
DESIGN OF APPLICATION SPECIFIC INSTRUCTION-SET PROCESSOR FOR
IMAGE AND VIDEO FILTERING

*S. Saponara, *L. Fanucci, +S. Marsi, +G. Ramponi, #M. Witte, #D. Kammler
*DIIEIT, University of Pisa, Italy{s.saponara, l.fanucci}@iet.unipi.it

+DEEI, University of Trieste, Italy {marsi, ramponi}@units.it
#ISS, RWTH, University of Aachen, Germany {witte, kammler}@iss.rwth-aachen.de

ABSTRACT
Two architectures for cost-effective and real-time implemen-
tation of non-linear image and video filters are presented in the
paper. The first architecture is a traditional VHDL-based ASIC
(Application Specific Integrated Circuit) design while the
second one is an ADL (Architecture Description Language)
based ASIP (Application Specific Instruction Set Processor). A
system to improve the visual quality of images, based on
Retinex-like algorithm, is referred as case study. First, starting
from a high-level functional description the design space is
explored to achieve a linearized structural C model of the
algorithm with finite arithmetic precision. For the algorithm
design space exploration visual and complexity criteria are
adopted while a statistical analysis of typical input images
drives the algorithm optimization process. The algorithm is
implemented both as ASIC and ASIP solution in order to
explore the trade-off between the flexibility of a software
solution and the power and complexity optimization of a
dedicated hardware design. The aim is to achieve the desired
algorithmic functionality and timing specification at
reasonable complexity and power costs. Taking advantage of
the processor programmability, the flexibility of the system is
increased, involving e.g. dynamic parameter adjustment and
color treatment. Gate level implementation results in a 0.18µm
standard-cell CMOS technology are presented for both the
ASIC and ASIP approach1.

 1. INTRODUCTION
In the field of digital processing systems ASIPs are gaining
ground to fill the gap between ASICs, highly optimized
hardware platforms but lacking flexibility, and the solution
offered by software development on DSPs (Digital Signal
Processors), reusable and programmable but providing too little
performance and energy-inefficiency. ASIPs are flexible in
general and optimized for an application domain. This makes
them more useful than ASICs for applications requiring a
certain degree of programmability. Moreover, since the
customization of the design is focused on the addressed
application domain, they are more specialized and therefore
more optimized than DSPs, being able to provide the right
features in terms of timing performance, energy consumption
and required area. Architecture Description Languages (ADLs)
[1-3] help the processor designer by automatically generating
the software tool-suite (compiler, assembler, linker, simulator)
as well as the Register Transfer Level description of the
processor. While designing an ASIP, the designer has the full
freedom to do the trade-off between performance, flexibility
and physical criteria like silicon area and power consumption.
Extending the instruction set by specialized instructions is
particularly beneficial for applications involving hot spot
elaboration kernels, like image and video signal processing. In

1 Work partially supported by PRIMO and NEWCOM projects.

such a field some innovative algorithms are spreading up
involving highly nonlinear operators [4-10]. By changing the
data and control flow but keeping the kernel arithmetic, the
same class of filters can be used for different applications. For
this goal, dedicated ASICs are not suitable since they provide
only very limited flexibility. However, DSP solutions are not
acceptable either, because high computational performance,
low energy cost and low silicon area are very important
specifications in handheld and mobile scenarios. In this paper
the ASIP implementation of the Retinex class of algorithms [4-
9] is presented. After high-level algorithmic optimization the
identification of the operation kernels and their mapping onto
an instruction set are described. Some special processor
concepts used to achieve a good performance vs. flexibility
trade-off are detailed. Finally, CMOS synthesis results are
presented with a comparison to a benchmark ASIC design.

