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ABSTRACT
Very recent technology proposes to acquire astrophysic data
with L3CCD cameras in order to avoid the read-out noise
due to the classical CCD acquisition. The physical process
leading to the data has been previously described by a ”Pois-
son Gamma” density. We propose to discuss the model and
to derive an iterative algorithm for the deconvolution of such
data. Some simulation results are given on synthetic astro-
physic data pointing out the interest of L3CCD cameras for
acquisition of very low intensity images.

1. INTRODUCTION

This paper deals with the restoration of astrophysical images.
Generally and until today astrophysic objets were acquired
using charge coupled devices (CCD) cameras, leading to an
additive Gaussian read-out noise on the data. For very low
intensities data, the variance of the read-out noise is of the
same order than most of the intensities in the image leading
to unrecoverable distorsion. Recently, low light level CCD
(LLLCCD or L3CCD) have been developed. L3CCD’s am-
plify the signal prior to the readout amplifier resulting in a
subelectron effective readout noise. This combined with the
high quantum efficiency make them very interesting as inter-
ferometric detectors. Here we propose to study the effect that
using an L3CCD would have on image restoration.

A brief description of the physical process leading to the
data in optical astronomy imagery is given in section 2. A
Poisson Gamma model for the output of the L3CCD is dis-
cussed in section 3. The problem of restoring the object from
the data is stated in section 4. Section 5 details the iterative
algorithm used and its application to the model under inter-
est. Finally, some numerical results are shown in the section
6.

2. OPTICAL ASTRONOMY IMAGERY

The light emanating from the object of interest propagates
through a turbulent atmosphere and is focused onto the
Charge Coupled Device (CCD or L3CCD) by an imperfect
optical system that limits the resolution and introduces aber-
rations.

The overall effect of the atmosphere and optical system
can be mathematically described by a convolution operation
between the objectx and the Point Spread Function (PSF)h
of the whole system:

z(r,s) = h(r,s)⊗x(r,s), (1)

wherer andsare spatial coordinates and⊗ denotes the two-
dimensional convolution. In each pixel of the sensor, the in-

teraction between the incident photons and the photosensi-
tive material of the camera, creates photoelectronsn in pro-
portion to the number of photons plus extraneous electrons
due to heat and bias effects. If this last effect is neglected,
this photo-conversion process is characterized by a Poisson
transformation of meanz:

n∼P(z). (2)

In the case of CCD cameras, the detector is read by an elec-
tronic process which adds a white Gaussian read-out noise.

3. DISCRETIZED MODEL FOR THE L3CCD
ACQUISITION

The discretization of the process leads to arrays and vectors
and in the following, we use capital letters forN×N ar-
rays and bold letters forN× 1 vectors, subscripti denotes
the pixeli of the image lexicographically ordered.

From the description of the physical process, a realiza-
tion of the value of the image in the pixeli, ni , is a Poisson
variable of mean(Hx)i :

p(Ni = ni) =
(Hx)ni

i

ni !
exp(−Hx)i , (3)

whereH is the classical block Toeplitz matrix for the convo-
lution matrix form andx is the object ordered lexicographi-
cally.

A theoretical model of the L3CCD output probability dis-
tribution has been recently given in [2]. In this case, the pro-
cess amplifying the signal is stochastic in such a way that
the Poisson process is seen through a Gamma law(ni ,1/G)
giving a datayi distributed following:

p(yi |Ni = ni) =
yni−1

i exp(−yi/G)
Γ(ni)Gni

, for ni > 0 (4)

the probability law for the datayi including the Poisson pro-
cess in then :

p(yi |x) =
∞

∑
ni=1

(Hx)ni

ni !
exp(−Hx)i

yni−1
i exp(−yi/G)

Γ(n)Gni

for ni > 0 (5)

whereG is the mean gain of the L3CCD detector.
This probability law describing the behavior of the ac-

quired data, given the object is incorrect for at least two rea-
sons:
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Figure 1: Log-likelihood logp(xi |yi) for H = I

• The first one is that the Gamma density is a continuous
density whileyi , the data coming from the multiplication
process, is necessarily an integer value. Analytic calculus
of the normalization term for a ”discrete Gamma distri-
bution” is an open problem but it has been verified nu-
merically .

