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ABSTRACT
We propose a frequency blind deconvolution algorithm based
on mutual information rate as a measure of whiteness. In the
case of seismic data, the algorithm of Wiggins [11] based on
kurtosis, which is a supergaussianity criterion, is often used.
We study the robustness in noisy context of these two algo-
rithms, and compare them with Wiener filtering. We provide
some theoretical explanations on the effect of the additive
noise. The theoretical arguments are illustrated with a simu-
lation of seismic signals. For such signal, the supergaussian-
ity criterion appears more robust to noise contamination than
the whiteness criterion.

1. INTRODUCTION

This paper is motivated by seismic applications, in which a
recorded seismic trace is often modeled as a convolution of
a waveletw(t) with the reflectivity seriesr(t) plus added su-
perposed noisen(t), It is generally assumed that the reflec-
tivity is a white supergaussian process, the noise is a white
Gaussian process, and the wavelet is a bandlimited filter.
Seismic deconvolution consists in recovering the reflectivity
from a given seismic trace or at least boosting its high fre-
quencies content attenuated by the bandpass wavelet. This is
often done through a deconvolution filterg. Figure 1 depicts
the convolution-deconvolution system:
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Figure1: Theconvolution-deconvolutionsystem

In seismic dataprocessing, onerarely knowsthewavelet,
and the probability distribution of the reflectivity is also un-
known. Our problem thusfits thedescription of theclassical
blind deconvolution problem, with the added difficulty that
the observation is contaminated with noise and the convolu-
tion filter (i.e. the wavelet) is bandlimited. In the (more fa-
vorable) situation wherethereisno noiseand theconvolution
filter isnot bandlimited, thereexistsan uniqueinversefilter g
such that theoutput y(t) = g?d(t) equalsr(t), ? denoting the
convolution product. The idea is then to find an inversefilter
g to create an output y(t) = g? d(t) which looks like to the

reflectivity series r(t). Even though the aboveconditionsare
not met here, weshall stick, for simplicity, to thedeconvolu-
tion procedure via a time invariant linear filter g. This filter
will be adjusted by optimizing some criterion related to the
output characteristic. The influenceof thenoiseand theban-
dlimitness of the convolution filter on the adopted criterion,
will bestudied in asubsequent section. As thereflectivity se-
ries isassumed to satisfy some(broad) assumptions, the idea
is to design criteria to force the output to tend toward the
same assumptions. The most popular approach is to assume
the whitenessof the reflectivity series, then, one adjusts g to
maximize a whiteness measure of the output. The simplest
algorithm used the autocorrelation function (which is equal
to a Dirac delta function) or the power spectrum (which is
constant) of the reflectivity [9]. These methods employ sec-
ondorder statistics, whichunfortunately donot containphase
information. Therefore, thephaseof thewavelet remainsun-
known and has to be specified a priori. Wiggins [11] intro-
duced in hisMinimum Entropy Deconvolution (MED) algo-
rithm, an entirely new concept based on the maximization
of the kurtosis. The kurtosis is a fourth order statistic that
measures the deviation from Gaussianity. If a white reflec-
tivity series is convolved with a filter then the output will
become more Gaussian [4]. A white reflectivity series can
therefore be recovered by creating an inverse filter that ren-
der the output y(t) as non Gaussian as possible. One way of
doing this is to maximize the kurtosis of the created output
signal. Since thekurtosis isa higher (than 2) order statistics,
phase information is retained and no added a priori informa-
tion isneeded to recover the reflectivity series. Wiggins thus
proposed the first blind deconvolution algorithm. Thekurto-
sis is therefore traditionally interpreted as a whiteness crite-
rion in deconvolution problems [1, 2]. It has however many
disadvantages. Since it isbased on thefourth order statistics,
it is sensitive to the presence of outliers. Further, the use of
such statistics isnot optimal for theproblem at hand.

