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reflectivity seriesr(t). Even though the above conditions are

We propose a frequency blind deconvolution algorithm basefOt Met here, we shall stick, for smplicity, to the deconvolu-
on mutual information rate as a measure of whiteness. In théon procedure viaatime invariant linear filter g. This filter
case of seismic data, the algorithm of Wiggins [11] based o¥'ill be adjusted by optimizing some criterion related to the
kurtosis, which is a supergaussianity criterion, is oftedus Output characteristic. Theinfluence of the noise and the ban-
We study the robustness in noisy context of these two algddlimitness of the convolution filter on the adopted criterion,
rithms, and compare them with Wiener filtering. We provideWi!l be studied in asubsequent section. As the reflectivity se-
some theoretical explanations on the effect of the additivél€S1S @sumed to satisfy some (broad) assumptions, theidea
noise. The theoretical arguments are illustrated with a simu'S {0 design criteria to force the output to tend toward the
lation of seismic signals. For such signal, the superganssi SMe assumptions. The most popular approach is to assume

ity criterion appears more robust to noise contaminatianth thewhiteness of the reflectivity series, then, one adjusts g to
the whiteness criterion. maximize a whiteness measure of the output. The simplest

algorithm used the autocorrelation function (which is equal

to a Dirac delta function) or the power spectrum (which is

1. INTRODUCTION constant) of the reflectivity [9]. These methods employ sec-
This paper is motivated by seismic applications, in which sond order statistics, which unfortunately do not contain phase
recorded seismic trace is often modeled as a convolution ahformation. Therefore, the phase of the wavelet remainsun-
a waveletw(t) with the reflectivity series(t) plus added su- known and has to be specified a priori. Wiggins [11] intro-
perposed noisa(t), It is generally assumed that the reflec- duced in his Minimum Entropy Deconvolution (MED) algo-
tivity is a white supergaussian process, the noise is a whitdthm, an entirely new concept based on the maximization
Gaussian process, and the wavelet is a bandlimited filteof the kurtosis. The kurtosis is a fourth order statistic that
Seismic deconvolution consists in recovering the reflégtiv. measures the deviation from Gaussianity. If a white reflec-
from a given seismic trace or at least boosting its high fretivity series is convolved with a filter then the output will
guencies content attenuated by the bandpass wavelet.sThisdecome more Gaussian [4]. A white reflectivity series can
often done through a deconvolution filigrFigure 1 depicts  therefore be recovered by creating an inverse filter that ren-
the convolution-deconvolution system: der the output y(t) as non Gaussian as possible. One way of
n(t) % doing this is to maximize the kurtosis of the created output

i d(t) signal. Sincethe kurtosisis a higher (than 2) order statistics,
=P g phase information is retained and no added a priori informa-
tion is needed to recover the reflectivity series. Wiggins thus
proposed the first blind deconvolution algorithm. The kurto-
sisis therefore traditionally interpreted as a whiteness crite-
rion in deconvolution problems [1, 2]. It has however many
disadvantages. Sinceit is based on the fourth order statistics,
it is sensitive to the presence of outliers. Further, the use of

rt)

—= W

y(t)

M easure of
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Figure 1: The convolution-deconvolution system

In seismic data processing, one rarely knowsthe wavelet,
and the probability distribution of the reflectivity is aso un-
known. Our problem thus fits the description of the classical
blind deconvolution problem, with the added difficulty that
the observation is contaminated with noise and the convolu-
tion filter (i.e. the wavelet) is bandlimited. In the (more fa
vorable) situation where thereis no noise and the convolution
filter is not bandlimited, there exists an uniqueinversefilter g
such that the output y(t) = g*d(t) equalsr(t), x denoting the
convolution product. Theideaisthen to find an inversefilter
g to create an output y(t) = gxd(t) which looks like to the

such statistics is not optimal for the problem at hand.

Other criteria have been proposed to measure whiteness
using all higher order statistics. One such criterion, recently
introduced, is the mutual information rate [10, 6]. It isre-
lated to entropy and is a good general purpose measure of
whiteness of a process [3]. It has been shown in the noise-
less case that blind deconvolution based on minimization of
the mutua information rate is optimal [8]. However, in the
context blind deconvolution of seismic data, our numerical
simulations show that the use of kurtosis as a supergaus-
sianity constraint outperforms a general purpose whiteness
constraint such as the mutual information rate. This can be
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explained by the presence of noise and the bandlimitness adbes not depend dn hence we shall drop the indéxn the
the wavelet, as discussed in section 3. Section 2 describéisst term of (3). In practice to estimatd(Z) one would
the MED algorithm and a frequency blind deconvolution al-use all samples(1),...,z(T) asT realizations of the random
gorithm based on mutual information rate [6]. SimulationvariableZ;, for any t. To simplify the notation and to be

results are presented and discussed in section 4. homogeneous with the equation (1), in the following, we will
write H(z) for H(Z).
2. THEORETICAL ASSESSMENTS The estimation of the entropy rate is however problem-

