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ABSTRACT 
Two architectures for cost-effective and real-time implemen-
tation of non-linear image and video filters are presented in the 
paper. The first architecture is a traditional VHDL-based ASIC 
(Application Specific Integrated Circuit) design while the 
second one is an ADL (Architecture Description Language) 
based ASIP (Application Specific Instruction Set Processor). A 
system to improve the visual quality of images, based on 
Retinex-like algorithm, is referred as case study. First, starting 
from a high-level functional description the design space is 
explored to achieve a linearized structural C model of the 
algorithm with finite arithmetic precision. For the algorithm 
design space exploration visual and complexity criteria are 
adopted while a statistical analysis of typical input images 
drives the algorithm optimization process. The algorithm is 
implemented both as ASIC and ASIP solution in order to 
explore the trade-off between the flexibility of a software 
solution and the power and complexity optimization of a 
dedicated hardware design. The aim is to achieve the desired 
algorithmic functionality and timing specification at 
reasonable complexity and power costs. Taking advantage of 
the processor programmability, the flexibility of the system is 
increased, involving e.g. dynamic parameter adjustment and 
color treatment. Gate level implementation results in a 0.18µm 
standard-cell CMOS technology are presented for both the 
ASIC and ASIP approach1. 

 1. INTRODUCTION 
In the field of digital processing systems ASIPs are gaining 
ground to fill the gap between ASICs, highly optimized 
hardware platforms but lacking flexibility, and the solution 
offered by software development on DSPs (Digital Signal 
Processors), reusable and programmable but providing too little 
performance and energy-inefficiency. ASIPs are flexible in 
general and optimized for an application domain. This makes 
them more useful than ASICs for applications requiring a 
certain degree of programmability. Moreover, since the 
customization of the design is focused on the addressed 
application domain, they are more specialized and therefore 
more optimized than DSPs, being able to provide the right 
features in terms of timing performance, energy consumption 
and required area. Architecture Description Languages (ADLs) 
[1-3] help the processor designer by automatically generating 
the software tool-suite (compiler, assembler, linker, simulator) 
as well as the Register Transfer Level description of the 
processor. While designing an ASIP, the designer has the full 
freedom to do the trade-off between performance, flexibility 
and physical criteria like silicon area and power consumption. 
Extending the instruction set by specialized instructions is 
particularly beneficial for applications involving hot spot 
elaboration kernels, like image and video signal processing. In 

                                                 
1 Work partially supported by PRIMO and NEWCOM projects. 

such a field some innovative algorithms are spreading up 
involving highly nonlinear operators [4-10]. By changing the 
data and control flow but keeping the kernel arithmetic, the 
same class of filters can be used for different applications. For 
this goal, dedicated ASICs are not suitable since they provide 
only very limited flexibility. However, DSP solutions are not 
acceptable either, because high computational performance, 
low energy cost and low silicon area are very important 
specifications in handheld and mobile scenarios. In this paper 
the ASIP implementation of the Retinex class of algorithms [4-
9] is presented. After high-level algorithmic optimization the 
identification of the operation kernels and their mapping onto 
an instruction set are described. Some special processor 
concepts used to achieve a good performance vs. flexibility 
trade-off are detailed. Finally, CMOS synthesis results are 
presented with a comparison to a benchmark ASIC design.  

2. RETINEX-LIKE IMAGE AND VIDEO FILTERS 
In the Retinex theory, first proposed in [4], an image is 
expressed as the pixel-by-pixel product of the ambient 
illumination y and the reflectance r of the scene object. The 
values of the latter are determined as the pixel-by-pixel ratio 
between the input image and an estimate of the illumination. 
This way we can control independently illumination and 
reflectance, as example modifying the dynamic of the 
illumination without any modification in the details which are 
transmitted through the reflectance channel. It is also possible 
to process the reflectance signal to improve the details in the 
final image. Target applications include image contrast 
enhancement, correction of images acquired in bad lighting 
conditions, control of dynamic in logarithm sensors [5-10]. All 
these filters exploit a similar structure sketched in Fig. 1 (in 
case of logarithmic sensors multiplication and division are 
replaced by add and subtract, respectively): F is a luminance 
estimator while the Γ and β blocks respectively process the 
luminance dynamic and improve the details. We found that 
effective expressions are: 
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Figure 1. Block diagram of Retinex-based operators 