Other criteria have been proposed to measure whiteness
using all higher order statistics. One such criterion, recently
introduced, is the mutual information rate [10, 6]. It is re-
lated to entropy and is a good general purpose measure of
whiteness of a process [3]. It has been shown in the noise-
less case that blind deconvolution based on minimization of
the mutual information rate is optimal [8]. However, in the
context blind deconvolution of seismic data, our numerical
simulations show that the use of kurtosis as a supergaus-
sianity constraint outperforms a general purpose whiteness
constraint such as the mutual information rate. This can be
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explained by the presence of noise and the bandlimitness of
the wavelet, as discussed in section 3. Section 2 describes
the MED algorithm and a frequency blind deconvolution al-
gorithm based on mutual information rate [6]. Simulation
results are presented and discussed in section 4.

2. THEORETICAL ASSESSMENTS

2.1 MED algorithm

Wiggins [11] proposes to solve the deconvolution problem by
maximization of the varimax norm. In one channel problem,
it is equivalent to maximize the deconvolution output process
kurtosisK(y) estimated by:

K̂(y) =
T ∑T

t=1 y4(t)

[∑T
t=1y2(t)]2

−3. (1)

The simplest approach is to maximize (1) with respect
of the filter coefficientsg = [g0, . . . ,gN]T whereN denotes
the length of the filter. For this end, one equates to zero the
derivative ofK̂(y) with respect to thegk, which yields a sys-
tem of estimating equations:Rg = f , whereR is a N×N
autocorrelation matrix defined with theN first delays of the
autocorrelation function of the datad(t), and the vectorf is
defined with the correlation betweeny3(t) and the datad(t).
The equation as it stands is highly nonlinear so that it can-
not be solved directly. It can, however, be solved iteratively
in a straightforward fashion. One starts with a value ofg,
computingf , solving the systemRg = f for a new value of
g, then recomputingf and so on . . . Some extensions of this
method were presented in [5], in particular a frequency ap-
proach and a modification of the norm in use.

2.2 Frequency domain blind deconvolution algorithm

The mutual information of a random vectorz = (z1, . . . ,zn)
of dimensionn is defined by:

I(z) =
n

∑
i=1

H(zi)−H(z1,z2, . . . ,zn) (2)

where H(zi) denotes the Shannon marginal entropy of
zi : H(zi) = −

∫
R

pzi (u)logpzi (u)du andH(z1,z2, . . . ,zn) the
Shannon joint entropy:H(z) = −

∫
Rn pz(u) logpz(u)du.

The mutual informationI(z) has the nice property of be-
ing positive and vanishes if and only if the components of
z are mutually independent. It is thus a measure of depen-
dence of random variables. However stochastic processes
are involved here so that we consider a related measures,
called mutual information rate (MIR). The MIR of a station-
ary processZ = {Zt} is defined by:

I(Z) = lim
T→∞

1
T

t=T

∑
t=1

H(Zt)−H (Z) (3)

where

H (Z) = lim
T→∞

1
T

H(Z1, . . . ,ZT) (4)

which exists and is called the entropy rate of the (stationary)
processZ = {Zt} (see [3]).

The mutual information rateI(Z) is always positive and
vanishes if and only ifZ is an iid process [3]. Thus it can
be used as a deconvolution criterion. By stationarity,H(Zt)

does not depend ont, hence we shall drop the indext in the
first term of (3). In practice to estimateH(Z) one would
use all samplesz(1), . . . ,z(T) asT realizations of the random
variableZτ , for any τ . To simplify the notation and to be
homogeneous with the equation (1), in the following, we will
write H(z) for H(Z).

The estimation of the entropy rate is however problem-
atic, but fortunately, one can avoid it by noting that the en-
tropy rateH (Y) of the deconvolution outputy(t)= (g?d)(t)
equals

H (g?D) = H (D)+
1

2π

∫ 2π

0
log

∣

∣

∣

∣

∣

+∞

∑
t=−∞

g(t)e− jtω

∣

∣

∣

∣

∣

dω (5)

(see [8]). Hence, the mutual information rate of the decon-
volution output can be written as:

I(Y) = H(y)−H (D)−
1

2π

∫ 2π

0
log

∣
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∑
t=−∞

g(t)e− jtω
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∣

dω

(6)
Then, since the entropy rateH (D) is independent of the in-
verse filterg, one can consider instead of (6), the simplified
criterion [12, 10]:

Ĩ(Y) = H(y)−
1

2π

∫ 2π

0
log

∣

∣

∣

∣

∣

+∞

∑
t=−∞

g(t)e− jtω

∣

∣

∣

∣

∣

dω (7)

which, like (6), is minimum when the process{y(t)} is iid.
The above criterion has been used in [10], for a Wiener

systems composed of a cascade of a direct filterw and an
invertible non linear distortion. The authors estimate the
inverse filterg in the time domain, by minimizing (7) with
respect to the impulse responseg(t), which is done by a
gradient technique. They use a finite number of coefficients
for the estimation ofg(t), so it is equivalent to choosing
a Moving Average (MA) model forg. Thus, the method
is well adapted to the inversion of an autoregressive (AR)
direct filterw. One can show that the algorithm is equivalent
to a maximum likelihood (ML) method, replacing the source
distribution, supposed known in the ML method, by the
distribution of the deconvolution output estimated at each
iteration. The application field of this method is limited
by the parametric model: for example, in seismology, the
direct filter impulse response can be a chirp or a Ricker
wavelet which can not be modeled by a MA filter. Moreover,
the method does not take into account the additive noise
n(t) of the model. With Gaussian additive noise, one can
experimentally see that the method achieves the same per-
formances as the second order methodi.e. the Yule-Walker
algorithm. To overcome these limitations, we propose to use
a criterion in the frequency domain which avoids parametric
approaches like the MA, AR or ARMA models, whose
parameter number can be very large. Moreover, in the
frequency domain, it is easy to add a regularization term for
limiting noise amplification as it is usually done in Wiener
filtering.

So, we propose to minimize (7) with respect to the dis-
crete frequency responseG = [G0, . . . ,GT−1] of the filter g.
Then, we have to estimateT/2 complex parameters (due to
the hermitian symmetry of the real filter) usingT temporal
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samples of the output signal. Thus, without adding a smooth-
ing constraint on the inverse filter frequency response, a triv-
ial solution is found. Then, priors (regularization) are nec-
essary on inverse filter to avoid trivial solutions. We add a
smoothing constraint onGν i.e. which controls the difference
|Gν −Gν+1|. Further, in seismic applications, the wavelet is
often a bandpass filter, and there is a frequency band with
poor information about reflectivity called the “null space”.
Thus, for providing a good output signal to noise ratio, the
inverse filter must not amplify this frequency band. There-
fore large values of the frequency response of the inverse
filter are often prohibited, except if they give an important
output independence improvement. To avoid noise amplifi-
cation in the output, we limit the largest value of|Gν | by a
second regularization term.

Based on these remarks and approximating the integral
in (7) with the rectangle method, , we propose the following
frequency domain blind deconvolution (FBD) criterion:

J(G) = H(y)−
1
T

T−1

∑
ν=0

log|Gν |+

λ1

T−1

∑
ν=0
|Gν −Gν+1|

2 + λ2

T−1

∑
ν=0
|Gν |

p (8)

whereλ1 andλ2 denote two hyperparameters. In the third
right-side term, the sum is fully defined by using periodicity
of Gν , i.e. GT = G0. The first regularization term, balanced
by λ1, constrains the frequency response of the inverse fil-
ter to be smooth enforcing|Gν −Gν+1| to be Gaussian,i.e.
with a maximum density for|Gν −Gν+1| = 0. Practically,
we notice that this term also improves the stability and the
performance of the minimization algorithm, because, it is a
strong prior on the frequency response: the smoothness con-
straint reduces the freedom degree number. The last term
penalizes (with theLp norm) the largest values of the spec-
trum of g. For instance, withp = 2, it would enforce|Gν |
to have a Gaussian distribution. Thus, this term is equiva-
lent to the noise factor usual in Wiener filtering: it allows
a trade-off between the deconvolution quality and the noise
amplification. We can interpret this criterion in a Maximum
a Posteriori (MAP) framework: indeed, it is equivalent to
take a Gaussian prior distribution ofGν conditional toGν−1
and a generalized Gaussian prior distribution (parameterized
by p) for the marginal pdf of|Gν |.

