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ABSTRACT

Sparse representations are being used to solve problems pre-
viously thought insolvable. For example, we can separate
more sources than sensors using an appropriate transforma-
tion of the mixtures into a domain where the sources are
sparse. But what do we mean by sparse? What attributes
should a sparse measure have? And how can we use this
sparsity to separate sources? We investigate these questions
and, as a result, conclude that sparse sources are separated
sources, as long as you use the correct measure.

1. INTRODUCTION

Sparse signal representations lead to efficient and robust
methods for compression, detection, sensing, denoising, and
signal separation [1-3]. However, there is no standard prac-
tical measure of sparsity that is universally accepted. In a
strict sense, sparsity means that most signal components
are zero. In a practical sense, sparsity means that most sig-
nal components are relatively small. Indeed, it is probably
appropriate that the definition of sparsity be application
specific. In this paper we examine sparsity measures for
source separation algorithms.

Sparsity has garnered much interest in the blind source
separation community. In this domain, the goal is, given
M-by-L matrix Y of the form

Y =AX+N 1)

determine M-by-N matrix A and N-by-L matrix X which
minimize

1Y — AX||F + M| X||c + ul|All# (2)

for matrix cost functions (||||#, ||-llc, I|-[|#) and regulariza-
tion parameters (A, ). The interpretation for source sepa-
ration problems is that Y is L observations of M mixtures,
A is a mixing matrix, X is L observations of N sources
and M-by-L matrix N is noise. Thus the goal is given the
mixtures, to determine the sources. When M < N, the
system of equations is underdetermined and the purpose of
the matrix cost functions and regularization parameters is
to select one solution from the infinite number of possible
solutions. The sources (and/or mixing matrix) have certain
desirable properties that we know a priori and this helps us
to select one of the solutions. For example, we often prefer
solutions with sparse representations because the original
signals themselves have sparse representations.

For many signal processing applications, we do not care
about the sparsity of A and thus p = 0. We do care
about the sparsity of X, however, and setting A > 0,
IX]|lc is used to force the solution to be sparse. Often,
|X|le¢ = &, G(x;) where x; is the ith column of X and
G(x) measures the sparseness of vector x. Typically, G(x)
is of the form,

G(x) = g(x(5)) 3)
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where x(j), j = 1,...,N are the N components of vector
x. So rather than enforce sparsity for each measurement
index across all sources, the entire source matrix is treated
as an ensemble of coefficients without regard to their or-
dering and the ensemble is forced to be sparse. Thus, for
notational simplicity in order to avoid double summations,
we will consider the vector x = {x(1),x(2),...,x(NL)}"
where

-1
x(k) =X;,; fori =14((k—1)mod L) and j = 1+ \‘kTJ
(4)
so that x is simply the stacking of the columns of X into
one column vector. The most commonly studied sparse
measures is the /¥ norm-like measure,

X1y = (32 ) )

where 0 < p < 1. When p = 1, ¢? is a norm. When
0<p<1,/?isaquasi-norm. When p =0,

IXllo = #{4,x(5) # 0} (6)

which simply counts the number of non-zero components
and ¢° is not even a quasi-norm as it is not linear with
respect to scalar multiplication. There are a myriad of other
possible measures of sparsity introduced in the literature,
these are discussed and compared in Section 3.

The seminal paper [4] introduced to a wider community
the concept of non-negative matrix factorization for finding
component ‘parts’ (or sources) given their mixtures. The
technique is often applied to repetitive speech or music mix-
tures by transforming each mixture into the time-frequency
domain and then taking the magnitude of each component.
If only one mixture is available, the columns of the mixing
matrix correspond to frequencies which are co-active in the
mixtures and M is the number of frequencies, L is the num-
ber of time windows in the time-frequency transform, and
N is the number of objects. The co-active frequency vec-
tors make up the atoms/objects present in the source, and
the source matrix X is then a train of pulses representing
the times at which each atom occurs in the mixture. It is
assumed that the objects occur only occasionally and thus
the sources activations are sparse [5].

One rarely cited caveat with this approach is that the
mixing model (1) assumes additive mixing and in this case is
only valid if the original source components do not overlap.
[6] asked the question ‘when does NMF work?’ and ob-
tained a similar result, in a sense. Our problem is that the
model NMF is based on is not accurate because the phase
terms do not necessarily align. When Y is actually based
on a complex-valued matrix and the magnitude is used in
order to apply NMF, the components of Y are made up
of linear combinations of a complex-valued mixing matrix.
So each component y is made up of a sum of components
a1+ ...4+ar, but |y| =|a1 + ...+ ar| only if the phases of
all the a; are identical, or, if at most one a; is non-zero. So
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NMF is appropriate in this setting only if the sources have
disjoint support.