• The second one is that the caseni = 0 can not be included
in the Gamma density but it must be put in eq. (5) to
take into account the case of there is no photons in the
pixel i giving obviouslyyi = 0. Adding the corresponding
density gives the final law:

p(yi |x) =
∞

∑
ni=1

(Hx)ni
i

ni !
exp(−Hx)i

yni−1
i exp(−yi/G)

Γ(ni)Gni

+exp(−Hx)iδyi ,0 (6)

To give an idea of the behavior of this ”Gamma Poisson” law,
the simple caseH = I , i.e for noisy data without convolution
has been considered. In this case the value ofyi depends
only of the value ofxi . Figure (1) shows the log-likelihood
logp(xi |yi) with a mean gainG equals to 400. Figure 1(a)
gives logp(xi |yi) for values ofyi < G, in this case the multi-
plication process is not really activated and the most probable
value ofxi is 1 ( except fory= 0 for which the most probable
value is of coursex = 0). For values ofyi superior toG, fig-
ure 1(b) , the maximum is moving to higher values ofx and is
approximately equal toyi/G, underlining the multiplication
process.

4. RECOVERING THE OBJECT FROM THE DATA

Problem of recoveringx from y is a classical problem ill-
posed in the sense of Hadamard. In the deconvolution prob-
lem for astronomical imaging the object is generally com-
posed of bright objects on a sky background, assumed con-
stant denoted bym. This particularity of the astrophysical
object must be taken into account to avoid the ”ringing” phe-
nomena appearing in the vicinity of abrupt intensity varia-
tions. Moreover, in the convolution operation with normal-
ized kernels, the total intensity of the object is maintained.
The problem is then to restore the objectx from the data
y with the constraintx > m and the total intensity conser-
vation,H being generally obtained via separated calibration

measurements. A classical solution is to derive an iterative
algorithm founded on the Maximum Likelihood Estimation
(MLE).

From eq. (6) and with assumption of independence be-
tween pixels, the negative log-likelihood for the image is :

J(x) =−∑
i

logp(yi |x)

=−∑
i

[ ∞

∑
ni=1

zni
i

ni !
exp(−zi)

yni−1
i exp(−yi/G)

Γ(ni)Gni
+

exp(−zi)δyi ,0

]
.

(7)

with (Hx)i = zi . Then the MLE is obtained by minimizing
J(x) versusx with the lower bound and the intensity conser-
vation constraints. The gradient ofJ, for the pixeli is:

(∇J(x))i = ∑
j
(h ji −h ji r j), (8)

with h ji the elements of the matrixH.

r j =
p j

q j
, (9)

p j = exp(−zj)exp(−y j/G)∑
ni

niy
n−1
j zni−1

j

ni !γ(ni)G
ni
i

(10)

and

q j = exp(−zj)exp(−y j/G)∑
ni

yn−1
j zni

j

ni !γ(ni)G
ni
i

+exp(−zj)δy j ,0

(11)
We dont have analytic expressions for the seriesp j andq j
but it can be easily seen that they are convergent.

The gradient vector can be expressed in the following
matrix notation:

∇J(x) = HTdiag

(
1

Hx

)
(Hx−r). (12)

From this result, there is no explicit solution for the MLE
of x and anyway it is well known that the MLE is not rel-
evant for an ill-posed problem. A solution is to construct
an iterative algorithm from the gradient and to stop the it-
erations before instability. The problem remains the deter-
mination of the optimal iterations number. A classical solu-
tion to circumvent this problem consists in regularizing the
problem, i.e adding to the likelihood a termJ2(x) with the
aim of introducing to the solution aprior information, gen-
erally a smoothness property, [4], to stabilize the solution.
The relative weight of the penalty versus the likelihood al-
lows to ”pull” the solution either towards the ML or towards
the prior, changing the MLE in the Maximum A Posteriori
(MAP) estimation and is tuned with a regularization param-
eterγ. The criterion to minimize becomes:

J1(x)+ γJ2(x) (13)

whereJ1(x) is given here by eq.(7). Even if the choice of the
regularization function and the tuning of the regularization
parameter exceed (for lack of space) the scope of this paper,
we give in the sequel the iterative algorithm applied to the
composite criterion 13.
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5. THE ITERATIVE ALGORITHM

The MLE iterative algorithm can be easily obtained using the
Split Gradient Method (SGM) previously proposed in vari-
ous papers [6, 7, 9, 12].

5.1 SGM method

The regularized problem is to solve a problem of minimiza-
tion under constraints, i.e:
• Minimize with respect tox:

J(x,γ) = J1(x)+ γJ2(x). (14)

• With the constraints:
1. Lower bound,xi −m≥ 0 ∀i.
2. Energy conservation,∑i xi = ∑i yi .

Let us note that the considered functionsJ1(x) andJ2(x) are
convex. We propose to devise algorithms deduced from the
Kuhn-Tucker (KT) conditions in the general modified gradi-
ent form [7, 6, 8].

xk+1
i = Ck(xk

i +α
k
i fi(xk,γ)(xk

i −m)(−(∇J(xk,γ))i). (15)

The initial estimatex0 is chosen as a constant value, such
that all the constraints are fulfilled,Ck is a normalization fac-
tor for the the total intensity conservation, subscripti is for
the pixel i, αk

i > 0 is the relaxation factor,k is the iteration
index, f (x) is a function having positive values whenx sat-
isfies the constraints. To obtain ”product form” algorithms,
the split-gradient method (SGM) is used. It can be summa-
rized as follows: the convex functionJ(xk,γ) admits a finite
unconstrained global minimum given by∇J(xk,γ) = 0, then
we can write:

−∇J(xk,γ) = U(xk,γ)−V(xk,γ), (16)

where U(xk,γ) and V(xk,γ) are two positive functions
∀xk ≥ m. From (14), the total gradient can be decomposed
as:

−∇J(xk,γ) =−∇J1(xk)− γ∇J2(xk). (17)

Splitting−∇J1(xk) and−∇J2(xk) as in (16), we have

−∇J(xk,γ) = U1(xk)−V1(xk)+γ(U2(xk)−V2(xk)), (18)

and

U(xk,γ) = U1(xk)+ γU2(xk), (19)

V(xk,γ) = V1(xk)+ γV2(xk). (20)

Taking:

fi(xk,γ) =
1

Vi(xk,γ)
> 0, (21)

eq. (15) becomes:

xk+1
i = Ck

(
xk

i +α
k
i
(xk

i −m)
Vi(xk,γ)

(Ui(xk,γ)−Vi(xk,γ))
)

. (22)

The maximum stepsize that ensuresxk+1
i −m≥ 0,∀i,∀k is

given by:

α
k
m = min

i∈C

 1

1− Ui(xk,γ)
Vi(xk,γ)

 , (23)

whereC is the set of indexi such that(∇J(xk,γ))i > 0 and
xk

i > m; clearly αk
m > 1, then forαk = 1, the constraint is

always fulfilled. The optimal step sizeαk
c independent ofi

ensuring convergence must be computed in the range]0,αk
m]

(or ]0,αk
m[ if a strict inequality constraint is required) by a

line search procedure, (see for example [1, 3, 11, 10]), with
the descent direction:

ρk = diag

(
(xk

i −m)
Vi(xk,γ)

)
(U(xk,γ)−V(xk,γ)). (24)

This direction is no more the negative gradient but it remains
a descent direction forJ(x). The normalization i.e the com-
putation ofCk is performed following [6]. To ensure the theo-
retical convergence of (22) without a dramatic increase of the
computational cost, economic line search using the Armijo
rule [1] or the Goldstein rule [5] can be used to computeαk

c ,
as mentioned in [3].

