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ABSTRACT

We consider the form of a physically motivated simple one
path time-varying channel in the time-varying impulse re-
sponse, time-frequency characterization and time-scale char-
acterization settings. Our goal is to determine which setting
allows for the most efficient (i.e., sparse) discrete channel
representation as a function of input signal bandwidth. We
measure how well the input-output relationship is captured
by the discrete coefficients for modulated Gaussian pulse in-
put signals and examine how the performance of the discrete
channel models varies with the bandwidth of the input sig-
nal.

1. OVERVIEW

Which discrete time-varying channel model is the most ef-
ficient? Several channel models exist, but which of them
captures most efficiently the action of the channel? We con-
sider in this work three models: a time domain character-
ization (i.e., the time-varying impulse response), a time-
frequency characterization, and a time-scale characteriza-
tion. The time-domain characterization represents the chan-
nel output as a series of weighted discrete delayed versions
of the input signal, the time-frequency characterization rep-
resents the channel output as a series of weighted discrete
delayed and frequency shifted versions of the input signal,
and the time-scale characterization represents the channel
output as a series of weighted discrete delayed and dilated
versions of the input signal. Given that practical receivers
must model the channel using a limited number of channel
coefficients, we examine how accurately the channel is cap-
tured for the three models as a function of the number of
coefficients available.

In continuous time, the three models considered here are
time-domain,

y(t) = /h(t,r)m(t —7)dr, (1)

time-frequency domain,

y(t) = // S0, m)x(t — T)ejQ"ethdO, (2)
and time-scale domain,

t—>b

y(t) ://[,(a,b,t)\/l';x( o

The three models each have discrete expansions. They are
time-domain,

) dadb. (3)

y(t) =Y hu(t) (t - i) (4)

where

sin

W),

Bn(t) = /h(t7T) 75;{/ (T _ n
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time-frequency domain,
& n j2Tm
y(t) =33 Smnaz (t - W) 2T (6)

where

S = // 5(0,7)sinc (n — 7W) sinc (m — 6T) e 2™ ™1 dpdr;
(7

and time-scale domain,

i) = 3 Emnllly (L=t 0

where

A . Ina\ . b
Lmn(t) = // L(a,b,t)sinc (m L ao) sinc (n — aT)o> dadb.

(9)
In the above models, W, T, ao, by are related to channel and
signal characteristics [1-4]. Each of these three models and
their discrete expansions have been studied, in some cases,
for nearly 50 years [1-10]. In each case, the channel is cap-
tured by a set of coefficients (hn (t), Sm.n, and Lo ().

In a previous paper [10], we evaluated the efficiency of
the channel representation by looking at how well the chan-
nel was reconstructed when only a limited number of channel
coefficients were available. In this paper, we take a different
approach to measuring the efficiency, concentrating on how
well the channel coefficients reconstruct a Gaussian pulse.
The channel we consider is one where a transmitter and re-
ceiver move with constant radial velocity relative to one an-
other. For ease of presentation, we consider in this work
exclusively that the signal is an audio signal so that we may
ignore relativistic effects. This simplifies the derivation of
the Doppler effect, although the resulting channel for elec-
tromagnetic waves has a similar, but not identical, form. The
results presented here can be extended to apply to wireless
signals in a straightforward manner.

The paper is organized as follows. In Section 2 we de-
rive the physically motivated one path Doppler effect non-
relativistic channel. In Section 3 we derive the continuous
time characterizations of this channel. In Section 4 we derive
the channel coefficients for the simple channel. In Section 5
we analyze the efficiency of the channel representations as a
function of the number of channel coefficients for the three
discrete models when reconstructing a Gaussian pulse and
analyze the results specifically as a function of the band-
width of the pulse.

2. THE CLASSIC DOPPLER EFFECT

The treatment in this section is the classic treatment of the
Doppler effect, as opposed to relativistic. Consider a source,
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z(t) located at the origin moving to the right with velocity
vz. The position of the source is described by,

Pz (t) = vat (10)

Consider a receiver, y(t) located initially at a distance do
from the origin along the positive x-axis moving to the right
with velocity vy. The position of the receiver is described
by,

py(t) = vyt + do (11)

We define 7 to be the time delay such that the source
signal traveling with speed co emitted at time ¢ — 7 reaches
the receiver at time ¢. Clearly, the distance that the signal
travels must equal the difference between the current receiver
position and position of the source 7 seconds ago. This can
be described,

ot = |py(t) = pa(t —7)] (12)
= |uyt +do — vzx(t —7)|. (13)
Solving for T,
Case 1:  py(t) >p.(t—71), 7 = m’(m)
Co — Vg
(—vy +vg)t — d
2: =(t —17), = 1
Case py(t) <pa(t—7), T o 5)

