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ABSTRACT

Signal representation plays a major role in many DSP appli-
cations. In this paper we consider the task of calculating rep-
resentation coefficients of an analog signal, where the only
available data is its samples based on practical non-ideal ac-
quisition devices. We adopt a minmax approach and further
incorporate regularity constrains on the original continuous-
time signal. These constraints stem from the nature of ap-
plications where smooth signals serve as input data. The en-
sued solution is shown to consist of an orthogonal projec-
tion within a Sobolev space. Illustrating examples are given,
utilizing this constrained minmax approach. Our conclusion
is that this new approach to signal representation could im-
prove presently available systems, especially in non-ideal sit-
uations.

1. INTRODUCTION

Signal processing applications are concerned mainly with
digital information, although the origin of many sources of
information is analog; e.g. speech and audio, optics, radar,
sonar and biomedical applications, to name a few. Within the
context of signal representation, calculatingL2 inner prod-
ucts relies on discrete data. This is the case in Gabor analy-
sis and in the initialization of the discrete wavelet transform
[1, 2, 3, 4, 5]. A common approach to this task is to approxi-
mate each representation coefficient by a Riemann-type sum
[6]

d[k] = 〈x(t),wk(t)〉 ∼= T ·∑
n

x(nT ) ·wk(nT ). (1)

Here,x(t)∈ L2 is the input signal,{wk(t)}k is a set of analyt-
ically known analysis functions,d ∈ ℓ2 denotes the represen-
tation coefficients, andT is the sampling interval. An alter-
native minmax approximation scheme ford[k] was suggested
in [7], by interpreting the ideal sampling scheme as a linear
bounded operator in a Sobolev space. This minmax approxi-
mation exploits the analytically known functionwk(t) rather
than utilizing only partial information given by the samples
{wk(nT )} applied to (1).

Nevertheless, it remains to consider practical aspects of
the acquisition process. That is, practical sampling schemes
involve generalized rather than ideal sampling schemes.
Consider a signalx(t), its generalized samples are described
by means of consecutiveL2 inner products with a set of sam-
pling functions{sn(t)}n associated with the acquisition de-
vice [8, 9, 10, 11, 12]

c[n] = 〈x(t),sn(t)〉 . (2)

This sampling model is general enough to describe a large
set of practical acquisition devices. As an example, consider

an analog to digital converter which performs pre-filtering
prior to sampling. In such a setting the sampling functions
are{sn(t) = s(t −nT)}, wheres(t) is a mirrored version of
the corresponding impulse response [8].

A minmax approach to the approximation ofd was re-
cently introduced in [13] for a generalized sampling scheme.
Given the samples sequencec ∈ ℓ2, the maximum possible
error was minimized over all admissible signals, yielding an
analytic minmax solution.

However, there are applications in which not allL2 sig-
nals serve as a possible input. For instance, such prior in-
formation is available in biomedical applications where the
underlying mechanism that generates the measured signal is
physiologically understood (e.g. ECG, EEG, EMG). Moti-
vated by this observation, this work further extends the re-
sults of [13] by incorporating additional information, avail-
able a priori. In particular, we consider cases for which the
input signal is known to comply with a certain regularity cri-
terion and adopt the Sobolev space framework for solving a
minmax approximation problem.

2. MATHEMATICAL PRELIMINARIES

A Sobolev spaceH2 of order p = 1 is a Hilbert space con-
sisting of all finite energy functions on the real line having
a derivative of finite energy as well [14]. The corresponding
inner product is defined by

〈x(t),y(t)〉H2
= 〈x(t),y(t)〉L2

+
〈
x′(t),y′(t)

〉
L2

, (3)

wherex′(t) denotes the derivative ofx(t). In this paper all
inner products are withinL2, unless otherwise stated.

The operatorPA represents an orthogonal projection onto
a closed subspaceA. A⊥ is the orthogonal complement of
A. The Moore-Penrose pseudo inverse and the adjoint of a
bounded transformation are denoted by the † and∗ super-
scripts, respectively. The sampling space,S, and the analysis
space,W, are defined by

S = Span{sn(t)} (4)

W = Span{wn(t)}. (5)

It is assumed that both{sn(t)} and{wk(t)} constitute frames
for W ⊆ L2 and forS ⊆ L2, respectively, giving rise to the
following set transformation:

S : ℓ2 → L2 (6)
Sc = ∑

n
c[n] · sn(t),

with its adjoint being

S∗ : L2 → ℓ2 (7)



S∗x = ∑
n
〈x(t),sn(t)〉 · en.