2. RETINEX-LIKE IMAGE AND VIDEO FILTERS
In the Retinex theory, first proposed in [4], an image is
expressed as the pixel-by-pixel product of the ambient
illumination y and the reflectance r of the scene object. The
values of the latter are determined as the pixel-by-pixel ratio
between the input image and an estimate of the illumination.
This way we can control independently illumination and
reflectance, as example modifying the dynamic of the
illumination without any modification in the details which are
transmitted through the reflectance channel. It is also possible
to process the reflectance signal to improve the details in the
final image. Target applications include image contrast
enhancement, correction of images acquired in bad lighting
conditions, control of dynamic in logarithm sensors [5-10]. All
these filters exploit a similar structure sketched in Fig. 1 (in
case of logarithmic sensors multiplication and division are
replaced by add and subtract, respectively): F is a luminance
estimator while the Γ and β blocks respectively process the
luminance dynamic and improve the details. We found that
effective expressions are:







 +⋅γ







⋅=Γ

255
y1

255
y255)y(,

2
1

e1
1)r(rlogb +

+
=β ⋅−

 (1)

Figure 1. Block diagram of Retinex-based operators

The core of retinex-based methods is the estimation of the
illumination component. As matter of fact in natural images the
illumination typically changes very smoothly between
contiguous pixels, with the exception of some particular cases,
like the presence of luminous sources in the image, or the
illumination of the scene by various light sources with abrupt
transitions between them (e.g. images which represent an

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

indoor and an outdoor scene in the same frame). A good
estimator of the illumination must take into account these
considerations; it could be realized with an edge-preserving
low-pass filter with a quite narrow band. The narrow band,
which implies a wide impulse filter response, is the primary
reason for the high complexity of the algorithms proposed in
the literature [7, 8] and makes them unsuitable for real time
applications. To avoid this drawback a new algorithm, based
on Recursive Rational Filters (RRF), has been proposed by the
authors in [6]. This method uses an IIR to obtain a long
impulse response, while the edge preserving effect is achieved
with a suitable system which controls the filter bandwidth
according to the characteristics of the input signal. The
recursive filter is very effective but presents the disadvantage
of introducing a phase distortion in the output image, and an
asymmetric response. To avoid such problems, a 2D extension
of the well known time-reversal method must be used. For such
reason the filter must be applied four times to each input
image. During these iterations the pixels are processed along
all the possible directions from top to bottom and from left to
right and viceversa. It should be noticed that just two filter
passes can be performed only if a fairly small impulse response
is requested, i.e. if the input image is quite small. The output of
the low-pass edge-preserving filter F is yielded by the function:

1
),(),(

++
+⋅+⋅=

vh

vvhh

SS
mninfSfSmny , being

() 2

10
5

2

1),1(
1),1(log10

10),,(1),1(

















++
+−+

=⋅−+−⋅=
−

−

mnin
mnin

Smninmnyf hh αα

Similar expressions are available for fv and Sv, evaluating the
gradient through the m-direction (vertical). The α parameter
controls the local cut-off frequency. As an example, Fig. 2
shows a portion of an image acquired in bad lighting conditions
(2a). The application of the classical histogram equalization
brings to the result visualized in Fig. 2b. While trying to get the
image clearer, a detail blurring comes up. The Retinex
algorithm, instead, permits to obtain the effect in Fig. 2c
solving the problems of image contrast and brightness together.

Figure 2. a) Original, b) Histogram equalization, c) Retinex

The above algorithm refers to monochrome images while for
color images several color spaces can be considered. It is not
advisable to process the three color components R, G, and B
separately, because of a significantly increase of the
computational effort and also because hue variations are most
likely to be obtained. The simplest approach is to process the
luminance component, computed e.g. according to the YUV or
the YCbCr standard, and eventually to modify the color
components accordingly, trying to preserve the hue. An
alternative could be to use the HSV domain; in this case the
above described algorithm could be applied to V, which is
somehow related to the luminance. However, the nonlinearities
inherent in the RGB to HSV conversion, and viceversa, are
most likely to yield unwanted hue or saturation variations. In
order to deal with video sequences, a first idea could be to
simply use, on a frame by frame basis, the algorithm described
above. There is however a main issue which has to be taken
into account, i.e. the high sensitivity of the human eye to

