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ABSTRACT 
Standard edge detectors react to all not negligible luminance 
changes in an image, irrespective whether they are originated by 
object contours or by texture (e.g. grass, foliage, waves, etc.). Tex-
ture edges are often stronger than object contours, thus standard 
edge detectors fail in isolating object contours from texture. We 
propose a multiresolution contour detector, operating in the Circu-
lar Harmonic Function domain and motivated by biological princi-
ples. At each scale, texture is suppressed by using a bilateral sur-
round inhibition process, applied after non-maxima suppression. 
The binary contour map is obtained by a contour-oriented thresh-
olding algorithm, proved to be more effective than the classical 
hysteresis thresholding used in the Canny edge detector. Robustness 
to noise is achieved by a Bayesian gradient estimation.  

1.  INTRODUCTION 

The last two decades have seen a flourishing development in the 
field of edge detection. Examples of edge detectors are operators 
incorporating linear filtering [1], local orientation analysis [2], fit-
ting of analytical models to the image data [3], and local energy [4]. 
In object recognition tasks, these methods suffer the drawback of 
reacting to all luminance changes, irrespective of their origin: object 
contours or texture. Moreover, in many cases the gradient magni-
tude is stronger on textured areas than on object contours. Since the 
Human Visual System (HVS) can easily make such a distinction, we 
take into account some aspects of the HVS to improve the men-
tioned selectivity property of the contour extraction. 
For instance, psychophysical studies show that the HVS processes 
low and high spatial frequencies with different latencies [5]: low 
frequencies are processed in the first 0.1 ÷ 0.3s after an image is 
projected on the retina, thus only the general morphology is per-
ceived; in the subsequent stage, also the information in higher spa-
tial frequencies is processed and details are perceived. This suggests 
that contour detection should be performed in a multiresolution 
framework [6], [7]. 
Other psychophysical and neurophysiological studies reveal the 
existence of a phenomenon called surround suppression ─ see e.g. 
[8], [9] and the references therein ─ leading to reduction of the re-
sponse of an orientation selective neuron to an oriented stimulus, 
when it is surrounded by other similar stimuli. In [9] it is suggested 
that the biological utility of surround suppression is contour en-
hancement in natural images rich in background texture.  
Contour detection becomes an even more challenging task when 
applied to noisy images. To make contour detection robust to noise, 

we introduce a Bayesian denoising step that deploys the optimal 
Minimum Mean Square Error (MMSE) estimator of the gradient in 
additive noise. According to recent statistical studies on natural 
images [10], parametric probabilistic models based on Gaussian 
Scale Mixtures (GSM) are adopted for both signal and noise edge 
features. This assumption leads to a closed form of the estimator.  
In this paper we combine multiresolution analysis, optimal Bayesian 
MMSE estimation of the gradient, and surround suppression. For 
multiresolution analysis we use Circular Harmonic Functions 
(CHF) [11]. The image contours are extracted at different resolu-
tions and the obtained binary maps are combined by the logic AND 
operator. This approach relies on the assumption that contours are 
present at each resolution, while texture details are present only at 
the finest ones. In order to counteract the effect of noise, at each 
scale we perform  noise reduction by using an optimal Bayesian 
MMSE estimation of the gradient, followed by a biologically moti-
vated surround inhibition step. 

2.  CIRCULAR HARMONIC FUNCTIONS 

In this Section, CHFs are introduced and some considerations on 
their relevance in modelling some aspects of the early stages of the 
HVS are detailed. Given an image ( )2 2( , )I x y L R∈ , let 

( ) 1 2, ( cos , sin )pI r I r rθ ξ θ ξ θ= + +  be its representation in a 

polar coordinate system ( , )r θ , centered at point ( )1 2,ξ ξ , where 

( ) ( )2 2
1 2r x yξ ξ= − + −  and 2

1
arctan y

x
− ξ

θ =
− ξ

.  Then, given a 

weighting function ( )RTPw r , the radial tomographic projection 
(RTP) is defined as follows:  

 ( ) ( )1 2
0

, ( , )RTP pRTP w r I r drθ ξ ξ θ
∞

= ∫  (1) 

Since ( )1 2,RTPθ ξ ξ  is periodic with respect toθ  it can be decom-
posed into a Fourier series as follows 