The core of retinex-based methods is the estimation of the 
illumination component. As matter of fact in natural images the 
illumination typically changes very smoothly between 
contiguous pixels, with the exception of some particular cases, 
like the presence of luminous sources in the image, or the 
illumination of the scene by various light sources with abrupt 
transitions between them (e.g. images which represent an 
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indoor and an outdoor scene in the same frame). A good 
estimator of the illumination must take into account these 
considerations; it could be realized with an edge-preserving 
low-pass filter with a quite narrow band. The narrow band, 
which implies a wide impulse filter response, is the primary 
reason for the high complexity of the algorithms proposed in 
the literature [7, 8] and makes them unsuitable for real time 
applications. To avoid this drawback a new algorithm, based 
on Recursive Rational Filters (RRF), has been proposed by the 
authors in [6]. This method uses an IIR to obtain a long 
impulse response, while the edge preserving effect is achieved 
with a suitable system which controls the filter bandwidth 
according to the characteristics of the input signal. The 
recursive filter is very effective but presents the disadvantage 
of introducing a phase distortion in the output image, and an 
asymmetric response. To avoid such problems, a 2D extension 
of the well known time-reversal method must be used. For such 
reason the filter must be applied four times to each input 
image. During these iterations the pixels are processed along 
all the possible directions from top to bottom and from left to 
right and viceversa. It should be noticed that just two filter 
passes can be performed only if a fairly small impulse response 
is requested, i.e. if the input image is quite small. The output of 
the low-pass edge-preserving filter F is yielded by the function: 
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Similar expressions are available for fv and Sv, evaluating the 
gradient through the m-direction (vertical). The α parameter 
controls the local cut-off frequency. As an example, Fig. 2 
shows a portion of an image acquired in bad lighting conditions 
(2a). The application of the classical histogram equalization 
brings to the result visualized in Fig. 2b. While trying to get the 
image clearer, a detail blurring comes up. The Retinex 
algorithm, instead, permits to obtain the effect in Fig. 2c 
solving the problems of image contrast and brightness together. 
 
 
 
 
 
 
 
 

Figure 2. a) Original, b) Histogram equalization, c) Retinex  

The above algorithm refers to monochrome images while for 
color images several color spaces can be considered. It is not 
advisable to process the three color components R, G, and B 
separately, because of a significantly increase of the 
computational effort and also because hue variations are most 
likely to be obtained. The simplest approach is to process the 
luminance component, computed e.g. according to the YUV or 
the YCbCr standard, and eventually to modify the color 
components accordingly, trying to preserve the hue. An 
alternative could be to use the HSV domain; in this case the 
above described algorithm could be applied to V, which is 
somehow related to the luminance. However, the nonlinearities 
inherent in the RGB to HSV conversion, and viceversa, are 
most likely to yield unwanted hue or saturation variations. In 
order to deal with video sequences, a first idea could be to 
simply use, on a frame by frame basis, the algorithm described 
above. There is however a main issue which has to be taken 
into account, i.e. the high sensitivity of the human eye to 

temporal artifacts: if subsequent frames are independently 
processed, they may appear pleasant if observed one by one but 
yield annoying effects when visualized in a sequence; this may 
happen for instance if different luminance corrections are 
performed on subsequent frames. This issue suggests the use of 
temporal filtering. In particular a novel algorithm has been 
proposed, where the input signal is split into three different 
contributions according to the scheme depicted in Fig. 3. One 
contribution represents the background illumination (LL). This 
signal is temporally filtered to reduce flashing effects and 
abrupt temporal variations. A second contribution (LH) is 
devoted to the information about small light sources, like car 
lights, which must not be temporally filtered, otherwise very 
annoying artifacts will appear. This signal is combined with the 
previous one in the luminance signal and is processed by the Γ 
block to compress the dynamic. The last contribution 
represents the details, i.e. the reflectance (R). This signal could 
be amplified by a suitable block β. 
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Figure 3. Retinex-based operators applied to videos 

3. DESIGN OPTIMIZATION FLOW 

The adopted design flow is sketched in Fig. 4. First, starting 
from a high-level functional description the design space is 
explored in a C/Matlab environment to achieve a linearized 
structural model, with finite arithmetic precision, of the class of 
algorithms described in Section 2. For this purpose some 
effective methodologies for bit-true arithmetic definition and 
linearization of non linear operators have been developed 
requiring some pre-fixed optimization schemes based on 
piecewise linear and piecewise constant (see Figs. 5 and 6 for 
linearization examples and implementation block diagrams). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Optimization flow 

