (FDR), provide enough sep-
arability among classification regions resulting in classifica-
tion rate as high as 100% if the voltage signals are corrupted
by the presence of isolated events. A comparison perfor-
mance among the proposed method and two other ones found
on the literature is provided and reveals that the proposed
method not only achieve a good performance, but it also sur-
pass the performance of previous techniques.

1. INTRODUCTION

Power Quality (PQ) can be viewed as the normal operation
of the power system in terms of its nominal voltage signal
waveform [1]. Following this definition, the main PQ events
are transients, long and short voltage variations, flickers, har-
monics, unbalances, etc [2, 3]. The PQ analysis is a research
field of increasing demanding attention in the recent few
years, among the several reasons for that are: 1) the fast ex-
pansion use of power electronics devices leads to a wide dif-
fusion of nonlinear, time-variants loads in the power system,
which causes several power quality problems; 2) the grow-
ing use of accurate electronic devices requiring high qual-
ity power supplies; 3) the need to localize the disturbance
sources envisaging to quickly solve the power quality prob-
lem; 4) the large amount of power quality data recorded that
demands automatic classification.

The digital signal processing techniques are been largely
employed on PQ analysis for event detection and classifica-
tion, pollution source identification and localization, param-
eters estimation, etc.

This work focuses on the PQ events classification and
propose the use of a higher-order statistics-based (HOS)
technique, such as cummulants, applied over the voltage
waveform for feature extraction. It appears to be interesting
the use of cummulants because they are not sensitive to back-
ground Gaussian noise and they are also useful in problems
where either non-Gaussianity or nonlinearities are important
[4, 5]. The classification is performed with an artificial neural
network.

For classification of waveform disturbance in voltage sig-
nals, several works have been introduced so far. Among
them, the recently developed methods proposed in [6, 7, 8, 9,
10] shown good results. In general, these methods make use

of feature extraction techniques followed by traditional pat-
tern recognition techniques. The wavelet transforms are been
widely employed for feature extraction [6, 7, 8, 9, 10] and
for pattern recognition the artificial neural networks [11, 12],
fuzzy logic [13, 14], genetic algorithms [15] and support vec-
tor machines [16] are been used.

In this paper, the proposed method for PQ event classifi-
cation is presented and a comparison with two other methods
[6, 7] and [12] is performed. The main advantages of the pro-
posed method are the non sensibility to Gaussian background
noise and it leads to a simplification on the classification al-
gorithm and a performance improvement.

2. PQ EVENT CLASSIFICATION PROBLEM

A designed system for power quality event classification
should be able to correct recognize the occurrence of each
abnormal condition on the discrete version of the voltage sig-
nal of the power system (x(n)), which can be expressed as an
additive contribution of several types of phenomena

x(n) = x(O)],2pg, := S () + h(n) +i(n) +1(n) +v(n) (1)

where n =0,--- , N—1, Ty = % is the sampling period, the

sequences {/(n)}. {h(n)}. {i(m)}. {1(n)} e {v(n)} repre-
sent the power supply fundamental component, harmonics,
inter-harmonics, transient, and background noise, respec-
tively. Each of these signals is defined as follows:
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and {v(n)} is independent, identically distributed (i.i.d.)
noise, and Normal .4/ (0, 672).

In (2),A,(n), f,(n) e 6,(n) are the magnitude, fundamen-
tal frequency, and phase of the power supply signal, respec-
tively. In (3) and (4), hy(n) is the m-th harmonic and i;(n) is
the j-th inter-harmonic, which are defined as
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Figure 1: Example of events named capacitor switching and
harmonic.

and
i;(n) :=A; ;(n)cos(2m

In (6), A (n) is the magnitude and 6,,,(n) is the phase of the
m-th harmonic. In (7), A, ;(n), f; ;(n), and 6, ;(n) are the
magnitude, frequency, and phase of the j-th inter-harmonic,
respectively. {z,(n)} in (5) is the k-th transient signal such as
spikes, notches, capacitor switchings, etc.

The normal operation of the power system can be mod-
eled as

T, 7}(;1) n+ 6, ;(n)). (7
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and an event occurs when some abnormal condition pollute
the voltage waveform such as a capacitor switching x.(n),
modeled by Eq. (9) or a harmonic event x,(n), modeled by
Eq. (10) as depicted in Fig. 1.
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3. PROPOSED SYSTEM FOR PQ EVENT
CLASSIFICATION

The block diagram of the proposed method and so-called
HOS-based method for power quality event classification is
portrayted in Fig. 2. Note that the feature extraction is per-
formed over the voltage waveform of the PQ event and the
classification is performed over the selected features.