Substituting these back into (13) we obtain (assuming |vg| <
cO)a

(vy — va)t + do

Case 11 py(t) > po(t), 7 =-———""—, (16)
Co — Vg
(—vy + va)t — do
2: t z(T), =— (1
Case py(t) <pz(t), T o 1 0 (17)

Assuming that the amplitude decays with the reciprocal of
distance, the input output mapping is,

y(t) = w(t—7) (18)
Py (t) oIk
1—vg/co ( (‘0 Uy (t) > (t)
do—(ve— 'uy)t Py Pz
= (19)
(%1+Z§)/tcodox ( COBMy ) ©opy(t) < pa(?)
where A = €9=% and B = ©94¥%  The change in Doppler
co—vy cotvy

effect from contraction to expansion occurs when the trans-
mitter and receiver are collocated (py(t) = pa(t)).

In the above derivation we ignored relativistic considera-
tions, which is reasonable assuming that, |vz| < ¢, |vy| < ¢,
and cp < ¢, where c is the speed of light. Note the lack of
symmetry with v, and —v,. That is, the effect of x mov-
ing toward stationary y with speed v is different than the
effect of y moving toward stationary x with speed v. This is
not the case when co = c¢. That is, when the speed of signal
propagation is the speed of light, it is impossible to for either
z or y to determine whether z is moving toward stationary y
or y is moving toward stationary x due to relativistic effects
[11]. Also note that v, = v and v, = —v do not shift the
frequency by the same amount. This difference remains true
even when cg = c.

3. CONTINUOUS CHANNEL MODELS OF THE
CLASSIC DOPPLER EFFECT

We now derive the continuous time models (in time, time-
frequency, and time-scale) for the physically motivated one-
path constant radial velocity channel described by (19). It

is clear that the classic Doppler effect described by Equa-
tion 19 has a form similar to the time-scale characterization
described by Equation 3 in that the output signal is a time-
delayed and time-scaled version of the input signal, so we
first map (19) to time-scale and obtain
do
Co — vy)

c(a,b,t):\/md = ~ Ve/Co 6(a—A)6<b—
(20)

(v — vy)t

when py(t) > pa(t) and

VIB|

1+vz/co
(Ve — vyt —

L(a,b,t) =

do
doa(a—B)5<b+CO+vy>

(21)
when p,(t) < pz(t). Note that the ,C(a b,t) characteriza-
tion has point support (a,b) = (A4, % o™ ) for py(t) > pa(t)
switching to (a,b) = (B, C(H_ﬂ ) for py(t) < pa(t) with
magnitude changing as a functlon of time. For co >> v, vy,
(A, =% ) ~ (1/B, —(—=%)) so that the switch is from

? co—vy co+vy
one point (a,b) to approximately (1/a, —b).

For simplicity, we consider exclusively (20) for the rest of
this paper as the time-scale model, that is, we assume that
py(t) > pu(t) for the period of time we are interested in.
Similar results can be achieved in the case of py(t) < pz(t).
We can map (20) to time-frequency S(6,7) using

S(0,7) :/ VIalL(a, (1 — a)t + ar, e 2™t dtda (22)
from [12] augmented with the dependence on ¢ yielding

= 2) (23)

5(0,7) = 0] = e <?(7=
CoT

where C' = 0=z
Vg — Uy

We can further map this to the time-domain character-
ization h(t,7) via the defining relationship between h(t, T)
and S(0, 1),

h(t,T) = / S(0,7)e’* a0, (24)
and we obtain,
h(t,T) = |C| L(g (t + w> ) (25)
CoT Vg — Uy

We summarize all three equivalent input-output relationship
for this simple physical channel in Table 1.