Two criteria are used to keep a good degree of approximation: 
a PSNR-based objective criterion and a subjective one based 
on visual perception. The linear piece-wise approach allows for 
better quality results and is adopted for the Γ and β blocks. The 
constant piece-wise approach is preferred when the non linear 
transformation involves quantities not directly observable at 
the system output, like the filter F coefficients depending on Sh 
and Sv. In such case the resulting visual quality using constant 
piece-wise is the same of linear piece-wise but the former has a 
simpler implementation being based on Look-up-Table (LUT) 

LISA model 
Automatic HDL

Handcrafted 
HDL model

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



and avoiding the use of multipliers (see Fig. 5a). Starting from 
the linearized and bit-true algorithmic model the hardware 
design is addressed using two methodologies. In Fig. 4 ASIP 
and ASIC approaches are depicted, referring to their respective 
description languages: ADL and HDL. The HDL netlist of the 
ASIP is automatically generated from the LISA description.  

 
Figure 5. Block diagrams for linear and constant piece-wise  

 
Figure 6. Linear and constant piece-wise approximation 

4.  ASIP DESIGN FOR RETINEX FILTER CLASS 

4.1 Memory Organization 
For the Retinex class of applications described in Section 2, 
ASIPs offer an excellent trade-off, since the most repeated 
application kernels can be grouped in optimized hardware 
units, while keeping the activation of those hardware 
accelerators at a software level by the definition of a suitable 
instruction set. Like most multimedia applications, the design 
of video filtering architectures is dominated by the memory 
size and data transfer rate. In case of video processing, it is 
often necessary to store more than one image since previous 
frames are needed for the elaboration (e.g. temporal filtering). 
It can be also the case that the video processing is split over 
several pipeline stages (by the means of frame pipelining) in 
order to increase the information throughput. To determine the 
required memory size to store the intermediate images, the 
memory size of one frame has to be multiplied with the number 
of used pipeline stages. Referring to VGA format, a worst case 
evaluation leads to a memory requirement of 10 Mbytes, 
unacceptable for systems designed for a single die. To reduce 
the memory amount, one way was pursued in the C /Matlab 
optimization step, by reducing the number of precision bits 
while keeping acceptable algorithmic performance. In the case 
study, we used 8 integer bits and 6 fractional bits for data 
representation. Lowering the number of fractional bits below 
the found optimum value can lead to a great worsening of the 
algorithmic performance. Another effective way to reduce 
memory is to remove the pipelining at a frame level. This 
solution is based on a re-utilization of the same memory to 
store the intermediate data concerning the partially elaborated 
frames. The main drawback is, of course, the throughput 
reduction, which is a critical specification item. Because of the 
trade-off between memory resources and data throughput, we 
decided to use two frame memories. This solution allows to 