5.2 Application to the Poisson Gamma model

The SGM algorithm has been applied to the Gamma Pois-
son model, without regularization, the gradient (eq. 12) is
splitted into the functionsU andV following:

U = HTdiag

(
1

(Hx)i

)
r and V = 1 (25)

∑ j h ji = 1 for normalized kernels. Finally, the estimated re-
constructed object in the pixeli is at the iterationk+1:

x̂k+1
i = Ck

(
xk

i +α
k(xk

i −m)((HT r.
Hx

)i −1)
)

. (26)

6. NUMERICAL ILLUSTRATIONS

6.1 Object

The proposed algorithm has been illustrated on a pic-
ture taken from the Hubble Space Telescope (HST) site,
http://hubblesite.org/gallery/ . It is a sun-like
star nearing the end of its life, figure 2(a). A 128×128 sub-
picture has been extracted from the HST image, centered on
the main structure, figure 2(c).

6.2 PSF

The data have been blurred with the normalized space in-
variant PSF, fig. 2(b). It is a realistic representation of the
PSF of a ground based telescope including the effects of
the atmospheric turbulence: the telescope apertureP(r) is
simply given by an array of points ”1” inside a circle and
”0” outside, the wavefront errorδ (r) is an array of ran-
dom numbers smoothed by a low-pass filter. The quantity

P(r)exp
(

2iπδ (r)
λ

)
represents the telescope aperture with the

phase error; for the simulation, the peak to peak phase vari-
ation is small (less thanπ) and may correspond to typical
telescope aberrations, see ([6]) for more details. The main
interest of such a PSF simulation is that the Optical Trans-
fer Function is a low pass filter, limited in spatial frequencies
to the extent of the aperture auto correlation function, the
blurred image, figure 2(d), is then strictly band limited cor-
responding to a realistic situation.
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6.3 Some results

To stop the iterative procedure before noise amplification
and/or to check the quality of the restoration process, we use
a criterion based on the Euclidean distanceε(k) between the
true objectx∗ and the reconstructed one, computed as a func-
tion of k:

ε(k) =
||xk−x∗||
||x∗||

. (27)

Such a comparison cannot be made for a real case since the
true object is not known. However, it allows a good charac-
terization of the behavior and performance of the algorithm
for simulated data.

Fig. 3 shows a result in the case of data modeled by a
Poisson Gamma density (L3CCD). Fig. 3(a) and (b) are the
raw pictures respectively before and after amplification by a
Gamma gain. Fig. 3(c) is the best result, in the sense ofε(k)
of the deconvolution algorithm, without regularization.

Fig. 4 compares image restoration with a CCD versus
a L3CCD camera. Fig. 4(a) is a raw picture provided by
a L3CCD with 1000 photons before the multiplication pro-
cess while fig. 4(b) is a raw picture provided by a CCD with
1000 photons, corrupted by a read-out noise. In this case the
result of the deconvolution algorithm is much better for the
L3CCD, fig. 4(c) than for the CCD case, fig. 4(d).

7. CONCLUSION
An iterative reconstruction algorithm has been proposed to
deconvolute Gamma Poisson data. First results on decon-
volution of astrophysical images acquired with L3CCDs are
given. These results compared with those obtained using data
acquired with classical CCDs, underline the interest of such
cameras in the case of very low intensity imagery.

(a)

 

 

500 1000 1500

500

1000

1500

(b)

 

 

20 40 60 80 100 120

20

40

60

80

100

120
0

50

100

150

200

250

2

4

6

8

10

12
x 10

−3

(c)

 

 

20 40 60 80 100 120

20

40

60

80

100

120
0

50

100

150

200

250

(d)

 

 

20 40 60 80 100 120

20

40

60

80

100

120 20

40

60

80

100

120

140

160

Figure 2: (a) Galaxy (b) Normalized PSF (c) Object (d) Re-
sult of the convolution
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