To minimize the criterion (8) with respect to the complex-
valued vectorG according to a gradient iterative procedure,
we compute the gradient [6] of the cost function (8) with
respect toGν :

∇̂J(G) =
1

2T2 Ψy(ν)D∗

ν −
1

2T
1

G∗

ν
+

λ1(2Gν −Gν+1−Gν−1)+ λ2
p
2
|Gν |

p

G∗

ν
(9)

whereΨy(ν) is the Fourier transform ofψy the score function
of the random variabley(τ), which does not depend onτ ,
defined asψy(u) =− d

du logpy(u) wherepy is the density of
y(τ).

The frequency blind deconvolution (FBD) algorithm is as
follows.
1. initialization of the inverse filterGν and of the deconvo-

lution outputy(t);

2. estimation of the score functionψy;
3. computation of the gradient estimate (9);

4. updating ofGν ←Gν − µ∇̂J(G);
5. computation of the deconvolution outputy(t);
6. normalization step.

We iterate the main loop (steps 2 to 6) until convergence.
The normalization step 6 is required for taking into account
scale indeterminacy inGν . Here, we just normalize the in-
verse filter to obtain an unit power deconvolution output, but
other normalization can be used.µ denotes the gradient step
size (a real positive constant). To estimate the score function,
we use a kernel based estimator with a low computing cost
developed by Pham [7].

3. NOISE INFLUENCE STUDY

In this section, we are going to study the influence of the ad-
ditive noisen(t) in the model of the figure 1. More precisely,
we try to analyze its effect on the estimation ofG( f ) in the
frequency band dominated by the noise. Indeed, we measure
the characteristic ony(t) = g? w? r(t)+ g? n(t), so we try
to study what is the bias due to the noise presence, and how
the criterion limited the noise amplification. In a noisy but
non blind context where the wavelet is known, the minimum
square error criterion yields the optimal Wiener filtergWiener,
defined by its transfer function as:

∞

∑
t=−∞

gWiener(t)e
− jtω def

= GWiener(ω) =
W∗(ω)

|W(ω)|2 + σ2
n

(10)

whereW(ω) = ∑∞
t=−∞ w(t)e− jtω is the Fourier series of the

wavelet andσ2
n is the noise variance (we assume that the re-

flectivity series has been normalized to have unit variance).
ω denotes the pulsation.

The Wiener filtering does make a trade-off between the
data fitting and noise amplification. Indeed, in the passband
of the wavelet|W(ω)| will be large with respect toσ 2

n so that
GWiener(ω)≈ 1/W(ω), which means that the Wiener filter is
close to the inverse of the wavelet filter (gWiener? w? r ≈ r).
On the other hand, in the null space we haveGWiener(ω) =
W∗(ω)/σ2

n ≈ 0, so that the noise is strongly attenuated in
this region. The Wiener filter provides the best compromise
between noise reduction and fidelity of the reflectivity recov-
ering, and will be used as reference for the comparison.

3.1 Minimum entropy deconvolution

For minimum entropy deconvolution algorithm, one can
write the kurtosis of the deconvolution outputy as a function
of the kurtosis of the ”signal” partg?w? r:

K(y) = K(g?w? r)

[

var(g?w? r)
var(y)

]2

where var(·) denotes the variance. As var(g ? w ?

r) =
∫ 2π

0 |G(ω)W(ω)|2dω/(2π), since r(t) has unit vari-
ance by assumption, and var(y) =

∫ 2π
0 |G(ω)|2[|W(ω)|2 +

σ2
n ]dω/(2π), one gets

K(y) = K(g?w? r)

{∫ 2π

0
∆(ω)

|W(ω)|2

|W(ω)|2 + σ2
n

dω
}2

(11)
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where

∆(ω) =
|G(ω)|2[|W(ω)|2 + σ2

n ]∫
|G(λ )|2[|W(λ )|2 + σ2

n ]dλ
. (12)