keep a slight parallelism in the elaboration, since it is possible, 
for instance, performing the Γ and β transformations at the 
same time, without increasing memory requirements too much 
compared to the simplest solution involving a single frame 
memory. The total required memory for VGA format 
processing is 1.03 Mbytes. Moreover, there is a highly 
effective methodology to improve timing performance keeping 
the benefits of this memory organization. This is achieved by 
re-introducing a pipelining of the elaboration moving it from 
the frame level to the pixel level, which is more efficient in 
terms of memory usage. That allows for parallel elaboration of 
several pixels making the architecture timing efficient as well. 
Entering in more details about memory architecture 
implementation, Synchronous SRAM memories have been 
used for data storage. The two RAMs have been named X 
RAM and Y RAM. They are read scanning the whole image in 
order to produce the illumination component (y) according to 
the F filter functionality. This process requires four passes of 
the whole image and the intermediate results are stored in the 
Y RAM, while the X RAM contains the input image. After that 
both RAMs are further scanned and the reflectance component 
(r) evaluation is performed by division. Also the Γ and β 
transformations are performed. Then the Γ output is stored in 
the Y RAM, while the β output is stored in X RAM. At the 
end, a further scan of the two RAMs is required for the 
component recombination leading to the output image, which 
is finally stored in the X RAM. In all frame processing stages, 
a pipelining of subsequent pixels is used to speed up the 
architecture. Both, the particular memory organization and the 
data pipelining are important hardware customizations 
applying to the case study application. These sorts of 
customizations of memory and pipeline architecture are major 
advantages of ASIPs. Other resources utilized in the processor 
arithmetic can be customized according to the application 
needs, too. In the case study, 16 general purpose 32-bit 
registers have been instantiated. Some additional dedicated 
registers have been used for the storage of processing 
parameters which can be easily used during the elaboration. 14-
bit fixed point arithmetic has been used for data representation 
whereas instructions have been coded using 32-bit words.  
4.2 Pipelined Architecture and By-pass Mechanism 
The pixel elaboration has been split over a pipelined 
architecture. This choice has the benefit of increasing the 
architecture parallelism and to shorten the critical path. This 
property of pipelined systems leads to an increased data 
throughput, which is highly desirable in our case. However, 
this strategy can have some drawbacks due to increased 
latencies, silicon area overhead, e.g. by pipeline control and 
registers, and dependencies in the pipeline. Data dependencies 
can exist between neighbored instructions, that is, a result 
produced by an instruction may be used as an operand by the 
following instructions. Such situations might require pipeline 
interlocking mechanisms. Using ADLs, the design space is 
fully explorable with no restriction given by pre-designed parts 
or templates. Nevertheless, templates can be used as a first 
starting point, but the designer is not limited by that. 
Customizations of the pipeline structure and the memory 
architecture are presented in the following. In the case study, 
seven pipeline stages have been introduced. This pipeline 
organization resulted from the design space exploration as the 
best trade-off between throughput and complexity. Particularly, 
to understand why such a pipeline structure has been used we 
have to refer to a repeated optimization technique used all over 
the design: the piecewise approximation of non linear 
operators. Since this is a widely utilized functional kernel in 
the optimized application, some particular attention was paid to 
its implementation. As example, let us consider the piecewise 
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linear technique used to approximate Γ and β transformations. 
Since the throughput is a pressing specification, it is desirable 
having an instruction able to load an operand from the data 
memory, to perform the Γ or β transformation in the piecewise 
linear form and to store the result back to the data memory. 
The designed pipeline allows for the processing of such an 
instruction, using the following stages (see Fig. 7): 
-  FE: the fetch stage in which the instruction is fetched from 
the program memory. 
- DC: the decode stage in which the instruction is decoded, 

producing the control signals for the operating part. 
- LD: the load stage in which the operand is loaded from the 

data memory. 
- CMP: the comparison stage where the loaded operand is 

compared to the edges on the abscissa axis in order to 
identify the correct approximation interval. 

- ROM: stage in which the result of the previous comparison 
is used to address a ROM storing the parameters (offset Q, 
slope K) of the correct piecewise segment. 

- ARITH: the arithmetical stage in which the fetched 
parameters are used to calculate the output according to 
piecewise segment expression K x IN + Q. 

- WB: the write-back stage in which the output is stored back 
to the data memory. 

FE DC LD CMP ROM ARITH WB 

X RAM Y RAM PROGR  ROM 

 
Figure 7. Pipeline and memory organizations for the ASIP  

The names assigned to each stage are mnemonical names 
applying to the presented particular case. Depending on the 
instruction, different operations can be executed in the stages, 
meaning e.g. the ROM stage is not used for ROM accesses 
exclusively. The piecewise linear approach allows also for the 
implementation of the division operation with a throughput of 
one division per cycle, which is a great advantage for the 
system performance. The performed division is a customized 
operation leading to acceptable results only operating on inputs 
in the working range. Otherwise the approximation introduced 
by our procedure would compromise the result. Nevertheless 
the LUT technique used for our customized division shows 
satisfactory results. In the division instruction, the LD stage is 
used to load the denominator from the data memory, the CMP 
stage is used to load the numerator and the WB stage to write 
the computed ratio back to the data memory.  
Data dependencies are a problem related to the pipeline 
architecture. A 7-stage pipeline obviously leads to the 
following disadvantage of data hazards: in the LD stage an 
instruction (“consumer”) may read from a shared storage (a 
general purpose register or a memory location), which is 
expected to be written by a previous instruction (“producer”). 
If the producer instruction has not yet reached the WB stage in 
which the final result is stored in the shared storage, the 
consumer instruction will load an outdated value. That will 
cause a completely wrong result. There are two standard 
solutions for this issue: pipeline interlocking and bypassing. 
Using interlocking, the instructions trying to access data, that 
has not yet been written back, causes the pipeline to be stalled 
partially. This causes unacceptable throughput degradation, 
especially in performance critical loops. This drawback can be 
solved by instruction rescheduling – either by the processor or 
by the compiler. This approach is usually strongly limited by 