temporal artifacts: if subsequent frames are independently
processed, they may appear pleasant if observed one by one but
yield annoying effects when visualized in a sequence; this may
happen for instance if different luminance corrections are
performed on subsequent frames. This issue suggests the use of
temporal filtering. In particular a novel algorithm has been
proposed, where the input signal is split into three different
contributions according to the scheme depicted in Fig. 3. One
contribution represents the background illumination (LL). This
signal is temporally filtered to reduce flashing effects and
abrupt temporal variations. A second contribution (LH) is
devoted to the information about small light sources, like car
lights, which must not be temporally filtered, otherwise very
annoying artifacts will appear. This signal is combined with the
previous one in the luminance signal and is processed by the Γ
block to compress the dynamic. The last contribution
represents the details, i.e. the reflectance (R). This signal could
be amplified by a suitable block β.

In Out

L LH

LL

R
~

~ ~

~

*

*

/

/

Figure 3. Retinex-based operators applied to videos

3. DESIGN OPTIMIZATION FLOW

The adopted design flow is sketched in Fig. 4. First, starting
from a high-level functional description the design space is
explored in a C/Matlab environment to achieve a linearized
structural model, with finite arithmetic precision, of the class of
algorithms described in Section 2. For this purpose some
effective methodologies for bit-true arithmetic definition and
linearization of non linear operators have been developed
requiring some pre-fixed optimization schemes based on
piecewise linear and piecewise constant (see Figs. 5 and 6 for
linearization examples and implementation block diagrams).

Figure 4. Optimization flow

Two criteria are used to keep a good degree of approximation:
a PSNR-based objective criterion and a subjective one based
on visual perception. The linear piece-wise approach allows for
better quality results and is adopted for the Γ and β blocks. The
constant piece-wise approach is preferred when the non linear
transformation involves quantities not directly observable at
the system output, like the filter F coefficients depending on Sh
and Sv. In such case the resulting visual quality using constant
piece-wise is the same of linear piece-wise but the former has a
simpler implementation being based on Look-up-Table (LUT)

LISA model
Automatic HDL

Handcrafted
HDL model

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

and avoiding the use of multipliers (see Fig. 5a). Starting from
the linearized and bit-true algorithmic model the hardware
design is addressed using two methodologies. In Fig. 4 ASIP
and ASIC approaches are depicted, referring to their respective
description languages: ADL and HDL. The HDL netlist of the
ASIP is automatically generated from the LISA description.

Figure 5. Block diagrams for linear and constant piece-wise

Figure 6. Linear and constant piece-wise approximation

4. ASIP DESIGN FOR RETINEX FILTER CLASS

4.1 Memory Organization
For the Retinex class of applications described in Section 2,
ASIPs offer an excellent trade-off, since the most repeated
application kernels can be grouped in optimized hardware
units, while keeping the activation of those hardware
accelerators at a software level by the definition of a suitable
instruction set. Like most multimedia applications, the design
of video filtering architectures is dominated by the memory
size and data transfer rate. In case of video processing, it is
often necessary to store more than one image since previous
frames are needed for the elaboration (e.g. temporal filtering).
It can be also the case that the video processing is split over
several pipeline stages (by the means of frame pipelining) in
order to increase the information throughput. To determine the
required memory size to store the intermediate images, the
memory size of one frame has to be multiplied with the number
of used pipeline stages. Referring to VGA format, a worst case
evaluation leads to a memory requirement of 10 Mbytes,
unacceptable for systems designed for a single die. To reduce
the memory amount, one way was pursued in the C /Matlab
optimization step, by reducing the number of precision bits
while keeping acceptable algorithmic performance. In the case
study, we used 8 integer bits and 6 fractional bits for data
representation. Lowering the number of fractional bits below
the found optimum value can lead to a great worsening of the
algorithmic performance. Another effective way to reduce
memory is to remove the pipelining at a frame level. This
solution is based on a re-utilization of the same memory to
store the intermediate data concerning the partially elaborated
frames. The main drawback is, of course, the throughput
reduction, which is a critical specification item. Because of the
trade-off between memory resources and data throughput, we
decided to use two frame memories. This solution allows to

