ON SIGNAL REPRESENTATION FROM GENERALIZED SAMPLES:
MINMAX APPROXIMATION WITH CONSTRAINTS

Hagai Kirshner, Tsvi G. Dvorkind, Yonina C. Eldar and Moshe Porat

Department of Electrical Engineering
Technion-Israel Institute of Technology, Haifa 32000aé&dr

ABSTRACT an analog to digital converter which performs pre-filtering

Signal representation plays a major role in many DSP appliP"ior to sampling. In such a setting the sampling functions
cations. In this paper we consider the task of calculatipg re &€ {S(t) =s(t —nT)}, wheres(t) is a mirrored version of
resentation coefficients of an analog signal, where the onif€ corresponding impulse response [8].

available data is its samples based on practical non-ideal a_ A Minmax approach to the approximation efwas re-
quisition devices. We adopt a minmax approach and furtheg€ntly introduced in [13] for a generalized sampling scheme
incorporate regularity constrains on the original continsr iven the samples sequence (>, the maximum possible

time signal. These constraints stem from the nature of ag/"or was minimized over all admissible signals, yielding a

plications where smooth signals serve as input data. The efhalytic minmax solution. .
However, there are applications in which notlall sig-

sued solution is shown to consist of an orthogonal projec- = O . S
tion within a Sobolev space. lllustrating examples aremjve NalS serve as a possible input. For instance, such prior in-
utilizing this constrained minmax approach. Our conclasio formation is available in biomedical applications where th

is that this new approach to signal representation could imgnderlying mechanism that generates the measured signal is
prove presently available systems, especially in nontgiea  Physiologically understood (e.g. ECG, EEG, EMG). Moti-
uations. vated by this observation, this work further extends the re-

sults of [13] by incorporating additional information, déva
1 INTRODUCTION able a priori. In particular, we consider cases for which the
' input signal is known to comply with a certain regularity-cri

Signal processing applications are concerned mainly witterion and adopt the Sobolev space framework for solving a
digital information, although the origin of many sources of minmax approximation problem.
information is analog; e.g. speech and audio, optics, radar
sonar and biomedical applications, to name a few. Within the 2. MATHEMATICAL PRELIMINARIES
context of signal representation, calculatinginner prod-

ucts relies on discrete data. This is the case in Gabor analf} SCP0lev spacét; of orderp =1 is a Hilbert space con-
isting of all finite energy functions on the real line having

sis and in the initialization of the discrete wavelet tramsf derivative of finit 11141, Th di
[1, 2, 3, 4, 5]. Acommon approach to this task is to approxi-f"1 erva |zj/e ot 'r('j' ef_engrk?y as well [14]. The corresponding
mate each representation coefficient by a Riemann-type sufner productis defined by
[6] X(1),y(t)y, = X(A),yt), + X 1),Y®), ., 3)
Ak = (X(t), Wi(D) = T- 3 X(0T) W), () O YO, = Y, + (X0 0,
n wherex (t) denotes the derivative oft). In this paper all
Here x(t) € Ly is the input signal{w(t)}, is a set of analyt- INNer products are withihy, unless otherwise stated.
ically known analysis functions, € 7, denotes the represen- 1€ OPeratoPa reprje_s.ents an orthogonal projection onto
tation coefficients, and is the sampling interval. An alter- & closed subspack. A~ is the orthogonal complement of
native minmax approximation scheme ﬁik] was suggested A. The Moore-PenrO§e pseudO inverse and the ad]0|nt Of a
in [7], by interpreting the ideal sampling scheme as a lineaPounded transformation are denoted by the T arstiper-
bounded operator in a Sobolev space. This minmax approxCripts, respectively. The sampling spageand the analysis
mation exploits the analytically known functiow(t) rather ~ SpaceW, are defined by
than utilizing only partial information given by the sample S
{wi(nT)} applied to (1). S Span{s(t)} (4)
Nevertheless, it remains to consider practical aspects of W = Span{wy(t)}. (5)
the acquisition process. That is, practical sampling sesem )
involve generalized rather than ideal sampling schemedt is assumed that botfs,(t) } and{w(t)} constitute frames
Consider a signal(t), its generalized samples are describedor W C L and forS C Ly, respectively, giving rise to the
by means of consecutite inner products with a set of sam- following set transformation:
pling functions{s,(t)}, associated with the acquisition de- Sty —Ly (6)

vice [8, 9, 10, 11, 12] . z -
=) c[n] (1),
cn] = (x(t),sn(t))- 2 n
with its adjoint being

This sampling model is general enough to describe a large
set of practical acquisition devices. As an example, carsid Sy — 4y (7



Sx= Y (X(t). (1)) -en.

n

The set{en} denotes the standard basis/ef A similar def-
inition applies toW. Adopting this notation, the generalized
samples ok(t) are given byc = S'x, and the representation
coefficients ofx(t) satisfyd =W*x. A shift-invariant space
is defined by its generator function,

