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ABSTRACT
We consider the problem of linear transmitter design in mul-
tiple input single output (MISO) compound channels with
interference. The motivation for this channel model is com-
munication in MISO broadcast channels with partial channel
state information (CSI). Since the compound capacity is un-
known for this model, we consider optimal linear transmit
methods for maximizing the data rate. We provide efficient
numerical solutions with and without perfect CSI. We then
discuss the optimality of beamforming and the existence of a
saddle point in the compound channel.

1. INTRODUCTION

One of the emerging topics in modern wireless communica-
tion is multiuser systems in which there are multiple transmit
antennas. It is well known that the use of multiple antennas
can improve the capacity and reliability of wireless links.
In order to exploit these gains the system must efficiently
use the antennas and optimize its transmission method. One
of the main obstacles in designing such systems in the lack
of perfect channel state information (CSI) at the transmitter
side. The problem becomes even more interesting and dif-
ficult in the multiuser broadcast setting, due to interference
directed at the other users.

The optimal transmit strategies for achieving capacity in
single user multiple input single output (MISO) channels are
well known. If perfect CSI is available at the transmitter,
then linear beamforming along the MISO channel is optimal.
There are also many results using different partial CSI mod-
els, e.g., [1]. We consider the compound model in which
the channel is a deterministic variable within a known set of
possible values. The compound capacity is defined as the
achievable rate when the transmitter does not know the exact
channel realization and is designed for the worst case realiza-
tion within the set [2]. Due to its importance, the compound
capacity recently gained considerable attention [3, 4, 5]. In
[5] we addressed the optimization of the single user multi-
ple input multiple output (MIMO) compound capacity. We
provided a simple solution for finding the optimal transmit
scheme, and proved that beamforming is optimal for max-
imizing the capacity in this case. Like many results in the
context of worst case optimization, our proof is based on the
existence of a saddle point. Using a standard minimax the-
orem we showed that the compound capacity (maxmin) is
equal to the capacity of the worst case channel within the
uncertainty set (minmax). For a known channel the capac-
ity achieving strategy is beamforming, and therefore all we
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had to do is find the worst case channel and beamform in
its direction. Thus, the solution is simple, its beamforming
implementation is practical, and there is no advantage in ad-
ditional feedback since we can achieve the minimax capac-
ity using the maximin compound capacity. Finally, most of
these results can be generalized to the multiuser multiple ac-
cess channel.

On the other hand, many of the questions regarding the
multiuser broadcast channel are still open. The main prob-
lem is that each user must cope with the interference which
is directed to the other users. When perfect CSI is available,
this interference can be eliminated using dirty paper coding
(DPC) [6, 7]. Unfortunately, there are not many results in the
more practical case of partial CSI. It is not clear whether one
can still use a robust version of DPC, and whether it is opti-
mal in some way [8, 9, 10]. In fact, even if a robust DPC
scheme was available and the interference to some of the
users was eliminated, there are not many results on the lin-
ear transmitter design to the other users. Moreover, in some
applications, such as co-located transmitters [11], there is no
access to the interference and linear transmission methods
should be used. These scenarios motivate us to consider the
problem of linear transmitter design in the compound chan-
nel. Interestingly, even in this simplified channel model,
many questions are still open. For example, it is unknown
whether a saddle point always exists and whether beamform-
ing is still optimal. In this paper, we try to answer some of
these questions.

As explained, we are interested in compound channel
with interference. We address the maximization of the worst
case rate (using linear processing) in this compound channel
with and without perfect CSI. Mathematically, we consider
the maxmin rate problem and its complementary minmax
rate problem. We reformulate both problems using semidef-
inite programs (SDP) which can be efficiently solved. We
discuss the numerical results and give special emphasis to
the optimality of beamforming and to the existence of a sad-
dle point. We show that, due to the interference, both of these
properties are not necessarily true anymore.

The paper is organized as follows. We begin in Section 2
by introducing the problem. Then, we provide the main re-
sults in Section 3. The mathematical derivations and proofs
are developed in Section 4. A numerical example using com-
puter simulations is described in Section 5.