the data and control flow. A more efficient way of resolving 
the data dependencies is to implement bypasses. Bypasses 
forward data immediately from a pipeline stage back to a 
previous stage. In the case study the majority of the 
instructions can provide the final result not before the ARITH 
stage. Therefore, two kinds of bypasses were implemented 
depending on the starting point of the bypass path: bypasses 
from the ARITH stage or bypasses from the WB stage. In both 
cases, more than one path was implemented depending on the 
end point of the bypass. They include: bypasses to the LD 
stage, the CMP stage, the ROM stage and the ARITH stage 
(Fig. 8). Most of the implemented bypasses are extensively 
used e.g. in the non linear filter F (Fig. 1), which implements 
one of the key elaboration steps of our case application.  

  
 
 
 
 
 
 

FE DC LD CMP ROM ARITH WB 

 
Figure 8. Implemented by-pass mechanisms   

4.3 Customized Instruction Set 
One of the most important advantages of ASIPs is the fact that 
the instruction set can be customized according to the 
requirements of the application. This enables a trade-off 
between computational performance, silicon area and energy 
consumption. In order to increase the architecture efficiency it 
can be beneficial to implement complex pipelined instructions. 
This shortens the length of the final assembly program that is 
in our case study strictly related to the number of clock cycles 
needed for the complete elaboration. Since the specific 
scenario is image/video processing, it is important to notice 
that there will be a portion of the assembly program (referred 
to as main loop) that has to be repeated a large number of times 
according to the image size (one iteration per pixel), typically 
in the order of hundreds of thousands of times. That means that 
a particular attention has to be paid to the number of program 
lines setting up the main loop, in order to avoid any waste of 
cycles and to maximize the throughput. In particular we show 
this for our case study in the following after giving a list of the 
most important instruction set customizations: Single 
instruction non linear transformations, Automatic address 
calculation and Zero overhead loops. 
For example, considering the address generation for the data 
memory, from the algorithmic specifications it can be noticed 
that some pre-fixed patterns are established iterating over the 
image. Thus an Address Generation Unit (AGU) calculating 
the next address for the data memory by incrementing the pixel 
pointer can be implemented in hardware. This is reflected in 
the syntax of several instructions by a short extension. Thus the 
address update is performed in parallel without the need of 
wasting cycles just to do the data address update. Another 
observation is, that in conventional loop implementations 
comparisons and conditional branches create a significant 
instruction overhead and, even worse, cause pipeline control 
hazards. They lead to pipeline stalls and flushes. These 
problems can be avoided by implementing a loop mechanism 
in hardware. This is possible for loops being executed a pre-
calculated number of times (equal to the image size). In this 
case it is enough to have a loop-parameter initialization before 
entering the loop and to manage the loop jumps by the 
hardware. This technique is known as zero-overhead loop 
implementation. With these implementation strategies, the 
programming is made easier and pipeline stalls and flushes 
resulting from control hazards can be eliminated. The designed 
Instruction Set includes 42 instructions categorized in the 
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following groups: non linear transformations (9), arithmetical 
computations (11), space colour conversions (6), memory 
accesses (9), processor initialization (6) and loop control (1). 

5.  CMOS SYNTHESIS AND PERFORMANCE 

5.1 ASIC benchmark  
The ASIC benchmark has been obtained by handcrafted 
translation of the linearized algorithm bit-true model (14-bit 
fixed point arithmetic) into a register transfer level VHDL 
description. The architecture closely follows the structure in 
Fig. 1 plus dedicated units for RGB from/to YCrCb conversion. 
The memory organization is the same described for the ASIP. 
The requirements in terms of SRAM data memory and number 
of clock cycles for the ASIC and ASIP units are listed in Table 
1 for different formats. The data refer to the implementation of 
the Retinex algorithm applied to coloured images in the YCrCb 
space and with four passes of the filter F in Fig. 1.  