keep a slight parallelism in the elaboration, since it is possible,
for instance, performing the Γ and β transformations at the
same time, without increasing memory requirements too much
compared to the simplest solution involving a single frame
memory. The total required memory for VGA format
processing is 1.03 Mbytes. Moreover, there is a highly
effective methodology to improve timing performance keeping
the benefits of this memory organization. This is achieved by
re-introducing a pipelining of the elaboration moving it from
the frame level to the pixel level, which is more efficient in
terms of memory usage. That allows for parallel elaboration of
several pixels making the architecture timing efficient as well.
Entering in more details about memory architecture
implementation, Synchronous SRAM memories have been
used for data storage. The two RAMs have been named X
RAM and Y RAM. They are read scanning the whole image in
order to produce the illumination component (y) according to
the F filter functionality. This process requires four passes of
the whole image and the intermediate results are stored in the
Y RAM, while the X RAM contains the input image. After that
both RAMs are further scanned and the reflectance component
(r) evaluation is performed by division. Also the Γ and β
transformations are performed. Then the Γ output is stored in
the Y RAM, while the β output is stored in X RAM. At the
end, a further scan of the two RAMs is required for the
component recombination leading to the output image, which
is finally stored in the X RAM. In all frame processing stages,
a pipelining of subsequent pixels is used to speed up the
architecture. Both, the particular memory organization and the
data pipelining are important hardware customizations
applying to the case study application. These sorts of
customizations of memory and pipeline architecture are major
advantages of ASIPs. Other resources utilized in the processor
arithmetic can be customized according to the application
needs, too. In the case study, 16 general purpose 32-bit
registers have been instantiated. Some additional dedicated
registers have been used for the storage of processing
parameters which can be easily used during the elaboration. 14-
bit fixed point arithmetic has been used for data representation
whereas instructions have been coded using 32-bit words.
4.2 Pipelined Architecture and By-pass Mechanism
The pixel elaboration has been split over a pipelined
architecture. This choice has the benefit of increasing the
architecture parallelism and to shorten the critical path. This
property of pipelined systems leads to an increased data
throughput, which is highly desirable in our case. However,
this strategy can have some drawbacks due to increased
latencies, silicon area overhead, e.g. by pipeline control and
registers, and dependencies in the pipeline. Data dependencies
can exist between neighbored instructions, that is, a result
produced by an instruction may be used as an operand by the
following instructions. Such situations might require pipeline
interlocking mechanisms. Using ADLs, the design space is
fully explorable with no restriction given by pre-designed parts
or templates. Nevertheless, templates can be used as a first
starting point, but the designer is not limited by that.
Customizations of the pipeline structure and the memory
architecture are presented in the following. In the case study,
seven pipeline stages have been introduced. This pipeline
organization resulted from the design space exploration as the
best trade-off between throughput and complexity. Particularly,
to understand why such a pipeline structure has been used we
have to refer to a repeated optimization technique used all over
the design: the piecewise approximation of non linear
operators. Since this is a widely utilized functional kernel in
the optimized application, some particular attention was paid to
its implementation. As example, let us consider the piecewise

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

linear technique used to approximate Γ and β transformations.
Since the throughput is a pressing specification, it is desirable
having an instruction able to load an operand from the data
memory, to perform the Γ or β transformation in the piecewise
linear form and to store the result back to the data memory.
The designed pipeline allows for the processing of such an
instruction, using the following stages (see Fig. 7):
- FE: the fetch stage in which the instruction is fetched from
the program memory.
- DC: the decode stage in which the instruction is decoded,

producing the control signals for the operating part.
- LD: the load stage in which the operand is loaded from the

data memory.
- CMP: the comparison stage where the loaded operand is

compared to the edges on the abscissa axis in order to
identify the correct approximation interval.