. atic, but fortunately, one can avoid it by noting that the en-
21 MED algorithm tropy rate#(Y) of the deconvolution outpy(t) = (gxd)(t)
Wiggins [11] proposes to solve the deconvolution problem byequals

maximization of the varimax norm. In one channel problem,

it is equivalent to maximize the deconvolution output psxe 1 gem
kurtosisk (y) estimated by: A (gxD) = (D) + ET/O log

-
K(y) = Tgtzilzyll(t)z -3 (1)  (see [8]). Hence, the mutual information rate of the decon-
[Se=1y*(1)] volution output can be written as:
The simplest approach is to maximize (1) with respect

of the filter coefficientsg = [go,...,ogn]" whereN denotes 1 s2n
the length of the filter. For this end, one equates to zero the | (Y) = H(y) = #°(D) — ET/O log
derivative ofK (y) with respect to thej, which yields a sys-
tem of estimating equation®g = f, whereR is aN x N
autocorrelation matrix defined with th first delays of the

—+00

S gtye

t=—o

dw (5)

dw

+o0 ,
Y gte
t=—o

(6)
Then, since the entropy rat&’(D) is independent of the in-
autocorrelation function of the datt), and the vectof is verse filterg, one can consider instead of (6), the simplified

defined with the correlation betwegf(t) and the data(t). criterion [12, 10J:

The equation as it stands is highly nonlinear so that it can- 1 gom
not be solved directly. It can, however, be solved iteragivel fY)=H(y) — _/ log
in a straightforward fashion. One starts with a valuezpf 2m
computingf, solving the systeniRg = f for a new value of

0, then recomputing and_so on...Some extensions of thishich, like (6), is minimum when the procesg(t)} is iid.
method were presented in [5], in particular a frequency ap-  The above criterion has been used in [10], for a Wiener

o _
> gte

t=—o0

do  (7)

proach and a modification of the norm in use. systems composed of a cascade of a direct filttemd an
o ) ) invertible non linear distortion. The authors estimate the

2.2 Frequency domain blind deconvolution algorithm inverse filterg in the time domain, by minimizing (7) with

The mutual information of a random vectee= (z;,...,z,)  respect to the impulse respongé), which is done by a

of dimensiom is defined by: gradient technique. They use a finite number of coefficients

for the estimation ofg(t), so it is equivalent to choosing
n a Moving Average (MA) model fog. Thus, the method
I(z) = .ZlH(Z‘) —H(z,2,...,2) (2) is well adapted to the inversion of an autoregressive (AR)
= direct filterw. One can show that the algorithm is equivalent
where H(z) denotes the Shannon marginal entropy ofto a maximum likelihood (ML) method, replacing the source
z: H(z) = — [z Pz (u)logpg (u)duandH(z1,2,. .., 7,) the d!str!but!on, supposed known in the ML method, by the
Shannon joint entropy:H(z) = — [z Pz(u)logp,(u)du. distribution of the deconvolution output estimated at each
The mutual informationi (z) has the nice property of be- iteration. The application field of this method is limited
ing positive and vanishes if and only if the components oy the parametric model: for example, in seismology, the
z are mutually independent. It is thus a measure of deperdlirect filter impulse response can be a chirp or a Ricker
dence of random variables. However stochastic process#&gvelet which can not be modeled by a MA filter. Moreover,
are involved here so that we consider a related measurd§le method does not take into account the additive noise
called mutual information rate (MIR). The MIR of a station- n(t) of the model. With Gaussian additive noise, one can

ary procesZ = {Z} is defined by: experimentally see that the method achieves the same per-
formances as the second order methedthe Yule-Walker
t=T algorithm. To overcome these limitations, we propose to use
1(2)=1im =S H(Z)-7(2) (3)  acriterion in the frequency domain which avoids parametric
Toe T & approaches like the MA, AR or ARMA models, whose
parameter number can be very large. Moreover, in the
where 1 frequency domain, it is easy to add a regularization term for
H(Z) = lim =H(Zy,...,Z7) (4) limiting noise amplification as it is usually done in Wiener
Toe T filtering.
which exists and is called the entropy rate of the (statignary
procesZ = {Z} (see [3]). So, we propose to minimize (7) with respect to the dis-