The non-overlapping requirement of the time-frequency
representations of speech/music required by NMF is the
basis for several source separation techniques [7-9]. The
DUET technique [9] relies on W-Disjoint Orthogonality
which is the requirement that at most one source is active at
any given time-frequency point. Due to the time-frequency
uncertainty principle, this requirement is not satisfied for
interesting signals such as speech and music, although it
could be satisfied for time-disjoint or frequency-disjoint sig-
nals, provided the appropriate choice of window length and
window overlap. W-disjoint orthogonality which was based
on time-frequency representations can easily be generalized
to any arbitrary representation and the concept is a power
weighted measure of how little the supports of a group of
signals overlap. Note that disjointness is what is required
by NMF and by the DUET-like techniques. The reason why
there is so much focus on sparsity is that, sparsity coupled
with independence of occurrence of components leads to a
low probability of overlap and results in near disjointness.

The paper organization is as follows. In Section 2 a gen-
eralization of the W-disjoint orthogonality measure is dis-
cussed and we feel that this measure, disjoint orthogonality
captures the essence of what is required of signal transfor-
mation such that demixing via binary masking is possible.
In this section, also, the disjoint orthogonality of speech
mixtures is measured and the optimal time-frequency win-
dow length from a disjoint orthogonality perspective is de-
termined. In Section 3 we list and compare a number of
sparsity measures that are common in the literature. We
then measure the sparseness of time-frequency transforma-
tions of speech for various window lengths and compare the
results to those from the disjoint orthogonality tests to see
if any of the sparsity measures can be used to indicate the
level of disjoint orthogonality for speech. For these tests, it
is shown that the Kurtosis and Gini Index sparsity measures
are well matched to disjoint orthogonality.

2. DISJOINT ORTHOGONALITY

In this section we trivially generalize the concept of W-
disjoint orthogonality so that it can be applied to signals
in any representation. The presentation follows that in [9].
We call two vectors x and y disjoint orthogonal if their
supports are disjoint,

x(j)y(j) =0, Vj=1,...,L. (7)

Here the signals can be in any arbitrary domain (e.g., time
domain, time-frequency domain, or frequency domain).
This condition is a more stringent requirement than simple
orthogonality which would require that the (expected value
of the) inner product of the two signals to be zero. For
example, two independent white noise signals are orthogo-
nal, but will not be disjoint orthogonal. This condition is
a mathematical idealization of the condition that usually
at most one source has significant energy at a given index
and allows for the perfect separation of sources from one
mixture. Consider the mixture y of N sources x;,

N
y= Z X; (8)
1=1
and the masking vector m;,

mi (j) = { L xi(j) #0 (9)

0 otherwise,

for 5 =1,...,L so that m; is the indicator function for the
support of x;. Knowledge of the masking functions m; is
knowledge of the original sources if the sources are disjoint
orthogonal as,

X, =m; ®y Vi=1,...,N, (10)

where ® is element-wise multiplication (the Hadamard
product). The disjoint orthogonality assumption is not
strictly satisfied for our signals of interest. In order to mea-
sure to what degree the above condition is approximately
satisfied, we consider the following which generalizes the
approximate W-DO measure discussed in [9, 10]. In order
to measure approximate disjoint orthogonality for a given
mask, we combine two important performance criteria: (1)
how well the mask preserves the source of interest, and
(2) how well the mask suppresses the interfering sources.
These two criteria, the preserved-signal ratio (PSR) and
the signal-to-interference ratio (SIR), are defined below.

First, given a mask m such that 0 < m(j) <1 for all 7,
we define PSR, the PSR of the mask m, as

Im @ 3

|
PSRm := 11
2 ()

which is the portion of energy of the ith source remaining
after demixing using the mask. Note that PSRm < 1 with
PSRm = 1 only if m;(j) =1 = m(j) = 1, Vj. Now, we

define
N
Zi = Z Xk (12)
k=1
ki

so that z; is the summation of the sources interfering with
the ith source. Then, we define the signal-to-interference
ratio of mask m

_ m @ x|l

SIRm i= —n———= 13
Iz (13)

which is the output signal-to-interference ratio after using
the mask to demix to the ith source.