Formula (11) shows that the kurtosis of the outputy(t)
can be written as the product of two terms: the kurtosis of
g? w? r which represents the quality of the estimation of
the reflectivity (or the fitting to the data) and is indepen-
dent of the noise, and a second term which concentrates on
the noise reduction. Naturally, to maximize the product of
these terms, one must make a trade-off between maximizing
each of them. The first term tries to estimate the inverse filter
g= w−1 while the second term has the effect of noise regular-
ization. Indeed,∆(ω) can be viewed as a barycenter weight
because

∫
∆(ω)dω = 1, hence to maximize the second fac-

tor in (11) would lead to concentrate all the weight∆(ω)
around the frequenciesω for which|W(ω)|2/[|W(ω)|2+σ2

n ]
is maximum, or equivalently for which|W(w)| is maximum.
Thus this factor has the effect of pulling|G(w)| toward 0 ex-
cept at thoseω for which |W(ω)| is maximum. Therefore we
have in the MED algorithm a natural regularization to avoid
noise amplification.

3.2 Mutual information rate based algorithm

Since the second term in the blind frequency deconvolution
criterion (8) only enforces the continuity of theG and has no
effect on noise regularization, we will drop it and consider
the continuous analogue of this criterion:

H(y)−
∫ 2π

0
log|G(ω)|

dω
2π

+ λ2

∫ 2π

0
|G(ω)|p

dω
2π

.

Denote byH−(y) = 1
2 log(2πeσ 2

y )−H(y), the negentropy of
y, whereσy is the standard deviation ofy, the above criterion
can be writtenup to an additive constantas

J(G) =−H−(y)+
1
2

∫
log

σ2
y

fy(ω)

dω
2π

+ λ2

∫
|G(ω)|p

dω
2π
(13)

where fy is the power spectral density of they(t) process,
which is related to that of the observed processd(t) by
fy(ω) = |G(ω)|2 fd(ω). As we have explained in the con-
struction of the cost function (8) in the subsection (2.2), the
last term should is only meant to avoid large value of|G|
outside the pass-band of the wavelet. The second term can
be viewed as a measure of flatness offy. Indeed, this term is
minimum and zero if and only iffy is constant, meaning that
y(t) is a second order white process.

Since fy(ω) = |G(ω)|2[|W(ω)|2 + σ2
n ], if we minimize

only the above “second order whiteness” term, we would get
a deconvolution filter with gain:

G(ω)=
Constant

[|W(ω)|2 + σ2
n ]1/2

= |GWiener(ω)|

[

1+
σ2

n

|W(ω)|2

]1/2

.

This gains equals the Wiener gain times a factor which can be
very large at frequenciesω for whichσ 2

n/|W(ω)|2 is large, or
equivalently for which|W(ω)|2 is small. The gain is however
bounded: the “second order whiteness” term does prevent the
noise to blow up. But its noise reduction is far smaller than
that of the Wiener filter. This term tends to pull|G(ω)| to a
constant (instead of 0) in the null space.

For the negentropy term, asy(τ) = g?w? r(τ)+g?n(τ)
and the random variables in this sum are independent and the
second is Gaussian, we have:

H−(y(τ)) < H−(g?w? r(τ))

Further the larger the variance ofg ? n(τ), the smaller
H−(y(τ)) is. Thus, maximizing the negentropy would also
preventg?n(τ) to become very large.

4. SIMULATION RESULTS AND DISCUSSIONS

Fig. 2 plots the result of a simulation experiment. The reflec-
tivity (a) is simulated by a white process with supergaussian
distribution. The supergaussianity is confirmed by the his-
togram on (e). On (d), the spectral density of the reflectivity
series confirms the whiteness of this process. The wavelet
on (b) is chosen as the sum of two Ricker wavelets of cen-
tral frequencies 60 Hz and 120 Hz with respectively phase
of 0 and 45 degree. This is a bandlimited and non minimum
phase wavelet. The observation of (c) is obtained by convolu-
tion of the reflectivity sequence and the wavelet, with added
Gaussian white noise. The signal to noise ratio is set to 8dB.
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Figure 2: Simulated data for comparison of MED and
FBD algorithm: (a) supergaussian reflectivity sequence, (b)
wavelet, (c) observation with a SNR=8dB, (d) reflectivity
power spectral density (psd) (e) reflectivity histogram (f) ob-
servation psd in dB.