S = Span{s(t —nT)},, (8) S

where T is the translation parameter. It is assumed thaI:i ure 1- Vector interoretation for the minmax approxima-
the generator function and its translated versions comstit ,.'J : nterp _ nax app
tion problem of a single representation coefficient. HE¢®,

a frame forS. The corresponding sampled autocorrelationW andPew are analvtically known
function and its Fourier transform are given by > y y :

rssim = (s(t),s(t —mT 9
ss[m) <1( S 2)>’ ) ®) A possible input achieving this upper-bound is
n
Rss(@) = =) |[Sw+—m)|, (10)
T4 T 12— IRl
. . X=PsX+ -Pyiw. a7
whereS(w) is the Fourier transform af(t). The support of [|Ps.w|

Rss(w) is given by ) ) )
’ The problem we address involves a minmax approxima-
Qss={we [0,2m) | Rss(w) # 0} (11) tion scheme fod, while imposing a regularity condition of
the form ofx € Hy:
Similarly, one can define

wslm = (w(t),s(t—mT)), (12) arg [nin{ max |Wx—d]|; } : (18)
1 om N[ 2m\ etz (0750 M=t i
Ruys(w) = TZW (w+ ?m) S<w+ ?m),(13)

4. MINMAX APPROXIMATION

The objective (18) involves two forms of inner products, one
3. THE PROBLEM being the Sobolev norm evident in thg||,,, < L prior and

We consider the problem of determining the representatiof'e Other being thé; inner product evident in the set trans-
coefficientsd = W*x while havingc = Sx, the generalized formationsW* andS". In order to solve this minmax objec-

samples of the signal, as the only available data. Adoptinrgv? in the manner applied to (14) in [13], one may recast (18)
a minmax approach, this approximation problem can be forl© include inner products of the same type.

having the suppof®,,s within the frequency domain.

mulated as follows: LetU : H, — L, be the bounded operator satisfying
. - U*:L, —H
argming  max [|W*x— dH2 . (14) 27
=5 <L t2 1
dety (e=5 X< U w=w(t) <u(t) = w(t) » e . (19)

The constant is arbitrarily chosen. It serves as an upper o o )
bound on the norm of the signal ensuring a bounded ap- This description of the adjoint stems from expressind-an
proximation error. It has been shown in [13] that the uniqudnner product in the frequency domain:

solution of (14) is given by

- 17 = 5
d=WPsx=W's(s'S)'c, (15) W, 2n./ X(w)-W(w)- (1+0)dw
1 -
That is, applyingV* to the orthogonal projection of onto = ET/X(M) -W(w)dw
S rather than to. Also, the constant has no effect on the
ensued solution. It does determine, however, the worst-cas = X W>Lz’ (20)

scenario yielding the maximum possible approximation er- N

ror. For example, when considering a single analysis funcesulting in W(w) = W(w) - U(w), whereU(w) is the
tion, w, the minmax solution gives rise to a vector interpre-Fourier transform ofi(t), i.e.,

tation shown in Figure 1. In such a case, approximating

W*x = (x,w) is equivalent to calculatingPsx, Psw) and the U(w) = 1 1)
approximation error is upper-bounded by 1+w?

‘d — dA’ = |(Psrx,w)| This in turn, implies that the set transfo¥ x involving L,
inner products can be alternatively described by means of a

L2 — ||Psx||- [|Pscwll . (16)  set transform oH, inner products, denoted by*, where

IN



Wn(t) = wn(t) xu(t). The same holds for the set transform  For the shift-invariant case of

S*. Eg. (18) can now be written as
S = Span{s(t—nT)}, (29)

Az}’ 22 W = Span{w(t—nT)}, (30)
2

it can be shown that the minmax solution of (15) can be ob-

argmin{ ~ max HVNV* -

dely | c=5x, X, <L

5w . i tained by filtering the generalized samplesvith a digital
whereS',W* are operators with a domain k. Those op- fjiter [16] having a Fourier transform of

erators are bounded. For example, let & < B < o be the

frame bounds o8. That is, for any € S Rus(w) 0
, G(w):{ Rl ‘”ZQ&S . (31)
W
A- X2, < Z‘<x,s«>L2 <B- x|, (23) , ss
This form of solution is applicable to the Sobolev case, too:
A proper choice for the upper frame bound ®fvould be Rus(®)
B = B. However, it is not guaranteed that the corresponding G(w) = { R ®EQss (32)
lower frame boundA, is strictly positive. This property of 0, w¢ Qss
A > 0 is important. IfA =0 then the operatds‘S has no
closed range, thus no bounded pseudo-inverse operator can 5. EXAMPLES
be defined for it [15]. This in turn, precludes the possipilit
of reconstructing:x from the samples. 5.1 Examplel
Nevertheless, a sufficient condition can be derived for th\e consider the case of approximating a single representa-
shift-invariant case. LeRss(K; w) be the partial sum tion coefficient obtained by calculating & inner product
with a modulated version of a normalized Gaussian
Res(K: 1 X 21 2U m 1
ss(Kiw) = 7 Z <w+ —m) (oo+ ?m>. w(t) = ——e /2cog2nt). (33)
24) v