4. DISCRETE CHANNEL MODELS OF THE
CLASSIC DOPPLER EFFECT

In [4, 12] the mapping among the continuous models; (1),
(2), and (3); is established. These mappings are developed
independent of the signaling assumptions. Each continu-
ous model has a corresponding discrete representation; (4,5),
(6,7), and (8,9) respectively; which arises from specific as-
sumptions about the transmit signals and how they are an-
alyzed at the receiver. In [4] in particular, the following
interpretation is established:

e time-domain (4) and (5) assume frequency bandlimited
transmit signals with bandwidth W and has no constraint
on the receiver,

e time-frequency domain (6) and (7) assume frequency
bandlimited transmit signals with bandwidth W ana-
lyzed at the receiver for a finite time interval T', and
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time y(t) :/ fo—Us L(; (t 4 w> o(t — 7)dr
Uy — Uy | CoT Vg — Uy
— Vg 1 -ﬂ_(Co ve)T—dg o
time-frequency y(t) = D7) 2 ST 2 Ox(t — 7)drdd
Vg — Uy | CoT
time-scale // U l—vz/co 5(a7 CO_UI) 6(b7 do ) 1 T (t_b> dadbd
co — Uy — (vg — vyt co— vy co—vy /) /|a] a

Table 1: Summary of continuous time models of the classic Doppler effect.

e time-scale domain (8) and (9) assume frequency bandlim-
ited transmit signals with bandwidth 1/bo received at the
receiver for a finite scale (Mellin) domain interval 1/ 1In ao.

‘We now map the continuous models to their discrete counter-
parts by substituting (20), (23), and (25) into their respective
coefficient equations (9), (7), and (5). The time-domain and
time-scale domain coefficients simplify in a straightforward
manner. In the time-frequency case,

// |C| jQWQﬂMe—]ﬂ'(m oT)

CcoT
sinc[n — 7Wsinc[m — 6T]drdé (26)
dg
_ co—va ‘C' ]27rm7(60 (*va31’)*)‘10 .
/:io T(vT vu) CoTT ' v sineln —TW]dr(27)

cg—v

where we have used
1(7T/2,+T/2)(T) = /87j2ﬂT0TSinC(T0)d0 (28)

The resulting coefficients for all three models are summarized
in Table 2.

5. GAUSSIAN PULSES

All three sets of coefficients in Table 2 describe the simple
one path channel under consideration. In this section we ex-
amine which representation is the most efficient. If we have
an unlimited number of coefficients, then all three represen-
tations perfectly characterize the channel. However if only a
finite number of coefficients are available, it is not possible,
in most cases, to perfectly represent the channel and there is
some error in the representation. In [10] we quantified this
loss by calculating the efficiency of each representation as a
function of the number of coefficients available

In this section we will assume that the transmitted signal

is of the form:
.27(t) _ 4 Eeiu.)otefs(tfto)2
V 7

which is known as a Gaussian pulse or a Gabor signal. No-
tice that the normalization constant is suitably chosen for
the signal to have unit energy, and that |z(t)| is symmet-
ric around to; similarly, its spectrum |X(f)| is symmetric
around wo; finally, s > 0 is a localization parameter govern-
ing the tradeoff between the width of the signal in time and
in frequency, according to the Uncertainty Principle.

The output y(t) of the channel, in the time-domain rep-
resentation, will be given by:

y(t) —Zhn(t (t— —) =
N §71 _ %z glwot Zsinc [wido — (v —wy)t — n]

T do — (Vs — vy)t co — Vg

]

efz—nefs(t towa)z (29)

In the time-scale domain, we similarly obtain:

Lo n(t t — nboag
TOEDY m/g)w( am”):
0
af2s V4] 727; . In | A
Z )tsmc -m

m
T a2 do — (vz — vy In ag
—nbnall* t—mnb, 2
, do e - = =)
sinc [ ——— —nle 0 e @0 (30)
bo (Co — ’Ux)

Finally, in the time-frequency domain, where we don’t
have the channel coefficients in closed form, giving a formula
for y(¢) would not be very helpful; we will obtain the result
numerically, using (6).

Recall that the discrete channel expansion relies upon
some assumptions on that the appropriate content of the
signal in the relevant domain each time (time, frequency, or
scale) be finite; as the Gaussian pulse z(t) is infinite in time,
frequency, and scale, some aliasing will inevitably occur and
the y(t) constructed by the formulas above will in general
not coincide exactly with the y(t) produced by (19), which
the true channel output. In what follows, we will study the
approximation of the channel output by the above formulas,
especially in the case when we use finite sums.

In all of the following experiments we used the param-
eters v, = 10 m/s, v, = —5 m/s, co = 1500 m/s, and
do = 100; and the pulse parameters wo = 200H z, s = 2000,
and top = 0; we are also careful to select the reconstruction
coefficients symmetrically around the largest one. We plot
the absolute values of the signals in all cases, as, in general,
they are complex-valued.