One can note, by comparing the power spectrum density
of the reflectivity (d) which is constant and the power spec-
trum density of the observation (f), that the wavelet is a ban-
dlimited filter. Approximately, we can divide the frequency
axis in two bands. The first from 0 to 0.5 is the passband of
the wavelet and the second from 0.5 to 1, which is dominated
by the noise, is the null space because it is a frequency band
containing very poor information on the reflectivity due to
the filtering done by the wavelet. It is the frequencies that
one should not amplify, if one wants a good signal to noise
ratio on the outputy(t).

On Fig. 3, we compare the Wiener filtering, the MED al-
gorithm based on the kurtosis maximization and the FBD al-
gorithm using mutual information rate in frequency domain,
on the simulated data of Fig. 2. On the first row, we plot
the deconvolution output resulted from (a) the Wiener filter-
ing, (b) the MED algorithm and (c) the FBD deconvolution
method. On the second row, we plot, on (d), (e) and (f), the
power spectral density of the output of the above three algo-
rithms.
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Figure 3: Comparison of Wiener filtering, MED and FBD
algorithm: (a) Wiener filtering output, (b) MED deconvolu-
tion, (c) FBD deconvolution, (d) Wiener filtering output psd,
(e) MED output psd (f) FBD output psd.

Concerning the deconvolution output (first row of Fig. 3),
since the Wiener filtering minimize the mean square error,
it provides the best SNR. However, it requires the knowl-
edge of the wavelet. For the two other methods, we note
that we can identify most of largest reflectors in the MED
solution but not with FBD algorithm. Moreover, the noise
level is lower for MED than FBD. This is confirmed by the
spectral density. For the three algorithms, the output spectral
density is quite constant in the wavelet passband[0 0.5], so
it is equivalent to a whitening in this frequency band. The
noise level on the deconvolution output appears on the spec-
tral density in the frequency band[0.5 1]. We note, on the
MED spectral density difference of 20dB between the two
frequency band, and only 3dB on the FBD spectral density.
Note also that the FBD algorithm yields a more iid output
than the MED. Nevertheless, the MED algorithm output is
better because one has a better trade-off between the decon-
volution quality (sharped spikes) and the noise amplification.
Finally, Wiener filtering gives the best trade-off between data
fitting and noise amplification with a difference between the
two frequency band of 50dB. To corroborate these finding,
we plot the three inverse filter gains on Fig. 4.
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Figure 4: Frequency inverse filter gain: (a) Wiener filtering,
(b) MED deconvolution, (c) FBD deconvolution

The plots show that the Wiener filtering has the lowest
gain in the no space (frequency band[0.5 1]), following by
the MED algorithm and the FBD algorithm. The last gain
tends toward a constant gain as it is proved in the subsection
3.2. For the MED algorithm, the gain in the no space is
not very large, which provides a good trade-off between
deconvolution and noise amplification, nevertheless it is
worst than Wiener filtering.

Finally, this simulation show that with the supergaussian-
ity criterion, we have a natural trade-off between the data fit-
ting and the noise amplification. Even if the kurtosis of the
output is sensitive to the noise presence on the data, its effect
is less important than on the whiteness measure as the mu-
tual information rate. In fact, with supergaussianity we have
a discriminant characteristic between the reflectivity and the
noise. Whereas, with whiteness measure, we have an ambi-
guity with the whiteness of the reflectivity and of the noise.

5. CONCLUSION

We propose a new blind frequency algorithm based on mu-
tual information of the output. On seismic data, we show
that the supergaussianity based algorithm outperforms oural-
gorithm. We provide some theoretical explanations of this
phenomenon. Although our results concern seismic data
processing, they may be applied to the blind deconvolution
of supergaussian signal in a noisy context with a bandlimited
convolution filter. The kurtosis is the simplest measure of the
deviation from the Gaussianity, and it provides an interesting
noise robustness.
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