- ROM: stage in which the result of the previous comparison
is used to address a ROM storing the parameters (offset Q,
slope K) of the correct piecewise segment.

- ARITH: the arithmetical stage in which the fetched
parameters are used to calculate the output according to
piecewise segment expression K x IN + Q.

- WB: the write-back stage in which the output is stored back
to the data memory.

FE DC LD CMP ROM ARITH WB

X RAM Y RAM PROGR ROM

Figure 7. Pipeline and memory organizations for the ASIP

The names assigned to each stage are mnemonical names
applying to the presented particular case. Depending on the
instruction, different operations can be executed in the stages,
meaning e.g. the ROM stage is not used for ROM accesses
exclusively. The piecewise linear approach allows also for the
implementation of the division operation with a throughput of
one division per cycle, which is a great advantage for the
system performance. The performed division is a customized
operation leading to acceptable results only operating on inputs
in the working range. Otherwise the approximation introduced
by our procedure would compromise the result. Nevertheless
the LUT technique used for our customized division shows
satisfactory results. In the division instruction, the LD stage is
used to load the denominator from the data memory, the CMP
stage is used to load the numerator and the WB stage to write
the computed ratio back to the data memory.
Data dependencies are a problem related to the pipeline
architecture. A 7-stage pipeline obviously leads to the
following disadvantage of data hazards: in the LD stage an
instruction (“consumer”) may read from a shared storage (a
general purpose register or a memory location), which is
expected to be written by a previous instruction (“producer”).
If the producer instruction has not yet reached the WB stage in
which the final result is stored in the shared storage, the
consumer instruction will load an outdated value. That will
cause a completely wrong result. There are two standard
solutions for this issue: pipeline interlocking and bypassing.
Using interlocking, the instructions trying to access data, that
has not yet been written back, causes the pipeline to be stalled
partially. This causes unacceptable throughput degradation,
especially in performance critical loops. This drawback can be
solved by instruction rescheduling – either by the processor or
by the compiler. This approach is usually strongly limited by

the data and control flow. A more efficient way of resolving
the data dependencies is to implement bypasses. Bypasses
forward data immediately from a pipeline stage back to a
previous stage. In the case study the majority of the
instructions can provide the final result not before the ARITH
stage. Therefore, two kinds of bypasses were implemented
depending on the starting point of the bypass path: bypasses
from the ARITH stage or bypasses from the WB stage. In both
cases, more than one path was implemented depending on the
end point of the bypass. They include: bypasses to the LD
stage, the CMP stage, the ROM stage and the ARITH stage
(Fig. 8). Most of the implemented bypasses are extensively
used e.g. in the non linear filter F (Fig. 1), which implements
one of the key elaboration steps of our case application.

FE DC LD CMP ROM ARITH WB

Figure 8. Implemented by-pass mechanisms

4.3 Customized Instruction Set
One of the most important advantages of ASIPs is the fact that
the instruction set can be customized according to the
requirements of the application. This enables a trade-off
between computational performance, silicon area and energy
consumption. In order to increase the architecture efficiency it
can be beneficial to implement complex pipelined instructions.
This shortens the length of the final assembly program that is
in our case study strictly related to the number of clock cycles
needed for the complete elaboration. Since the specific
scenario is image/video processing, it is important to notice
that there will be a portion of the assembly program (referred
to as main loop) that has to be repeated a large number of times
according to the image size (one iteration per pixel), typically
in the order of hundreds of thousands of times. That means that
a particular attention has to be paid to the number of program
lines setting up the main loop, in order to avoid any waste of
cycles and to maximize the throughput. In particular we show
this for our case study in the following after giving a list of the
most important instruction set customizations: Single
instruction non linear transformations, Automatic address
calculation and Zero overhead loops.
For example, considering the address generation for the data
memory, from the algorithmic specifications it can be noticed
that some pre-fixed patterns are established iterating over the
image. Thus an Address Generation Unit (AGU) calculating
the next address for the data memory by incrementing the pixel
pointer can be implemented in hardware. This is reflected in
the syntax of several instructions by a short extension. Thus the
address update is performed in parallel without the need of
wasting cycles just to do the data address update. Another
observation is, that in conventional loop implementations
comparisons and conditional branches create a significant
instruction overhead and, even worse, cause pipeline control
hazards. They lead to pipeline stalls and flushes. These
problems can be avoided by implementing a loop mechanism
in hardware. This is possible for loops being executed a pre-
calculated number of times (equal to the image size). In this
case it is enough to have a loop-parameter initialization before
entering the loop and to manage the loop jumps by the
hardware. This technique is known as zero-overhead loop
implementation. With these implementation strategies, the
programming is made easier and pipeline stalls and flushes
resulting from control hazards can be eliminated. The designed
Instruction Set includes 42 instructions categorized in the