 ( ) ( )( )
1 2 1 2, ,n jn

n
RTP RTP e θ

θ ξ ξ ξ ξ
+∞

=−∞

= ∑  (2) 

with  

 ( ) ( )
2

( )
1 2 1 2

0

1, ,
2

n jnRTP RTP e d
π

θ
θξ ξ ξ ξ θ

π
−= ∫  (3) 

being the n-th radial coefficient of the RTP. The radial coefficient 
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( )( )
1 2,nRTP ξ ξ   is related to the image ( ),I x y by the following 

convolution 
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The functions 
 ( ) ( , ) ( )n jn

nr h r e θψ θ −=  (5) 

where ( )2 ( ) RTP
n

w rh r
r

π = , are known in the literature as circular 

harmonic functions (CHFs) of order n with radial profile hn(r). The 
CHFs transform generates complex images, where the magnitude 
reveals the presence of specific features, and the phase is propor-
tional to their orientation. In general, the n-th order CHF is tuned to 
the fundamental harmonics of n-fold angular symmetric patterns, 
corresponding to edges (n = 1), lines (n = 2), forks (n = 3), crosses 
(n=4) and so on. It is worth noting that the polar separability prop-
erty that characterizes the circular harmonic filters in the spatial 
domain holds also in the frequency domain. 
For the application pursued in this paper, let us consider the follow-
ing polar separable functions: 

 
2 2( / )( ) ( , ) i

i

n
rn jn

i

rr e eσ θ
σψ θ

σ
− −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (6) 

known as “marginal” Hermite filters ( 0,1,2,3,...n = ). 
Fig.1 shows the outputs of the “marginal” Hermite filters for a 
synthetic test image and demonstrates  the CHFs’ abilities to high-
light edges, lines, forks, and crosses when using the orders n=1, 
n=2, n=3, and n=4, respectively. For the purpose of this study, in 
the following we use only CHFs of order n=1. 
 

 
Figure 1 - From left to right: test image, magnitude of the outputs of 
the “marginal” Hermite filters of order n = 1, 2, 3, 4. 

3. MULTIRESOLUTION CONTOUR DETECTOR 

As well known from multiresolution analysis [11], the outputs of 
coarse scale edge detectors do not contain much texture (Fig. 2a), 
but contours are smoothed and shifted [12] and non-maxima sup-
pression destroys the junctions. At fine scales, contours are well 
detailed (Fig 2b), but much texture is present. The advantages given 
of different resolutions can be exploited by selecting, from the bi-
nary edge map obtained at a fine scale, only those edge pixels being 
close enough to edge pixels present in a map obtained at a coarse 
scale. The result contains well located contours but does not contain 
texture edges, since they are not present at the coarse scale (Fig. 2c). 
We apply this principle to the binary outputs of N Scale Dependant 
Contour Enhancers (SDCE) each of which is responsible for a dif-
ferent resolution (Fig. 3). The design of a SDCE is described in 
Section 4. 
Specifically, let us consider a given image I(x,y) and its observed 
version IZ(x,y) corrupted by additive independent observation noise 
Z(x,y). First, the noisy image undergoes a multiresolution analysis 
by taking the magnitudes of the results of convolutions with CHF 
functions (1) ( , )

i
x yσψ of order n = 1 of different resolutions iσ , i = 

0,1,…,N−1: 
 (1)( , ) ( , ) ( , )

i i

Z ZI x y I x y x yσ σψ= ∗ . (7) 

Then binary maps ib  are computed by applying the SDCE operator 
described in Section 4: 
 { }i i

Z
ib SDCE Iσ σ=  (8) 

 

The binary maps obtained at different scales are combined as shown 
in Fig. 3. First, we apply morphological dilation to all binary maps 
but the one that corresponds to the finest scale: 
 

 , 3, 2,..., 1k DIL kb b D k N= ⊕ = −  (9) 
 

where we use a disk D3 of radius three pixels as a structuring ele-
ment. The final output is given by the logic AND of the binary maps 
at all resolutions: 

 ( ) ( )
1

0 ,
1

, ,
N

out k DIL
k

b b x y b x y
−

=

= ⋅∏  (10) 

Morphological dilation compensates the shifting at the coarser reso-
lutions and restores the junctions. 

4.  SCALE DEPENDANT CONTOUR ENHANCER 

The proposed Scale Dependant Contour Enhancer (SDCE) is de-
picted in Fig. 4. The first processing step is Bayesian denoising 
(Section 4.1). Then non-maxima suppression and surround inhibi-
tion are performed (Section 4.2), followed by binarization (Sec-
tion 4.3).  
 