The mutual information rat&(Z) is always positive and crete frequency responge= |Gy, ...,Gr_1] of the filterg.
vanishes if and only iZ is an iid process [3]. Thus it can Then, we have to estimafie/2 complex parameters (due to
be used as a deconvolution criterion. By stationakkyZ:)  the hermitian symmetry of the real filter) usifigtemporal
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samples of the output signal. Thus, without adding a smooth2. estimation of the score functiap,

ing constraint on the inverse filter frequency responsevatr 3. computation of the gradient estimate (9);
ial solution is found. Then, priors (regularization) arene . .
essary on inverse filter to avoid trivial solutions. We add a% updating 06, G, — HT(G), .
smoothing constraint 0@, i.e. which controls the difference 2 computation of the deconvolution outyyt),
|Gy — Gy.1|. Further, in seismic applications, the wavelet is 6 normalization step.
often a bandpass filter, and there is a frequency band with We iterate the main loop (steps 2 to 6) until convergence.
poor information about reflectivity called the “null space” The normalization step 6 is required for taking into account
Thus, for providing a good output signal to noise ratio, thescale indeterminacy i®G,. Here, we just normalize the in-
inverse filter must not amplify this frequency band. There-verse filter to obtain an unit power deconvolution output, but
fore large values of the frequency response of the inversether normalization can be usqd denotes the gradient step
filter are often prohibited, except if they give an importantsize (a real positive constant). To estimate the scoreifumct
output independence improvement. To avoid noise amplifiwe use a kernel based estimator with a low computing cost
cation in the output, we limit the largest value |&f,| by a  developed by Pham [7].
second regularization term.

Based on these remarks and approximating the integral 3. NOISE INFLUENCE STUDY
in (7) with the rectangle method, , we propose the following

frequency domain blind deconvolution (FBD) criterion: In this section, we are going to study the influence of the ad-

ditive noisen(t) in the model of the figure 1. More precisely,

T-1 we try to analyze its effect on the estimation@(ff) in the
J(G) =H(y)—F > log|Gy|+ frequency band dominated by the noise. Indeed, we measure
v=0 the characteristic ogi(t) = gxwxr(t) + g*n(t), so we try
-1 ) T-1 to study what is the bias due to the noise presence, and how
A1 ZO|GV —Gu1l"+A2 3 Gv[® ()  the criterion limited the noise amplification. In a noisy but
v= v=0 non blind context where the wavelet is known, the minimum

where); and A, denote two hyperparameters. In the third Square error criterion yields the optimal Wiener fild@¥iener,
right-side term, the sum is fully defined by using periogicit defined by its transfer function as:

of Gy, i.e. Gr = Gg. The first regularization term, balanced W (o)

by A1, constrains the frequency response of the inverse fil- et o ) = w 10
ter to be smooth enforcin@, — G, 1| to be Gaussiari,e. tzz_wgw'e”e'( ) Wiener ) W(w)|2+ o2 (10)
with a maximum density fotG, — G,,1| = 0. Practically,

we notice that this term also improves the stability and thgyherew(w) = TP W(t)e 1@ is the Fourier series of the

performance of the minimization algorithm, because, it is &, 5 elet ands? is the noise variance (we assume that the re-
strong prior on the frequency response: the smoothness COf5 n

straint reduces the freedom degree number. The last ter ectivity series has been normalized to have unit variance)

; ; D denotes the pulsation.
penalizes (with thé.P norm) the largest values of the spec- ™ "o \yiener filtering does make a trade-off between the
trum of g. For instance, wittp = 2, it would enforceG,|

t0 have a Gaussian distribution. Thus. this term is e uiva(_jata fitting and noise amplification. Indeed, in the passband
X n. 1hus, this term IS equivagg g waveletW(w)| will be large with respect ta? so that
lent to the noise factor usual in Wiener filtering: it allows

a trade-off between the deconvolution quality and the nois Gwiener @) ~ 1/W(@w), which means that the Wiener filter is

amplification. We can interpret this criterion in a Maximum%ﬂstiéogai:n:aerzze i%f;[ﬁ: r‘?’j}'gfggg"f‘aﬁgﬁw*ig rl
a Posteriori (MAP) framework: indeed, it is equivalent to | . 2~ 0. 50 that the noise is strongl Iepten ted in
take a Gaussian prior distribution @f, conditional toG,,_; (w)/0y ~ 0, so that the noise is strongly attenuate

and a generalized Gaussian prior distribution (parameseriz (NS region. The Wiener filter provides the best compromise

by p) for the marginal pdf ofGy| between noise reduction and fidelity of the reflectivity recov
To minimize the criterion (8) with respect to the complex- €"N9: and will be used as reference for the comparison.