The set{en} denotes the standard basis ofℓ2. A similar def-
inition applies toW . Adopting this notation, the generalized
samples ofx(t) are given byc = S∗x, and the representation
coefficients ofx(t) satisfyd = W ∗x. A shift-invariant space
is defined by its generator function,

S = Span{s(t −nT)}n , (8)

where T is the translation parameter. It is assumed that
the generator function and its translated versions constitute
a frame forS. The corresponding sampled autocorrelation
function and its Fourier transform are given by

rs,s[m] = 〈s(t),s(t −mT)〉 , (9)

Rs,s(ω) =
1
T ∑

m

∣∣∣∣S(ω +
2π
T

m)

∣∣∣∣
2

, (10)

whereS(ω) is the Fourier transform ofs(t). The support of
Rs,s(ω) is given by

Ωs,s = {ω ∈ [0,2π) |Rs,s(ω) 6= 0} . (11)

Similarly, one can define

rw,s[m] = 〈w(t),s(t −mT )〉 , (12)

Rw,s(ω) =
1
T ∑

m
W

(
ω +

2π
T

m

)
S

(
ω +

2π
T

m

)
,(13)

having the supportΩw,s within the frequency domain.

3. THE PROBLEM

We consider the problem of determining the representation
coefficientsd = W ∗x while havingc = S∗x, the generalized
samples of the signal, as the only available data. Adopting
a minmax approach, this approximation problem can be for-
mulated as follows:

argmin
d̂∈ℓ2

{
max

c=S∗x, ‖x‖≤L

∥∥W ∗x− d̂
∥∥2

ℓ2

}
. (14)

The constantL is arbitrarily chosen. It serves as an upper
bound on the norm of the signalx, ensuring a bounded ap-
proximation error. It has been shown in [13] that the unique
solution of (14) is given by

d̂ = W ∗PSx = W ∗S(S∗S)†c. (15)

That is, applyingW ∗ to the orthogonal projection ofx onto
S rather than tox. Also, the constantL has no effect on the
ensued solution. It does determine, however, the worst-case
scenario yielding the maximum possible approximation er-
ror. For example, when considering a single analysis func-
tion, w, the minmax solution gives rise to a vector interpre-
tation shown in Figure 1. In such a case, approximating
W ∗x = 〈x,w〉 is equivalent to calculating〈PSx,PSw〉 and the
approximation error is upper-bounded by

∣∣d− d̂
∣∣ = |〈P

S⊥x,w〉|

≤
√

L2−‖PSx‖2 · ‖P
S⊥w‖ . (16)

S

w

PSx

x

PSw

Figure 1: Vector interpretation for the minmax approxima-
tion problem of a single representation coefficient. Here,PSx,
w andPSw are analytically known.

A possible input achieving this upper-bound is

x = PSx +

√
L2−‖PSx‖2

‖P
S⊥w‖ ·P

S⊥w. (17)

The problem we address involves a minmax approxima-
tion scheme ford, while imposing a regularity condition of
the form ofx ∈ H2:

argmin
d̂∈ℓ2

{
max

c=S∗x, ‖x‖H2
≤L

∥∥W ∗x− d̂
∥∥2

ℓ2

}
. (18)

4. MINMAX APPROXIMATION

The objective (18) involves two forms of inner products, one
being the Sobolev norm evident in the‖x‖H2

≤ L prior and
the other being theL2 inner product evident in the set trans-
formationsW ∗ andS∗. In order to solve this minmax objec-
tive in the manner applied to (14) in [13], one may recast (18)
to include inner products of the same type.