In this work, a HOS-based technique is used for feature
extraction, where the diagonal slices of second, third and
forth order cummulants are extracted from the voltage wave-
form. To reduce the dimension of the extracted features and
consequently the computational complexity and processing
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Figure 2: Proposed system for power quality event classifi-
cation

time, the Fisher’s discriminant ratio (FDR) [17] is used, aim-
ing at the choice of a representative and finite set of features
among those obtained by HOS that provides a good separa-
bility between two distinct classes.

Finally, the selected samples from the cummulants are
presented to an artificial neural network for the classification
purpose.

3.1 Higher-Order Statistics

It has been shown so far that higher-order statistics-based
techniques are more appropriate to deal with non Gaussian
processes and nonlinear systems than the second-order ones.
Remarkable results regarding detection, classification and
system identification with cummulant-based method have
been reported in [18], [4], [19] and [5]. Assuming that volt-
age signals are modeled as a non Gaussian process, the use
of cummulant-based method appears to be a very promising
approach for detection of abnormal behaviors in voltage sig-
nals. In fact, HOS-based signature vectors of voltage events
provide that each class of voltage events, which is defined
as a classification region related to the class @, i =1,...,C
in a hyperspace expanded by the signature vectors, is very
well defined. The expressions of the diagonal slice of sec-
ond, third, and fourth order cummulants of a zero mean x(n)
are respectively expressed by

Gy, () = E{x(n)x(n + )}, (1)
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and
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respectively, where i is the i-th delay. Considering x(n) as a
finite-length vector and i =0, 1,2,---,N — 1, approximations
of such cummulants are here defined by
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Figure 3: Examples of disturbances named swell and sag.

where the function mod(a,b) is the modulus, returning the
integer remainder after dividing a into b. The approximations
presented in (14)-(16) lead to a very appealing approach for
problems where we have a finite-length vector from which
features have to be extracted for applications such as detec-
tion, classification, and identification.

Once the cummulants have been extracted, they should
be normalized and a feature selection method is performed.

3.2 Feature Selection

Aiming at the choice of a representative and finite set of fea-
tures among those obtained by HOS that provides a good
separability between two distinct events, the use of the FDR
is applied [17]. The cost vector function of the FDR which
leads to a best separability in a low-dimensional space be-
tween both aforementioned events is given by

1
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where J. = [J, -- -JLI]T, L, is the total number of features,

m, and m,, and D? and D} are the mean and variance
of the features vectors Py k=1,2,---,M, and Po o k=
1,2,---,M,, when x(n) assumes to be one abnormal condi-
tion such as a spike and another abnormal condition such
as a notch, respectively, and M, denotes the total num-
ber of feature vectors (number of events used for the fea-

ture selection). ® refers to the Hadamard productr ©s =
T

FoSo ™ 1, —151,-1
From (17), it is understandable that the i-th element of the
feature vector providing the greater values of J; are selected
for use in the classification.
It is important to stress that the feature selection is per-
formed offline, therefore, during the system design only the
selected features are used for event classification.

3.3 Event Classification

The use of the FDR leads to the selection of a set of cum-
mulant that provides the best class separation in according
to the FDR criterion. Therefore, it is possible to reduce the
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Figure 4: Example of disturbances named spike and notch.

dimension of the data presented to the classifier to simplify
the classification algorithm.

A multilayer feed-forward neural network is used for
event classification due to the good performance achieved for
nonlinear pattern recognition [20] and the low computational
cost when comparing with others non-linear classifiers as the
kernel support vectors machines (SVM) [21].

4. METHODOLOGY

In this work, six classes of PQ events are considered: har-
monics (C1), sags (C2), swells (C3), capacitor switching
(C4), notches (C5) and spikes (C6). The events were sim-
ulated by software following the definitions found in [2, 3]
and [19] with a sampling frequency (f;) of 15360 samples
per second and with a total length (N) of 1024 samples. Five
hundred events were generated per class and were equally di-
vided in two groups, one for the system design and the other
for system validation (M, = 250 in Section 3.2). All events
were generated with an additive Gaussian white noise with a
signal to noise ratio (SNR) of 30 dB.

The sags and swells (see Fig. 3) were arranged in one
class because the separability between them is straight for-
ward using one information from the event detector algo-
rithm [22], which is not described here because it is not the
focus of this work. Figure 4 shows a spike and a notch event
while a harmonic and a capacitor switching can be seen in
Fig. 1.

4.1 System Design

The first step to design the system is to compute the diagonal
slices of the second, third and forth order cummulants for the
N samples of each event according to Equations (14), (15)
and (16), respectively. Therefore, for each event, a total of
3 x N samples from the three cummulants for each event are
obtained. The resultant vector, with the cummulants for the
selected event, is divided by the first sample of the diagonal
slice of the second order cummulant (CA‘LX(O)) for normaliza-
tion.