4.1      Bayesian denoising 

Our goal is to find the optimal estimator ( )ˆIσ = a z�  for the un-

known vector Iσ=a , when a noisy version ZI I Zσ σ σ= = +z  is 
observed. As well known from the Bayesian estimation theory, the 
MMSE estimator is given by: 
 

 ( )
( ) ( )
( ) ( )

p p

p p d
=
∫

az a

az a

z a a
a z

z a a a
�  (11) 

 

Destroyed junctionDestroyed junction

  

Restored junctionRestored junction

 
Figure 2 - Binary maps obtained from the outputs of a CHF filter 
for: (a) a coarse scale, (b) a fine scale, (c) a combination of the two 
scales by morphological dilation and logic AND. 
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Figure 3 – Multiscale contour detector. 
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Figure 4 - Single scale contour detector. 
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According to recent statistical studies on natural images [11], both 

( )pa a  and ( )pz a z a  are assumed GSM, with covariance matri-

ces Ai and Nk for the signal and the noise, respectively: 
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where: 

 ( ) ( ) ( )1
2

1 1, , exp
2 det 2

T

π
−⎡ ⎤= −⎢ ⎥⎣ ⎦

ξ µ R ξ - µ R ξ - µ
R

N  (13) 

 

By substituting eq. (12) in eq. (11), we can find the following closed 
expression for the optimal MMSE estimator: 
 

 ( )
( ) ( )

( )
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,

,

,0,

,0,

−
+ +

=
+

∑
∑

�
i k i k i i k

i k

i k
i k

λ β z A N A A N z
a z
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2
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N

N
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The nonlinearity defined by eq. (14), applied to each pixel of ZIσ , 

gives the  optimal MMSE estimation Iσ�  of Iσ . It is worth pointing 
out that the best linear MMSE estimate would give the  Wiener 
filter. 
 
4.2     Surround inhibition 
Next, surround inhibition reduces the strength of those edges which 
are surrounded by other edges. This mechanism is inspired by psy-
chophysical and neurophysiological findings (see [7-9] and refer-
ences therein). In [7-9] the contour strength c(x,y) is computed by 
subtracting an inhibition term Tσ. from the gradient magni-
tude, M Iσ σ= � : 

 ( ) ( ) ( ), , ,c x y M x y T x y
+

σ σ σ= − α  (15) 

where the parameter α controls the strength of the inhibition. 
The inhibition term Tσ  is defined as the local weighted average of  
Mσ on an annular surround r around each pixel. Since Tσ is high on 
textured areas and low on isolated contours, texture can be sup-
pressed without destroying object contours. 
One drawback of this approach is that a contour in a given position 
is inhibited by other parts of the same contour that fall in the sur-
round inhibition area of the concerned position. This auto-inhibition 
is particularly undesirable for weak contours. To solve this problem, 
we modify the definition of Tσ as follows: First, we split the annular 
surround r in two halves r+ and r− along the edge direction θσ(x,y) 
and exclude from these halves a band as shown in Fig. 5a. Second, 
we compute the inhibition term after non-maxima suppression. 
Specifically, we first apply non-maxima suppression: 

 ( ) ( ) ( )
( )

, , ,
,

0, ,

M x y x y S
M x y

x y S
σ σ

σ
σ

⎧ ∈⎪= ⎨
∉⎪⎩

�
�  (16) 

with: 

 ( )
2

2, 0 0M MS x y
u u
σ σ

σ
σ σ

⎧ ⎫∂ ∂⎪ ⎪= = ∧ <⎨ ⎬
∂ ∂⎪ ⎪⎩ ⎭

 (17) 

where uσ is the direction of the gradient Iσ� .  
Then we consider the following pairs of orientation dependent filters 

( ), ,w x yσ φ
± , which define two half-rings oriented along an angle φ ∈ 

[0, π): 

 ( ) ( ), , DoG ( , ) cos sinW x y x y U x y aσ φ σ φ φ± = ⋅ ⎡± + − ⎤⎣ ⎦  (18) 

 ( ) ( )
( )

2

,
,

,

,
,

,
R

W x y
w x y

W x y dxdy
σ φ

σ φ
σ φ

±
±

±
=
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 (19) 

where 

 ( ), 0 1, 0
,

0, 0 0, 0
U

ξ ξ ξ
ξ ξ

ξ ξ
+ ≥ ≥⎧ ⎧
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 (20)  

and   

 ( )
2 2 2 2

2 2 2 2
1 1 1DoG , exp exp

2 (4 ) 2(4 ) 2
x y x yx yσ π σ σ σ σ

+
⎛ ⎞ ⎛ ⎞+ +

= − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (21) 