‘We now combine the PSR and SIR., into one measure
of approximate disjoint orthogonality. We propose the nor-
malized difference between the signal energy maintained in
masking and the interference energy maintained in mask-
ing as a measure of the approximate disjoint orthogonality
associated with a particular mask:

[m ® (|3 — |[Im @ 2|3
lI%:13

=  PSRm — PSRum/SIRum. (15)

D

(14)

For signals which are disjoint orthogonal, using the mask
m; defined in (9), we note that PSRm; = 1, SIRm; = oo,
and Dm; = 1. This is the maximum obtainable disjoint
orthogonality value because Dm < 1 for all m such that
0 < m(j) < 1. Moreover, for any m, Dy, = 1 implies that
PSRm = 1, SIRm = oo, and that (7) is satisfied. That
is, Dm = 1 implies that the signals are disjoint orthogonal
and that mask m perfectly separates the ith source from the
mixture. In order for a mask to have Dm ~ 1, i.e., good
demixing performance, it must simultaneously preserve the
energy of the signal of interest while suppressing the energy
of the interference. The failure of a mask to accomplish
either of the goals can result in a small, even negative, value
of D. For example, Dy, = 0 implies either that PSRm = 0
(the mask kills all the energy of the source of interest) or
that SIRm = 1 (the mask results in equal energy for source
and interference). Masks with SIRm < 1 have associated
Dm <0.

If it is desirable that the disjoint orthogonal measure
be bounded between 0 and 1, then we suggest the following
mapping,

Ay = 2771 (16)

which has the desirable properties that:

1. dm = 1 implies that x; is disjoint orthogonal with all
interfering signals,
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2. dm = 1/2 implies that application of mask m results in a
demixture with equal source of interest and interference
energies, and

3. dm = 0 implies that the mask m results in a demixture
with SIRm — 0.

Which mask should we use when (7) is not satisfied?

From (15), it follows that

ko 1, Xi ]

mi (7) _{ 0, }Xigjg

maximizes Dy, as it turns ‘on’ signal coefficients where the

source of interest dominates the interference and turns ‘off’

the remaining coefficients. The terms of equal magnitude

in (17) we have arbitrarily turned ‘off’, but including them

or excluding them makes no difference to the disjoint or-

thogonal measure as the terms cancel. The mask m] is

the optimal mask for demixing from a disjoint orthogonal
performance standpoint.

20 I

2.1 Disjoint Orthogonality of Speech

‘We present results in Figure 1 which measure the disjoint
orthogonality for pairwise (and 3-way and 4-way) mixing
as a function of window size. For the tests, two (or three
or four) 16kHz sampled speech files were selected at ran-
dom from the TIMIT database and each file transformed
into the time-frequency domain using a Hamming window
of size {2°,2',...,2'%}. The magnitude of the coefficients of
a target source were compared to the sum of the remaining
sources to generate the the mask m;. Using the mask, dm
was calculated. Over 150 mixtures were generated and the
results averaged to form each data point shown in the fig-
ure. In all three cases the Hamming window size of size 1024
produced the representation that was the most disjoint or-
thogonal. A similar conclusion regarding the optimal time-
frequency resolution of a window for speech separation was
arrived at in [7]. Note that even when the window size is
1 (i.e., time domain), the mixtures still exhibit a high level
of disjoint orthogonality. This fact was exploited by those
methods that used the time-disjoint nature of speech [11-
14]. Figure 1 clearly shows the advantage of moving from
the time domain to the time-frequency domain: the speech
signals are more disjoint in the time-frequency domain pro-
vided the window size is sufficiently large. Choosing the
window size too large, however, results in reduced disjoint
orthogonality.
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Figure 1: Disjoint orthogonality for time-frequency repre-
sentations of N = 2,3, 4 speech source mixing as a function
of window size used in the time-frequency transformation.
Speech is most disjoint orthogonal when a window of 1024
samples is used, corresponding to 64 ms length.

3. SPARSE MEASURES

In this section we examine and compare the common sparse
measures found in the literature and see which of them
yield desirable results when measuring the sparsity of time-
frequency representations of speech. The desirable at-
tribute in this case is that the sparseness of the signal has
a similar shape to the disjoint orthogonality curve in Fig-
ure 1. It is reasonable to desire that our sparse measure
indicates correctly which window size results in the best
demixing performance.