valued vectoiG according to a gradient iterative procedure,

we compute the gradient [6] of the cost function (8) with 3.1 Minimum entropy deconvolution

respect taGy: For minimum entropy deconvolution algorithm, one can
- 1 11 write the kurtosis of the deconvolution outpuds a function
0J(G) = — W, (VD — — — of the kurtosis of the "signal” pad+wxr:
Gyl

var(g*w*r)]2

9 K(y) = K(g*wxr) [ vary)

whereWy(v) is the Fourier transform afiy the score function .o .o vat-) denotes the variance AS Vgrs w
of the random variablg(t), which does not depend on 276 W (o) Pdeo/(2 S o h it vari
defined aspy(u) = — & logpy(u) wherepy is the density of r) = Jo |G(@)W(w)|*dw/(2m), sm;;ar() as unit vari-
y(1). ance by assumption, and yar = 5 |G(w)|“[|W(w)|* +
The frequency blind deconvolution (FBD) algorithm is as 0¢]dw/(27), one gets

follows.

1. initialization of the inverse filte&, and of the deconvo- 2n W (w)|?
lution outputy(t); K(y) = K(gxwxr) {/0 A(w) W@+ o2 dw, (11)

n
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where For the negentropy term, 61) = gxw*r(T)+g*n(T)
() = IG(w)|P[W(w)|? + 6?] (12) and the random variables in this sum are independent and the
) = T1IG(A)[2[W(A)[2+ c2]dA second is Gaussian, we have:

Formula (11) shows that the kurtosis of the outp(i) H™(y(1)) <H (gxwxr(1))
can be written as the product of two terms: the kurtosis o‘: .
g+w~r which represents the quality of the estimation ofUrther the larger the variance gfxn(t), the smaller
the reflectivity (or the fitting to the data) and is indepen-H_(¥(T)) is. Thus, maximizing the negentropy would also
dent of the noise, and a second term which concentrates di€VeNxN(7) to become very large.
the noise reduction. Naturally, to maximize the product of
these terms, one must make a trade-off between maximizing 4. SIMULATION RESULTS AND DISCUSSIONS

each of them. The first term tries to estimate the inverse filterig. 2 plots the result of a simulation experiment. The reflec
g=w * while the second term has the effect of noise regulartvity (a) is simulated by a white process with supergaussian
ization. Indeed/A(w) can be viewed as a barycenter weightgistribution. The supergaussianity is confirmed by the his-
becausef A(w)dw = 1, hence to maximize the second fac- togram on (e). On (d), the spectral density of the reflectivity
tor in (11) would lead to concentrate all the weigktw)  series confirms the whiteness of this process. The wavelet
around the frequenciesfor which W (w)|?/[[W(w)[>+02]  on (b) is chosen as the sum of two Ricker wavelets of cen-
is maximum, or equivalently for whicjw(w)| is maximum.  tral frequencies 60 Hz and 120 Hz with respectively phase
Thus this factor has the effect of pullinG(w)| toward 0 ex-  of 0 and 45 degree. This is a bandlimited and non minimum
cept at thosev for which |W(w)| is maximum. Thereforewe phase wavelet. The observation of (c) is obtained by corvolu
have in the MED algorithm a natural regularization to avoidtion of the reflectivity sequence and the wavelet, with added
noise amplification. Gaussian white noise. The signal to noise ratio is setith 8

a) 2 ®  ©

3.2 Mutual information rate based algorithm Lz
Since the second term in the blind frequency deconvolutiol s “ L . °
criterion (8) only enforces the continuity of tiigand has no oMT‘ e n“w'v . o
effect on noise regularization, we will drop it and consider T .
the continuous analogue of this criterion: o

2 dw 2 dw (d) (e) ®

H 7/ IO G w)|— A / G w p— -2 1000 10
)~ | 10g[G(w)|5 +A2 | 16(w)P5 : :

Denote byH ~(y) = £ Iog(2necry2) —H(y), the negentropy of g
y, whereoy is the standard deviation gf the above criterion  ~
can be writterup to an additive constarsts