 

We compute the following two convolutions and take their mini-
mum as an inhibition term: 
 

 
( ) { }( )

( )

( ) ( ) ( ){ }
,

,
, ,

, min , , ,

x y
T x y M w x y

T x y T x y T x y
σ

σ σ σ φ
φ θ

σ σ σ
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=

+ −

⎧ = ∗⎪
⎨
⎪ =⎩

�
 (22) 

 

The convolutions are computed for a discrete set of orienta-

tions{ } 1
N

i i=
φφ , ( )1i i N= − φφ π  and, for each pixel, we take the 

result obtained for the angle iφ  that is closest to the gradient orien-
tation θσ(x,y).  

On isolated edges (Fig. 5a), the local averages on both the sides are 
very low, ideally zero; consequently, Tσ(x,y) is low and contours are 
not inhibited. On textured areas (Fig. 5b), the local averages on both 
the sides of an edge are high and similar to each other, thus the inhi-
bition term is high and such texture edges are suppressed. Borders 
of textured areas are not inhibited, since Tσ(x,y) is low on such 
points (Fig. 5c). 
The advantage of performing surround inhibition after the non-
maxima suppression is illustrated by Fig. 6. Fig. 6a shows the set Sσ  
of local gradient maxima and we see that the contours of the ele-
phant are well separated from the rest of the texture. Therefore, a 
half-ring centred on a point of such a contour, and appropriately 
oriented, contains only a few nonzero pixels and the corresponding  
inhibition term Tσ will be extremely small. By comparing Figs. 6b 
and 6c we can see the improvement achieved by the proposed inhi-
bition scheme with respect to [8, 9]. The proposed modifications 
allow the use of higher values of α, leading to more effective texture 

 

(a)

a

(b) (c)

r+

r−

Figure 5 - Half-rings on which Mσ(x,y)  is averaged, for: (a) isolated 
edges, (b) textured areas, and  (c)  borders of textured areas. 
 

   
 (a) (b) (c) 
Figure 6 - (a) Set Sσ for the test image “Elephant”. (b, c) Contours 
obtained with the inhibition schemes proposed in this paper (b) and 
in [9] (c). 
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suppression, without affecting object contours. 
 
4.3 Binarization 
Similar to other methods for edge and contour detection, the last 
step of the algorithm comprises binarization by thresholding. One 
well known problem with traditional thresholding techniques, such 
as global or hysteresis thresholding [1], is that they cannot deal with 
the quite common situation of weak contours. The gradient magni-
tude at such contours is smaller than at spurious edges originated by 
noise or texture. In this paper, we present a new thresholding algo-
rithm, based on the observation that contours lead to long connected 
components of nonzero pixels, while texture edges lead to relatively 
short and thin components.  

Let ( ){ }
1

SN

k k
C σ

=
 be the connected components of Sσ (eq. 15), i.e.: 

 

 ( )
k

k
S C σ
σ =∪  (23) 

 

For each connected component ( )
kC σ , we introduce a quantity ( )

kR σ , 
we call contour weight, defined as the sum of the values of cσ(x,y) 
over ( )

kC σ : 

 ( ) ( )
( ) ( ),

,
k

k
x y C

R c x y
σ

σ
σ

∈

= ∑  (24) 

 

We define a binary map bσ as the union of all connected compo-
nents ( )

kC σ whose weight ( )
kR σ is above a given threshold tR: 

 ( )

( )
Rk

k
R t

b C
σ

σ
σ

>

= ∪  (25) 

  

By comparing eqs. (23) and (25) we can see that b Sσ σ⊆ , where all 

components ( )
kC σ  which do not correspond to  any meaningful 

contour have been removed (Figs. 6a, 6b). 
On a weak edge, like the contour of the hill in Fig. 9a, the gradient 
magnitude Mσ(x,y) is very low and it would (partially) not be de-
tected by a standard binarization technique. However, since the 
contour of the hill forms a long chain of connected components, its 
weight ( )

kR σ  is high enough to survive the modified thresholding. 

Therefore, thresholding the global contour weight ( )
kR σ preserves 

the weak edges better than thresholding the local edge strength 
Mσ(x,y) or cσ(x,y). 