Many commonly used sparse measures of the form G(x)
discussed in the Introduction are investigated and compared
in [2]. These measures, and others, are listed and defined
in Table 1. As discussed before, the £° cost is a ‘direct’
measure of sparsity as it counts the number of non-zero
elements of x. When noise is present, 0 is often used as
the noise results in very few components being truly zero,
despite the fact the representation is still sparse in an intu-
itive sense. As optimization using £° is difficult because the
gradient yields no information, ¢ is often used in its place,
with p < 1. tanh, ; is sometimes used in place of £, p < 1,
because it is limited to the range (0,1) and better models
£° and ¢0 in this respect. The fact that %, p < 1 and
tanh, ; are concave enforces sparsity. That is, a representa-
tion is more sparse if we have one large component, rather
than dividing up the large component into two smaller ones.
The log measure is concave outside some range, but convex
near the origin, which in effect spreads the small compo-
nents. k4 is the kurtosis which measures the peakedness
of a distribution. The last measure considered in [2] is ug
which measures the smallest range which contains are cer-
tain percentage of the data. For many of these measures,
sometimes the data vector x is replaced with a whitened
version Xwhite- Plots of the individual measures of sparse-
ness that have a functional form are shown in Figure 2.
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Figure 2: Component sparsity contributions as a function
of component amplitude.

[15] uses several additional measures of sparsity for op-
timal basis selection. They generalize the ¥ measure to in-
clude negative values of p, which we will label ¥ . [15] also
considers the Gaussian entropy diversity measure, Ha(x),
and the Shannon entropy diversity measure, Hgs(x). These
three sparsity measures are also listed in Table 1. [16] con-
siders the additional choices for x(5), %X(j) = |x(j)|, which
we label Hj.

Our favorite measure of sparsity is the Gini index as
we feel it captures several desirable characteristics that a
sparsity measure should have. These characteristics are
described here with regard to inequity of wealth distribu-
tion as that was the original application of the Gini index
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° #{J,x(j) # 0}
[ #{J, [x(4)| = €}
¢ (=, x6))
2 (=, xG)F) " 0<p <
tanha 5, tanh (Jax(5)|")
log >, log (1+[x()F)
P >, <O
* (=, x6)2)>
min; ;(x({i}) — x({j})) s.t. 7+ >0
Ug for ordered data,
x({1}) < x({2}) <--- <x({L})
[ Zj,x(j);to x()I", p<0
o ~ S W< G)T -
Hy | 3, %) In[%()] where x(j) = 501
Hg — 3, %) In[% () where x(j) = [x(j)]
Gini see text

Table 1: Measuring sparsity.

[17, 22].

e (Dalton’s 1st Law) Robin Hood decreases sparsity.
Stealing from the rich and giving to the poor, decreases
the inequity of wealth distribution (assuming you don’t
make the rich poor and the poor rich).

e (Dalton’s modified 2nd Law) Sparsity is scale invariant.
Multiplying wealth by a constant factor does not alter
the effective wealth distribution.

e (Dalton’s 3rd Law) Adding a constant decreases spar-
sity. Give everyone a trillion dollars and the small dif-
ferences in overall wealth are then negligible.

e (Dalton’s 4th Law) Sparsity is invariant under cloning.
If you have a twin population with identical wealth dis-
tribution, the sparsity of wealth in one population is the
same for the combination of the two.

o (Proposed in [22]) Bill Gates increases sparsity. As one
individual becomes infinitely wealthy, the wealth distri-
bution becomes as sparse as possible.

e (Proposed in [22]) Babies increase sparsity. Adding in-
dividuals with zero wealth to a population increases the
sparseness of the distribution of wealth.

With these in mind, we define the Gini index. We order
the coefficient data from smallest to largest, |x({1})] <
x(121)] < -+ < [x({L})], where {1},{2},....{L} are the
indices of the sorting operation. The Lorenz curve is used
to measure wealth distribution in society and was originally
defined in [18]. We parameterize this curve with parameter
p and introduce here the parameterized-Lorenz curve A,
which is the function with support (0, 1), that is piecewise
linear with L + 1 points defined,

A, (%) — 1;|x({j})|”, fori=0,...,L. (18)

11

Note, Ap(0) = 0 and Ap(1) = 1. With p = 2, each point
on the Lorenz curve (z = ag,y = bo) has the interpretation
that 100 X ao percent of the sorted signal coefficients cap-
tures 100 X by percent of the total signal power. Thus, the
slower the curve rises to 1, the fewer coefficients are needed
to accurately represent the signal. If all coefficients were
equal, which we could argue is the least sparse scenario,
the curve would rise at a 45 degree angle. Thus, the area
between the Lorenz curve and the 45 degree line will in-
crease as the sparsity of the signal increases. Indeed, twice
the area of this region was originally proposed (in English)
in 1921 in [19] as a measure of the inequality of wealth

distribution; ‘Inequity in distribution’ is another way of de-
scribing sparsity. The area beneath the Lorenz curve is,

Ap(x) = ;Vﬁj (v (") +n () a9

and twice the area between the Lorenz curve and the 45
degree, which is known as the Gini index, is then simply,

Ginip(x) = 1 — 24,(x). (20)

The Lorenz curve and its potential use in sparse basis selec-
tion is discussed in [16, 20] but the Gini index is not men-
tioned as a potential sparse measure. In [22] the Gini index
was used a a measure of sparsity to determine if speech was
more sparse in time-scale or time-frequency.