0.5 1 20 o 20 o 0.5 1
Frequency Frequency

07 dw dw

y
A G pP_=

fy(w) 27TJr 2/' (@)] 2m

1
J(G)=—-H" = /lo
(©) (y)+2/ g Figure 2: Simulated data for comparison of MED and

(13) FBD algorithm: (a) supergaussian reflectivity sequenck, (b
where fy is the power spectral density of ty¢t) process, wavelet, (c) observation with a SNR=8dB, (d) reflectivity
which is related to that of the observed procelgs) by  power spectral density (psd) (e) reflectivity histogram (f) o
fy(w) = |G(w)|*fq(w). As we have explained in the con- servation psd in dB.
struction of the cost function (8) in the subsection (2.8§, t
last term should is only meant to avoid large value|Gf
outside the pass-band of the wavelet. The second term c
be viewed as a measure of flatnesdyofindeed, this term is
minimum and zero if and only ify is constant, meaning tha
y(t) is a second order white process.

Since fy(w) = |G(w)|?[|W(w)|? + 0], if we minimize
only the above “second order whiteness” term, we would ge
a deconvolution filter with gain:

One can note, by comparing the power spectrum density
the reflectivity (d) which is constant and the power spec-
rum density of the observation (f), that the wavelet is a-ban
+ dlimited filter. Approximately, we can divide the frequency
axis in two bands. The first from 0 to 0.5 is the passband of
the wavelet and the second from 0.5 to 1, which is dominated
y the noise, is the null space because it is a frequency band
ontaining very poor information on the reflectivity due to
the filtering done by the wavelet. It is the frequencies that
one should not amplify, if one wants a good signal to noise

Constant o2 Y2 i
_ G 1 n _ ratio on the outpuy(t).
G(w) [[W(w)|2+ g?)1/2 [Guiened ) [ + |W(w)|2} On Fig. 3, we compare the Wiener filtering, the MED al-

gorithm based on the kurtosis maximization and the FBD al-
This gains equals the Wiener gain times a factor which can bgorithm using mutual information rate in frequency domain,
very large at frequencies for whicho?/|W(w)|?is large, or  on the simulated data of Fig. 2. On the first row, we plot
equivalently for whicHW(w)|? is small. The gainis however the deconvolution output resulted from (a) the Wiener filter
bounded: the “second order whiteness” term does prevent thieg, (b) the MED algorithm and (c) the FBD deconvolution
noise to blow up. But its noise reduction is far smaller thanmethod. On the second row, we plot, on (d), (e) and (f), the
that of the Wiener filter. This term tends to piB(w)|toa  power spectral density of the output of the above three algo-
constant (instead of 0) in the null space. rithms.
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Figure 3: Comparison of Wiener filtering, MED and FBD
algorithm: (a) Wiener filtering output, (b) MED deconvolu-
tion, (c) FBD deconvolution, (d) Wiener filtering output psd
(e) MED output psd (f) FBD output psd.

Concerning the deconvolution output (first row of Fig. 3),
since the Wiener filtering minimize the mean square error,
it provides the best SNR. However, it requires the knowl-
edge of the wavelet. For the two other methods, we note
that we can identify most of largest reflectors in the MED
solution but not with FBD algorithm. Moreover, the noise
level is lower for MED than FBD. This is confirmed by the
spectral density. For the three algorithms, the outputtsplec
density is quite constant in the wavelet passb@n@d5], so
it is equivalent to a whitening in this frequency band. The
noise level on the deconvolution output appears on the spec[l]
tral density in the frequency barj@.5 1. We note, on the
MED spectral density difference of 20B between the two
frequency band, and only@B on the FBD spectral density.
Note also that the FBD algorithm yields a more iid output

(2]

Finally, this simulation show that with the supergaussian-
ity criterion, we have a natural trade-off between the data fit-
ting and the noise amplification. Even if the kurtosis of the
output is sensitive to the noise presence on the data, ésteff
is less important than on the whiteness measure as the mu-
tual information rate. In fact, with supergaussianity we have
a discriminant characteristic between the reflectivity dred t
noise. Whereas, with whiteness measure, we have an ambi-
o © guity with the whiteness of the reflectivity and of the noise.

5. CONCLUSION

We propose a new blind frequency algorithm based on mu-

information of the output. On seismic data, we show

that the supergaussianity based algorithm outperformaleur
gorithm. We provide some theoretical explanations of this
phenomenon.
processing, they may be applied to the blind deconvolution
of supergaussian signal in a noisy context with a bandlimited
convolution filter. The kurtosis is the simplest measurénef t
deviation from the Gaussianity, and it provides an intengsti

Although our results concern seismic data

hoise robustness.
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