Let U : H2 → L2 be the bounded operator satisfying

U∗ : L2 → H2

U∗w = w(t)∗ u(t) = w(t)∗ 1
2

e−|t|. (19)

This description of the adjoint stems from expressing anH2
inner product in the frequency domain:

〈x, w̃〉H2
=

1
2π

∫
X(ω) ·W̃(ω) · (1+ ω2)dω

=
1

2π

∫
X(ω) ·W(ω)dω

= 〈x,w〉L2
, (20)

resulting in W̃ (ω) = W (ω) · U(ω), where U(ω) is the
Fourier transform ofu(t), i.e.,

U(ω) =
1

1+ ω2 . (21)

This in turn, implies that the set transformW ∗x involving L2
inner products can be alternatively described by means of a
set transform ofH2 inner products, denoted bỹW ∗, where



w̃n(t) = wn(t) ∗ u(t). The same holds for the set transform
S∗. Eq. (18) can now be written as

argmin
d̂∈ℓ2

{
max

c=S̃∗x, ‖x‖H2
≤L

∥∥∥W̃ ∗x− d̂
∥∥∥

2

ℓ2

}
, (22)

whereS̃∗,W̃ ∗ are operators with a domain inH2. Those op-
erators are bounded. For example, let 0< A ≤ B < ∞ be the
frame bounds ofS. That is, for anyx ∈ S

A · ‖x‖2
L2

≤ ∑
k

∣∣∣〈x,sk〉L2

∣∣∣
2
≤ B · ‖x‖2

L2
. (23)

A proper choice for the upper frame bound ofS̃ would be
B̃ = B. However, it is not guaranteed that the corresponding
lower frame bound,̃A, is strictly positive. This property of
Ã > 0 is important. IfÃ = 0 then the operator̃S∗S̃ has no
closed range, thus no bounded pseudo-inverse operator can
be defined for it [15]. This in turn, precludes the possibility
of reconstructingP̃

S
x from the samplesc.

Nevertheless, a sufficient condition can be derived for the
shift-invariant case. LetRs,s̃(K;ω) be the partial sum

Rs,s̃(K;ω) =
1
T

K

∑
m=−K

∣∣∣∣S
(

ω +
2π
T

m

)∣∣∣∣
2

U

(
ω +

2π
T

m

)
.

(24)
It can then be shown that ifRs,s̃(K;ω) converges uniformly
to Rs,s̃(ω) on Ωs,s thenÃ > 0. In such a case, the minmax
solution of (22) is given by

d̂ = W̃ ∗P̃
S
x = W̃ ∗S̃(S̃∗S̃)†c, (25)

whereS̃ is the space spanned by{sn(t)∗ u(t)} and all opera-
tors are within the Sobolev space.

The approximation error for considering a single analysis
function is then given by

∣∣d− d̂
∣∣ =

∣∣∣W̃ ∗P̃
S⊥x

∣∣∣

=
∣∣∣
〈
P̃
S⊥x, w̃

〉
H2

∣∣∣

≤
∥∥P̃

S⊥x
∥∥

H2
·
∥∥P̃

S⊥w̃
∥∥

H2

≤
√

L2−
∥∥P̃

S
x
∥∥2

H2
·
∥∥P̃

S⊥w̃
∥∥

H2
, (26)

and a possible input signal achieving this upper-bound is

x = P̃
S
x +

√
L2−

∥∥P̃
S
x
∥∥2

H2∥∥P̃
S⊥w̃

∥∥
H2

· P̃
S⊥w̃. (27)

It is possible to extend these derivations to Sobolev
spaces of arbitrary orders, corresponding to the degree of
regularization (smoothness). All the results still apply with a
minor change: the functionu(t) given in (19) would corre-
spond now to the inverse Fourier transform of

U(ω) =
1

1+ ω2+ . . .+ ω2p , (28)

wherep is the order of the Sobolev space.

For the shift-invariant case of

S = Span{s(t −nT )}, (29)

W = Span{w(t −nT )}, (30)

it can be shown that the minmax solution of (15) can be ob-
tained by filtering the generalized samplesc with a digital
filter [16] having a Fourier transform of

G(ω) =

{
Rw,s(ω)
Rs,s(ω) , ω ∈ Ωs,s

0, ω /∈ Ωs,s
. (31)

This form of solution is applicable to the Sobolev case, too:

G(ω) =

{
Rw,s̃(ω)
Rs,s̃(ω) , ω ∈ Ωs,s

0, ω /∈ Ωs,s
. (32)

5. EXAMPLES

5.1 Example 1

We consider the case of approximating a single representa-
tion coefficient obtained by calculating anL2 inner product
with a modulated version of a normalized Gaussian

w(t) =
1

4
√

π
e−t2/2cos(2πt). (33)

Denotingβ 1(t) to be the B-spline of order one, the input
signal is

x(t) = β 1(t) ·cos(2πt). (34)