5.  EXPERIMENTAL RESULTS 

We now show and comment some examples of the results achieved 
with the proposed algorithm, both for noiseless and noisy images 
(SNR = 13dB), in comparison with four other existing algorithms 
(Figs. 7-10). As it can be seen, our approach (Figs. 7-10 b) gives the 
best results in terms of texture suppression, cleanness of the detected 
contours, and robustness to noise. Compared to the Canny edge 
detector [1] (Figs. 7-10 c), multiscale analysis, without surround 
inhibition [6], (Figs. 7-10 d) has some benefits: some texture is re-
moved and noise is reduced. Comparable texture suppression is 
achieved with the single scale surround inhibition algorithm pro-
posed in [9] (Figs. 7-10 e). The combination of multiscale analysis 
and surround inhibition [7] gives better results (Figs. 7-10 f). By 
comparing the results represented in Figs. 7-10 b and f, we can see 
the performance improvement achieved with the bilateral inhibition 
scheme and bayesian denoising proposed here: more texture is sup-
pressed and the contours are cleaner, especially for the noisy im-
ages. 
We carried out a quantitative performances evaluation by comparing 

the results with a weighted multiset ground-truth drawn by hand. 
The ground truth associated with a given input image consists of a 
class { } 1

SN
i i=E  of sets of contour pixels. With each set Ei a weight 

value γi is associated, corresponding to the importance attributed to 
the elements of Ei. An example of such a ground-truth is given in 
Fig. 11, where the three sets E1, E2, E3, from the highest to the low-
est value of  γi, are represented by a thick, thin and dotted line, re-
spectively. The dissimilarity between the ground truth and the out-
put of a given operator defined as follows: 
 

 
( )

i i
i

i i i
i

EP

EP MP RT

γ
ρ =

γ + +

∑
∑

 (25) 

with: 

 

{ }
{ }
{ }

card Exact Points

Missing Points

Residual Texture

i i

i i

i
i

EP AR

MP card AR

RT card AR

⎧ =
⎪

=⎪
⎨
⎪ =⎪
⎩

∩

∩

∩∪

E

E

E

 

 

where AR (Algorithmic Result) is the set of 1-pixels detected by a 
given algorithm, card(X) indicates the number of pixels of the set X  
and X  indicates the complementary set of X. EPi is the number of 
correctly detected contour pixels, i.e. the pixels present both in the 
result and in the ground truth. MPi is the number of false negatives, 
i.e. points which are present in the ground truth but not in the opera-
tor output. RT is the numbers of points present in the AR but not in 
the ground truth and gives a measure of unsuppressed texture. 
The values of ρ for the considered algorithms are presented in Fig. 
12, where we can see that the proposed approach outperforms both 
standard techniques and more sophisticated algorithms based on 
single and multiscale surround inhibition. 

6.  CONCLUSIONS 

The proposed multiscale contour detector, operating in the CHF 
domain, discriminates object contours from texture. At each scale, 
texture is suppressed by a biologically motivated surround inhibition 
step, where auto-inhibition is avoided by (i) the bilateral computa-
tion scheme of the inhibition term and (ii) the application of the 
inhibition after the non-maxima suppression. This allows to use a 
larger  value of the inhibition coefficient and leads to more effective 
texture suppression. 

     

 E1

E2

E3  
 (a) (b) 

Figure 11 – Original image (a) and its multiset ground truth (b). 
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Figure 12 – Values of ρ for the studied algorithms, both for noiseless 
and noisy images. 
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Binary contour maps are obtained by thresholding the weight as-
signed to each connected contour component. This leads to better 
results than pixel-wise thresholding of the gradient magnitude Mσ 
because long weak edges are preserved. Robustness to noise for the 
general non-Gaussian case is achieved by using a Bayesian estima-
tor. GSM models are employed for both the image and the noise and 
a closed form of the estimator has been provided. 
As shown by the experimental results and performance evaluation, 
our algorithm outperforms both standard and more sophisticated 
approaches. 
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Figure 9 - (a) Input image “Rino” and contours detected with: (b) 
the proposed approach, (c) the Canny edge detector, (d) the multis-
cale edge detector CARTOON without surround inhibition [6], (e) 
single [9] and (f) multi scale surround inhibition [7]. 
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Fig. 10. Contours detected on the noisy image test (SNR = 13dB) 
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Figure 7 - (a) Input image “Elephant” and contours detected with: 
(b) the proposed approach, (c) the Canny edge detector, (d) the mul-
tiscale edge detector CARTOON without surround inhibition [6], 
(e) single [9] and (f) multi scale surround inhibition [7]. 
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Fig. 18. Contours detected on the noisy image test (SNR = 13dB) 
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