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

following groups: non linear transformations (9), arithmetical
computations (11), space colour conversions (6), memory
accesses (9), processor initialization (6) and loop control (1).

5. CMOS SYNTHESIS AND PERFORMANCE

5.1 ASIC benchmark
The ASIC benchmark has been obtained by handcrafted
translation of the linearized algorithm bit-true model (14-bit
fixed point arithmetic) into a register transfer level VHDL
description. The architecture closely follows the structure in
Fig. 1 plus dedicated units for RGB from/to YCrCb conversion.
The memory organization is the same described for the ASIP.
The requirements in terms of SRAM data memory and number
of clock cycles for the ASIC and ASIP units are listed in Table
1 for different formats. The data refer to the implementation of
the Retinex algorithm applied to coloured images in the YCrCb
space and with four passes of the filter F in Fig. 1.

Format cycles·106
ASIP

cycles·106
ASIC

Data SRAM
ASIP/ASIC

QCIF (176x144) 1.3 2.4 88704 bytes
SIF (352x240) 4.5 8 295680 bytes

VGA (640x480) 16.3 30 1075200 bytes

Table 1. Cycles and RAM required to process different formats

5.2 Synthesis Results and Comparisons
The HDL description of the ASIP, generated by LisaTEK tool
starting from the ADL design described in Section 4, and that
of the ASIC have been synthesized with Synopsys tool in a
0.18 µm CMOS standard-cells library at 1.55 V supply voltage.
The designed macrocells have been mapped on prototyping
boards, based on Xilinx Virtex FPGA technology. Since the
speed of the FPGA emulation is much higher than the speed of
any HDL simulation this enabled to carry out complete life
demonstration of the effects introduced by the algorithm on
images. The algorithmic performance for ASIC and ASIP are
comparable with a PSNR vs. the original non-linear and
infinite-precision model of the algorithm higher than 30 dB. As
example, the PSNR for the Swan image in Fig. 2 is 30.7 dB for
the ASIP and 30.8 dB for the ASIC. The difference in terms of
visual subjective quality is negligible.
The logic synthesis of the ASIP processing core results in a
complexity of 96 kgates plus 18544 bytes of ROM to
implement LUT-based operators. An instruction SRAM of 1
kByte is used: its size is enough to support the different
possible algorithms described in Section 2 belonging to the
Retinex-filtering class; for the color application referred in
Table 1 roughly 400 bytes are needed. The max. clock
frequency is 100 MHz corresponding to a max. throughput of
about 1.9·106 pixels/s. Hence the ASIP can be used to process
in 1 s very large still images (e.g. SXGA, WXGA) and allows
for real-time SIF videos up to 22 Hz. The ASIC processing
core resulted in a complexity of 52.9 kgates plus 7528 bytes of
ROM to implement LUT-based operators. The max. clock
frequency is 130 MHz for a throughput of 1.4·106 pixels/s. As
for the ASIP this allows the processing in 1 s of very large still
images whereas real-time SIF videos are supported up to 16
Hz. For both ASIC and ASIP a speedup factor of 1.8 can be
achieved by performing only two passes of the filter F in Fig. 1
instead of four. In such case up to 39 Hz SIF and 29 Hz SIF
videos can be processed in real-time by the ASIP and ASIC,
respectively. The visual quality reduction is negligible for
small formats (e.g. fractions of dB of PSNR reduction for
QCIF) whereas it becomes visible for SIF formats or larger.
The above synthesis results demonstrate that the ASIP
paradigm is a promising solution to achieve comparable ASIC