Format cycles·106 
ASIP  

cycles·106 
ASIC  

Data SRAM 
ASIP/ASIC 

QCIF (176x144)  1.3  2.4    88704 bytes 
SIF (352x240) 4.5 8   295680 bytes 

VGA (640x480) 16.3 30 1075200 bytes 

Table 1. Cycles and RAM required to process different formats  
 
5.2 Synthesis Results and Comparisons   
The HDL description of the ASIP, generated by LisaTEK tool 
starting from the ADL design described in Section 4, and that 
of the ASIC have been synthesized with Synopsys tool in a 
0.18 µm CMOS standard-cells library at 1.55 V supply voltage. 
The designed macrocells have been mapped on prototyping 
boards, based on Xilinx Virtex FPGA technology. Since the 
speed of the FPGA emulation is much higher than the speed of 
any HDL simulation this enabled to carry out complete life 
demonstration of the effects introduced by the algorithm on 
images. The algorithmic performance for ASIC and ASIP are 
comparable with a PSNR vs. the original non-linear and 
infinite-precision model of the algorithm higher than 30 dB. As 
example, the PSNR for the Swan image in Fig. 2 is 30.7 dB for 
the ASIP and 30.8 dB for the ASIC. The difference in terms of 
visual subjective quality is negligible.  
The logic synthesis of the ASIP processing core results in a 
complexity of 96 kgates plus 18544 bytes of ROM to 
implement LUT-based operators. An instruction SRAM of 1 
kByte is used: its size is enough to support the different 
possible algorithms described in Section 2 belonging to the 
Retinex-filtering class; for the color application referred in 
Table 1 roughly 400 bytes are needed. The max. clock 
frequency is 100 MHz corresponding to a max. throughput of 
about 1.9·106 pixels/s. Hence the ASIP can be used to process 
in 1 s very large still images (e.g. SXGA, WXGA) and allows 
for real-time SIF videos up to 22 Hz. The ASIC processing 
core resulted in a complexity of 52.9 kgates plus 7528 bytes of 
ROM to implement LUT-based operators. The max. clock 
frequency is 130 MHz for a throughput of 1.4·106 pixels/s. As 
for the ASIP this allows the processing in 1 s of very large still 
images whereas real-time SIF videos are supported up to 16 
Hz. For both ASIC and ASIP a speedup factor of 1.8 can be 
achieved by performing only two passes of the filter F in Fig. 1 
instead of four. In such case up to 39 Hz SIF and 29 Hz SIF 
videos can be processed in real-time by the ASIP and ASIC, 
respectively. The visual quality reduction is negligible for 
small formats (e.g. fractions of dB of PSNR reduction for 
QCIF) whereas it becomes visible for SIF formats or larger. 
The above synthesis results demonstrate that the ASIP 
paradigm is a promising solution to achieve comparable ASIC 

performance but for a higher flexibility. ASIP and ASIC 
require the same data memory complexity; the ASIP 
processing core is bigger, in terms of logic gates, but is faster, 
in terms of throughput. This is a satisfactory result considering 
that we moved to a programmable architecture, opposed to a 
dedicated one, and that we were able to make the processor 
flexible but also efficient enough to allow for the outer control 
of the elaboration parameters, of the output dynamic and for 
the processing of coloured images represented in RGB, HLS, 
HSV, YCrCb or YUV spaces whereas the ASIC version is 
limited to RGB and YCrCb. Moreover, the ASIP can 
implement video processing based on (i) the frame by frame 
repetition of the filtering structure in Fig. 1 and (ii) the 
algorithm in Fig. 3 using temporal filtering. The ASIC instead 
is designed to support only the first option and, as discussed in 
Section 2, this can cause the appearance of annoying artifacts if 
different luminance corrections are performed on subsequent 
frames. Finally the ASIP is designed with ADL at a higher 
abstraction level thus making development and design space 
exploration more efficient, including the automatically 
generation of synthesizable and competitive VHDL code. 

6. CONCLUSION 
Two designs suitable for the cost-effective and real-time 
implementation of Retinex-like non-linear image and video 
filters are presented in the paper. The design process is splitted 
over two hierarchical optimization steps at algorithmic and 
architectural levels. The main considerations leading to the 
designed ASIP architecture are listed, from the memory 
organization to the architecture pipelining and to the further 
customization of the architecture by the addition of some 
hardware features like bypasses, AGU and special structures 
for hardware looping. During the whole design the basic idea 
of the Instruction Set is kept in mind as a guide for hardware 
design. The ASIP design by ADL is compared to dedicated 
VHDL implementation. Synthesis results on CMOS 0.18 µm 
technology demonstrate that the ASIP paradigm is a promising 
solution to achieve comparable ASIC performance but for a 
higher flexibility, reusability and design efficiency. 
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