The generalized samples correspond to the ZOH scheme

sn(t) =

{
1/∆, t ∈ [nT −∆,nT ]
0, otherwise , (35)

whereT is the sampling interval. Figure 2 depictsx(t) and
the analysis functionw(t). The uniform convergence crite-
rion of (24) holds surely forT > ∆, guaranteeing̃A > 0. Fig-
ure 3 then depictsPSx andP

S̃
x for the case ofT = 0.15,∆ =

0.05. Having known the generalized samples ofx only rather
than the signal itself, one may consider a worst possible input
in L2 (17) and inH2 (27). Both signals are consistent with
the known samples and are depicted in Figure 4. Figure 5 de-
picts the maximum potential approximation error as a func-
tion of the sampling interval for both theL2 (dots) and the
H2 (x-marks) cases, where the error values are normalized by
‖x‖L2

and‖x‖H2
, respectively. As expected, the constrained

minmax objective yields smaller upper-bounds values than
does the non-constrained objective. This is also reflected in
Figure 3 whereP̃

S
x is much similar tox thanPSx.

5.2 Example 2

Another sampling model to be considered is the RC circuit

sn(t) =

{
(RC)−1e

t−nT
RC , t ≤ nT

0, otherwise
, (36)

where T is the sampling interval. For such a sampling
schemeÃ > 0 regardless ofT . Figure 6 depictsPSx andP̃

S
x

for the case ofT = 0.15 andRC = 0.05. A worst-case sce-
nario is shown in Figure 7 for a worstL2 (solid) and a worst
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Figure 2: The problem. Givenx(t) (solid), known only
by its generalized samples, what is the best approximation
for 〈x,w〉? w(t) is an analytically known analysis function
(dashed).
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Figure 3: ZOH sampling scheme. The generalized samples
of x(t) give rise to its orthogonal projections.PSx (solid)
enables one to find the minmax solution inL2. P̃

S
x (dashed)

enables one to find the minmax solution inH2.
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Figure 4: ZOH sampling scheme. The worst case scenario
corresponds to the maximum approximation error possible.
Shown are functions for a worst case scenario inL2 (solid)
and inH2 (dashed) according to (17) and (27), respectively.
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Figure 5: Shown is the maximum potential approximation
error for the ZOH sampling scheme as a function of the sam-
pling interval for both theL2 (dots) andH2 (x-marks) cases.
The values are normalized by‖x‖L2

and‖x‖H2
, respectively.
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Figure 6: RC sampling scheme. Similar to Figure 3.

H2 (dashed) signals. Figure 8 depicts the maximum poten-
tial approximation error as a function of the sampling inter-
val for both theL2 and theH2 cases, where the error values
are normalized by‖x‖L2

and‖x‖H2
, respectively. Similar to

the ZOH example, the constrained minmax objective yields
smaller upper-bounds values than does the non-constrained
objective. This relatively large difference of upper-bounds
values originates from the fact that the sampling functions
are not smooth, giving rise to a non-smooth worst-case func-
tion in theL2 setup.

6. CONCLUSIONS

The task of approximating representation coefficients of an
analog signal has been considered, being its generalized sam-
ples the only available data. Relying on recent results, a
minmax approach was applied, while incorporating regular-
ity constraints on the original signal. This was done by re-
casting the minmax objective into a proper Hilbert space. An
upper bound on the maximum potential representation error
was then given for the case of a single analysis function. The
ensued solution was shown to correspond with an orthogonal
projection onto a certain sampling space within the frame-
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Figure 7: RC sampling scheme. Similar to Figure 4.
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Figure 8: RC sampling scheme. Similar to Figure 5.

work of a Sobolev space. The proposed approach exploits
the knowledge one has on the acquisition process, making
it applicable to digital signal processing systems having the
samples of an analog signal as their input data.

Acknowledgment

This research was supported in part by the HASSIP Research
Program HPRN-CT-2002-00285 of the European Commis-
sion; by the Ollendorff Minerva Center; and by the Israel Sci-
ence Foundation under grant no. 536/04. Minerva is funded
through the BMBF.

REFERENCES

[1] I. Daubechies,Ten Lectures on Wavelets. SIAM,
Philadelphia, 1992.

[2] H. G. Feichtinger and T. Strohmer, Eds.,Advances in
Gabor Analysis. Boston, MA: Birkhäuser, 2003.
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