Figure 3 shows the Lorenz curve and Gini index for
four simple vectors. Note that the distribution in which all
individuals have equal wealth is the least sparse and the
distribution in which all the wealth is concentrated in one
individual is the most sparse.

Figure 3: Lorenz curve for [0 1 2 10 10] (top left), [0 00 0 1]
(top right), [1 11 1 1] (bottom left), and [0 1 2 3 4] (bottom
right). The Gini index is twice the lightly shaded/yellow
area. The Gini indexes are 0.5043, 0.8, 0.0, and 0.4, respec-
tively.

The Gini index has many nice properties:

e A representation with equal wealth distribution has
Ginip(x) = 0, no sparsity.

e (Dalton’s 1st & 2nd Law) Gini,(x) satisfies the Robin
Hood Principle and is scale invariant.

e (Dalton’s 3rd Law) Giniy(x 4+ k) — 0 as scaler k — oo .

e (Dalton’s 4th Law) Ginip ({z1,z2,...2n~}) is identical
to
Ginip ({1)1,1‘1,%2,132, .. .,xN,xN}).

e (Proposal 1) As one component of a representation goes
to infinity, Gini,(x) — 1.

e (Proposal 2) If an infinite number of zero components
are added to a vector, Ginip(x) — 1.

3.1 The Sparseness of Speech

Our goal is to determine which of the above discussed spar-
sity measures can be used as a potential indicator for the
level of disjoint orthogonality. In order to gain some insight
into this question, we measured the sparseness of speech in
the time-frequency domain using the ¢°, ¢*, ¢°-1 tanhy 1,
log, ka, ¢X, Hg, Hs, H%, and Giniz measures for various
window lengths, as before. Examination of the sparseness
as a function of window size revealed that the £°, /1, Hg,
and Hg measures all indicated that speech was sparser for



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

smaller windows with a clear peak in the sparseness for
window sizes of 2! or 22. On the other hand, the ¢, ¢°-!,
tanhy 1, log, and Hg measures all indicated a clear peak for
larger windows with a clear peak in the sparseness for win-
dow sizes of 2'2 to 2!4. Plots of the sparseness normalized
so that the maximum average sparseness is unity for the
Hg and ¢* are shown in Figure 4. The two measures that
did match well with the disjoint orthogonality results, the
Kurtosis (k4) and Gini Index with parameter p = 2 (Ginis),
are also shown in Figure 4. Both have broad peaks for a
window size of 20,

parsiy
s

5
log, vindow size log, window size

1 -

5 10 1 o 5 0 1
log, window size. log, window size

Figure 4: The He (upper left) and £* (upper right) sparsity
measures applied to speech signals in the time-frequency
domain as a function of window size. These graphs, which
are indicative of the majority of the measures tested, do
not match well to the results for the disjoint orthogonality
tests. The Kurtosis (k4) (lower left) and Gini Index with
parameter p = 2 (Giniz) (lower right) sparsity measures
applied to speech signals in the time-frequency domain as
a function of window size. Both of this measures behave
similarly to the disjoint orthogonality results.

4. CONCLUSIONS

Sparsity is important for source separation of speech mix-
tures in the application of NMF and DUET-like techniques
only because what is really required is disjointness. Sparsity
coupled with independence of occurrence of the coefficients
results in a low probability that coefficients from different
sources/object overlap, and this leads to approximate dis-
jointness. We argued in this paper that what we should
be interested in for source separation applications such as
speech and music is not sparse representations, but rather
disjoint representations. We defined a measure, disjoint or-
thogonality, of how approximately disjoint a class of signals
are for the purposes of measuring potential demixing per-
formance via binary masking. We also examined common
sparsity measures and evaluated which ones have the poten-
tial to indicate when a representation is optimally disjoint
orthogonal. The results indicate that both the Kurtosis and
the Gini Index are reasonable indicators for when sources
are disjoint, and thus separable.
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