It can then be shown that Rs 5(K; w) converges uniformly Denotmgﬁ (t) to be the B-spline of order one, the input
to Rss(w) on QasthenA > 0. In such a case, the minmax signal is

solution of (22) is given by X(t) = BL(t) - cog2nt). (34)
d= VN\/*ng _ V~V*§(§*§)TC, (25) The generalized samples correspond to the ZOH scheme
whereS is the space spanned g (t) = u(t)} and all opera- s(t) = { 1(/)A’ E)ﬁé?\-/rvi;eA’ ] , (35)

tors are within the Sobolev space.
The approximation error for considering a single analysi

function is then given by SwhereT is the sampling interval. Figure 2 depiot&) and

the analysis functiomv(t). The uniform convergence crite-
rion of (24) holds surely fol > A, guaranteeing > 0. Fig-

d—d| = ‘W*Pslx ‘ ure 3 then depictBsx andP:x for the case o = 0.15A =
. 0.05. Having known the generalized sampleg ofily rather
= ’ <P51x, W> Hy ‘ than the signal itself, one may consider a worst possibleatinp

in L, (17) and inH, (27). Both signals are consistent with

< ”P@XHHz ' HPSVLWHHz the known samples and are depicted in Figure 4. Figure 5 de-
[l 2 ~ picts the maximum potential approximation error as a func-
< L "PéX"HZ HPSU'WHH27 (26) tion of the sampling interval for both the, (dots) and the

H, (x-marks) cases, where the error values are normalized by
[X[|., and||x[|,,, respectively. As expected, the constrained

minmax objective yields smaller upper-bounds values than
VL HP‘XHHZ does the non-constrained objective. This is also reflected i
x = Pex+ PoLW (27)  Figure 3 wheré:x is much similar tox thanPsx.

and a possible input signal achieving this upper-bound is

P,

5.2 Example?2
It is possible to extend these derivations to Sobolev
spaces of arbitrary orders, corresponding to the degree 631nother sampling model to be considered is the RC circuit
regularization (smoothness). All the results still appighva .
minor change: the function(t) given in (19) would corre- S(t) = { (RC)"lerc, t<nT (36)

spond now to the inverse Fourier transform of 0, otherwise ’
1 where T_is the sampling interval. For such a sampling
U(w) = 1+ w2+ ...+ P (28)  schemeA > 0 regardless of . Figure 6 depict&sx andPsx

for the case off = 0.15 andRC = 0.05. A worst-case sce—
wherep is the order of the Sobolev space. nario is shown in Figure 7 for a workp (solid) and a worst
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- = w(t), analysis function

Figure 2: The problem. Giver(t) (solid), known only
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Figure 5: Shown is the maximum potential approximation

by its generalized samples, what is the best approximatiofTo" for the ZOH sampling scheme as a function of the sam-

for (x,w)? w(t) is an analytically known analysis functio

(dashed).
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Figure 3: ZOH sampling scheme. The generalized samples Figure 6: RC sampling scheme. Similar to Figure 3.
of x(t) give rise to its orthogonal projectiongx (solid)
enables one to find the minmax solutionlifn Psx (dashed)

enables one to find the minmax solutiorHa.
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corresponds to the maximum approximation error possibl
Shown are functions for a worst case scenaritir(solid)
and inH, (dashed) according to (17) and (27), respectively.

T
— worst-case, L,
- - worst-case, H,

H, (dashed) signals. Figure 8 depicts the maximum poten-
tial approximation error as a function of the sampling inter
val for both thel, and theH, cases, where the error values
are normalized byix||, , and|[X||,;,, respectively. Similar to

the ZOH example, the constrained minmax objective yields
smaller upper-bounds values than does the non-constrained
objective. This relatively large difference of upper-bdan
values originates from the fact that the sampling functions
are not smooth, giving rise to a non-smooth worst-case func-
tion in thel, setup.

6. CONCLUSIONS

The task of approximating representation coefficients of an
analog signal has been considered, being its generalined sa
ples the only available data. Relying on recent results, a
minmax approach was applied, while incorporating regular-
ity constraints on the original signal. This was done by re-
casting the minmax objective into a proper Hilbert space. An
@pper bound on the maximum potential representation error

&vas then given for the case of a single analysis function. The

ensued solution was shown to correspond with an orthogonal
projection onto a certain sampling space within the frame-



Figure 7: RC sampling scheme. Similar to Figure 4.
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Figure 8: RC sampling scheme. Similar to Figure 5.

work of a Sobolev space. The proposed approach exploits
the knowledge one has on the acquisition process, making

it applicable to digital signal processing systems havihe t
samples of an analog signal as their input data.
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