performance but for a higher flexibility. ASIP and ASIC
require the same data memory complexity; the ASIP
processing core is bigger, in terms of logic gates, but is faster,
in terms of throughput. This is a satisfactory result considering
that we moved to a programmable architecture, opposed to a
dedicated one, and that we were able to make the processor
flexible but also efficient enough to allow for the outer control
of the elaboration parameters, of the output dynamic and for
the processing of coloured images represented in RGB, HLS,
HSV, YCrCb or YUV spaces whereas the ASIC version is
limited to RGB and YCrCb. Moreover, the ASIP can
implement video processing based on (i) the frame by frame
repetition of the filtering structure in Fig. 1 and (ii) the
algorithm in Fig. 3 using temporal filtering. The ASIC instead
is designed to support only the first option and, as discussed in
Section 2, this can cause the appearance of annoying artifacts if
different luminance corrections are performed on subsequent
frames. Finally the ASIP is designed with ADL at a higher
abstraction level thus making development and design space
exploration more efficient, including the automatically
generation of synthesizable and competitive VHDL code.

6. CONCLUSION
Two designs suitable for the cost-effective and real-time
implementation of Retinex-like non-linear image and video
filters are presented in the paper. The design process is splitted
over two hierarchical optimization steps at algorithmic and
architectural levels. The main considerations leading to the
designed ASIP architecture are listed, from the memory
organization to the architecture pipelining and to the further
customization of the architecture by the addition of some
hardware features like bypasses, AGU and special structures
for hardware looping. During the whole design the basic idea
of the Instruction Set is kept in mind as a guide for hardware
design. The ASIP design by ADL is compared to dedicated
VHDL implementation. Synthesis results on CMOS 0.18 µm
technology demonstrate that the ASIP paradigm is a promising
solution to achieve comparable ASIC performance but for a
higher flexibility, reusability and design efficiency.

REFERENCES
[1] H. Peters et al., Application specific instruction-set

processor template for motion estimation in video
applications, IEEE Trans. Circuits and System for Video
Tech., vol. 15, April 2005, pp. 508-527

[2] A. Hoffmann et al., Architecture Exploration for
Embedded Processors with LISA, Kluwer Academic, 2002

[3] O. Schliebusch et al., A framework for automated and
optimized ASIP implementation supporting multiple
hardware description languages, IEEE ASP-DAC05

[4] E. Land, J. McCann, Lightness and retinex theory, Journ.
of the Opt. Soc. of America, vol. 61, pp. 1-11, 1971

[5] G. Orsini et al, A modified retinex for image contrast enh-
ancement and dynamic control, IEEE ICIP03, pp.393-396

[6] S. Marsi et al., Image contrast enhancement using a
recursive rational filter, IEEE IST04, Stresa, pp. 29-34

[7] M. Ogata, T. Tsuchiya, T. Kubozono, K. Ueda, Dynamic
range compression based on illumination compensation,
IEEE Trans. Cons. Electr., vol. 47, n.3, pp. 548-558, 2001

[8] D.J. Jobson, Z. Rahman, G.A. Woodell, Properties and
performance of a center/surround Retinex, IEEE Trans. on
Image Process., vol.6, no.3, pp. 451-462, March 1997

[9] S. Saponara et al., Cost-effective VLSI design of non
linear image processing filters, IEEE DSD05, pp. 322-329

[10] R. Fattal et al., Gradient domain high dynamic range
compression, ACM Trans. on Graphics, 2002, pp.249–256

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