Figure 1 shows the time domain reconstruction: us-
ing only the largest coefficient, corresponding to n =

Wdo — (v —vy)t
co — Vg

ally acc?lrate, although the effort of the sinc coefficient to
capture the pulse is evident and quite impressive; but with 3
coefficients the reconstruction is much better, and with more
than that practically exact. We also see that the larger the
bandwidth W is, the better the match.

Figure 2 shows the time-scale reconstruction; as dis-
cretization parameters, according to (8) and (19) we use
0
ao(co — vy)’
to capture the time delay: using only the largest coeffi-
cient, corresponding, again according to Table 2, to n =
[7% ] =1and m = In |4]
bo(Co — Ugc) In ao
match is perfect with only one coefficient. This is possible
because the time-scale representation is structured exactly
as y in (19), and therefore this representation will be the
sparsest possible. In setting the parameters ap and by as
we did, however, we assumed that we have full information
about the motion of both the transmitter and the receiver; in

according to Table 2, the result is not re-

ao = A to capture the dilation exactly and by =

= 1, we see that the
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do — (vz — vy)t

sinc |W

time hon (t) =

— N
Co — Vg

time-frequency

cog—vx

0
A CO*U@
S =

T dg—T(ve—vy) coTT

. (cg—vg)T—dg
1l ¢ T Coa =) sinc[n — 7W]dr

1—wvg/co

In[A] do

sinc

time-scale

L) = VIAI =7 =2

-n
In ao

m| sinc | ———M—
bo(co — vz)

Table 2: Summary of discrete coefficients for the classic Doppler effect.

practice, this may be difficult to obtain. In a previous paper
[10], we investigated (albeit very briefly) the consequences of
the misestimation of the velocities in the reconstruction.
Finally, Figure 3 shows the time-frequency reconstruc-
tion; this representation has the big advantage that, in con-
trast to the previous 2, its discrete coefficients do not de-
pend on time; so we can represent a time-varying channel
in a time-invariant way. However, even for such a simple
channel we are unable to obtain the coefficients explicitly,
as shown in Table 2, and we need to evaluate them numeri-
cally. This can be done quite easily, and we see that, for the
given parameters, reconstructing by 1 coefficient only works
quite well, whereas using 3 we get almost perfect reconstruc-
tion. The largest coefficient here corresponds approzimately,

once more according to Table 2, ton =W ; also, for

Co — Vg

simplicity, we used wo = 0 here, so that Spmn = 0 if m # 0.

What we observe here remains true for a wide range of
the parameters as well: in particular, the reconstructions
seem to behave as we described above, and give perfect
matches for a wide range of the pulse parameters wo and
s that we tested, provided we use a sufficient number of co-
efficients (for example, as T increases in the time-frequency
representation, while W is kept fixed, more coefficients are
needed). The underlying assumptions about the appropriate
content of the signals for which the channel is representable
by countable discrete coefficients in its various representa-
tions suggest, of course, that one or more of the representa-
tions may fail to reconstruct perfectly, no matter how many
coefficients we use, if the time, frequency, or scale content
of the signal is excessive. Whether this phenomenon can be
observed using Gabor signals is an interesting question, but
we defer its answer to future work.

6. SUMMARY

In conclusion, we make the following preliminary observa-
tions for the reconstruction of Gabor signals:

e The time-domain channel model reconstruction seems to
be reasonably sparse, and its coefficients depend on time.

e The time-scale channel model reconstruction also in-
volves time-varying coefficients, and depends on a bijec-
tive matching of signal parameters to channel parame-
ters. Perfect efficiency is possible (100% with one coeffi-
cent) if the channel parameters are known.

e The time-frequency channel model coefficients are time-
invariant, but their determination is a bit more involved;
the reconstruction is as sparse as the time domain one
for Gabor signals, however, if not sparser.

In continuing work, we will analyze more thoroughly the
dependence of the efficiency on signal parameters (such as
bandwidth, as all three models assume bandlimited trans-
mit signals) and channel parameters. Additionally, we will
look into the issue of signaling efficiency (the loss in signal ef-
ficiency associated with the signal parameter assumptions),
which was not considered in this work.
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Figure 1: Time domain reconstruction: (a) uses 1 coeff. and
W = 16K Hz, (b) uses 3 coeff. and W = 8K Hz, and (c)  Figure 3: Time-frequency reconstruction: (a) uses 1 coeff.
uses 3 coeff. and W = 16K Hz. and W = 16 KHz, and (b) uses 3 coeff. and W = 16K Hz.
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