Aiming at reducing the dimension of the data presented
to classifier and also to select the most representative set
of parameters envisaging good separability between classes,
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Figure 5: Example of the separability between harmonics
and the other classes using the selected parameters from the
diagonal slice of cummulants. C2 from the second order, C3
from the third order and C4 from the fourth order cummulant.

the FDR is applied on the normalized cummulants using Eq.
(17). The FDR was computed considering one class against
the others, therefore, for each class a vector J,. with 3 x N
elements is obtained. Taking the greater value of J. related
to each cummulant, a total of 3 parameters for each class are
selected, given a total of 15 parameters for each event. There-
fore, the original dimension of each event was reduced from
1024 samples to 15 samples. This procedure is performed
offline. As an example, Figure 5 shows the three selected pa-
rameters from each cummulant for harmonic events (o) and
for the other events (+), showing the separability between
these two sets.

The 15 selected parameters are finally presented to a mul-
tilayer feed-forward neural network for event classification.
During the system design, the neural network is trained us-
ing the back-propagation algorithm and the training process
is stopped when the desired classification performance is
achieved.

Analyzing the neural network training procedure, it was
verified that the achieved performance on the event clas-
sification improves using only the samples related to the
cummulants of second and forth order. Therefore, a fur-
ther reduction on the classifier input vector dimension was
achieved, from 15 to 10 parameters.

A closer look on the third order cummulant reveals that
the amount of energy related to this cummulant is much
smaller than the energy of the second (40 times greater) and
forth (22 times greater) order cummulants. Therefore, it is
understandable why the third order cammulant doesn’t help
the classification algorithm. The energy (ECk) was measured

according to Equation (18),

N
ECk: ; N (18)

where C, (i) is the k-th order cummulant and N = 1024 is
the total number of samples.
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Figure 6: Implemented System

4.2 Implemented System

The implemented system can be seen in Fig. 6. First, the
selected samples of the second and forth order cummulants
of the detected PQ event with length N = 1024 (f; = 15360
Samples/s) are computed and normalized by CA‘zyx(O), result-
ing into a new vector with length N = 10. This new vector
feeds the previously trained neural network with 3 layers, the
input layer with 10 input nodes, the hidden layer with 5 neu-
rons and the output layer also with 5 neurons (5 classes). The
highest value indicates the event class at the neural network
output.

5. SYSTEM VALIDATION RESULTS

In order to evaluate the performance of the proposed sys-
tem, the validation set of power quality events were used.
A comparison between the proposed method and the OTFR
[6, 7] and the LCEC [12] is also performed. The main mo-
tivation for choosing these methods resides on the fact that
both show remarkable results when applied to waveform dis-
turbance classification of voltage signals.

Table 1 shows the achieved results for the three meth-
ods. The HOS method shows a remarkable result in terms of
performance and a reasonable computational complexity as
shown in Tab. 2, in comparison with the other two methods.

Table 1: Classification rate and overall efficiency in % of-
fered by LCEC, OTFR-based and the HOS-based method.

PQ Event | LCEC | OTFR | HOS
Cl1 95.50 | 100.00 | 100.00
C2 99.50 | 100.00 | 100.00
C3 99.50 | 100.00 | 100.00
C4 100.00 | 97.84 | 100.00
C5 99.50 95.23 | 100.00
C6 99.00 99.69 | 100.00

Overall Efficiency || 93.13 | 92.88 | 100.00

Table 2: Computational complexity of LCEC, OTFR-based
and HOS-based methods for the simulation results.

Operation || LCEC | OTFR | HOS

Sum 6289 [ 86373 | 23637

Multiplication || 1793 | 108022 | 38004
tanh(.) 23 70 10




6. CONCLUSIONS

In this paper, a novel method for power quality event classi-
fication based on higher order statistics for feature extraction
is presented. The use of the diagonal slices of the second and
forth order cummulants together with the Fisher’s discrimi-
nant ratio for feature selection leaded to a small number of
parameters to be used for the classification purpose.

An artificial neural network was used for classification
and the simulation results shown a remarkable performance
of the proposed method. The overall performance for the 6
considered classes was 100% for the validation events set.

A comparison with other two methods shown that the
proposed method achieved the best performance. However,
it worth to point out that the LCEC is the one requiring the
lowest computational cost.

The OTFR method shown high performance for narrow-
band events such as sags, swell and harmonics, but the per-
formance decreases for the other disturbances.

A noise study of the proposed method is planned to be
performed, but good results are expected as the fourth order
cummulant is blind to Gaussian noise although the second
order cummulant is affected.
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