The following notation is used: The operators (·)T ,
Tr{·}, rank(·) and ‖ · ‖ denote the transpose, the trace, the
rank and the Euclidean norm, respectively. λmax (X) is the
maximal eigenvalue of X. Finally, Xº 0 denotes that a ma-
trix X is Hermitian positive semidefinite.
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2. PROBLEM FORMULATION

Consider a MISO compound channel with interference. The
signal at the output of the receiver can be expressed as

y = gT [x+ i]+w (1)

where y is the received sample, g is the length-K channel vec-
tor, x is the length-K transmitted vector, i is a length-K zero
mean, normal interference vector with covariance Zº 0, and
w is a zero-mean, unit-variance normal noise sample. We
assume that i and w are statistically independent. The com-
pound channel g is a deterministic vector within the follow-
ing set:

G = {h+d : dT d≤ ε} (2)

where h is the center of the ellipsoid and the parameter ε
controls its volume. For simplicity, we assume that ε < hT h.
We emphasize that there is no prior distribution on g.

The capacity of the compound channel in (1) is the max-
imal achievable transmission rate in the channel. This rate
must be achievable for any g ∈G . To our knowledge, there is
no solution to this compound capacity, and it is not clear what
is the optimal transmission strategy for achieving it. There-
fore, although it is clearly suboptimal, we restrict ourselves
to the class of linear transmission schemes and assume that x
is a zero mean, normal vector with covariance Qº 0. When
the rank of Q is one, we call the scheme beamforming along
the principal eigenvector. As usual, we assume there is a
standard constraint on the average transmitted power

Tr{Q} ≤ P (3)

where P is the available power.
Under this setting, we define two achievable rates de-

pending on the available CSI. In both cases we assume that
the receiver has perfect CSI and knows g. In the first case,
the transmitter does not know the exact realization of g, and
must design Q to deal with the worst case g. The maximal
achievable rate is then

R1 = max
Qº 0

Tr{Q} ≤ P

min
g∈G

log
(

1+
gT Qg

gT Zg+1

)
. (4)

On the other hand, when the transmitter knows g (due to
feedback from the receiver), the transmitter may design Q
as a function of the specific g. Nonetheless, our compound
channel model assumes that the set G does not change due to
feedback, i.e., feedback does not cause the set to shrink and
does not decrease ε . Thus, even in the case of perfect CSI,
the system’s code must be designed to satisfy the SINR (rate)
in all channel realizations, and in particular in the worst case
channel. The resulting rate is then

R2 = min
g∈G

max
Qº 0

Tr{Q} ≤ P

log
(

1+
gT Qg

gT Zg+1

)
. (5)

The above rates Ri = log(1 + γi) for i = 1,2 are
monotonic increasing in their SINRs γi. This property allows
us to avoid the log(1 + x) function and optimize the SINRs
instead of the rates.

In the sequel, we derive efficient numerical solutions for
finding γ1 and γ2 (respectively, R1 and R2). In addition, our
goal is to provide insight regarding two important issues.
First, we compare γ1 with γ2 and check whether γ1 = γ2, i.e.,
whether there is any advantage in additional feedback. Sec-
ond, we focus on the rank of the optimal covariance matrices
and on the optimality of beamforming.

3. MAIN RESULTS

We now provide the main results. We begin with two special
cases which have been published before and then address the
general setting.

3.1 Perfect CSI
The first case is when the transmitter has perfect CSI, i.e.,
ε = 0 and g = h. It is easy to see that the two problems are
equivalent and γ1 = γ2. The optimal solution is beamforming
along the channel g, which results in

Q = P
ggT

gT g
. (6)

3.2 No interference
The second scenario is when there is no interference, i.e.,
Z = 0. In this case, we have recently shown that the opti-
mal solution of both problems is a saddle point and γ1 = γ2.
The resulting strategy is beamforming along the worst case
channel denoted by gw:

Q = P
gwgT

w

gT
wgw

. (7)

The worst case channel gw can be found using a simple one
dimensional search as explained in [5]. Alternatively, the
optimal Q can be obtained by solving the following SDP

γ1 = γ2 =





maxQ,α,γ γ

s.t.
[

Q+αI −αh
−αhT α

(
hT h− ε

)− γ

]
º 0

Tr{Q} ≤ P
Qº 0
α ≥ 0.

(8)

3.3 The general case
We now consider the general case. In the next section, we
show that problems (4) and (5) can be solved using the fol-
lowing standard SDPs:

γ1 =





maxQ,α,γ γ

s.t.
[

Q− γZ+αI −αh
−αhT α

(
hT h− ε

)− γ

]
º 0

Tr{Q} ≤ P
Qº 0
α ≥ 0

(9)

and

γ2 =





maxα ,γ γ

s.t.
[

PI− γZ+αI −αh
−αhT α

(
hT h− ε

)− γ

]
º 0

α ≥ 0.

(10)
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Unlike the previous cases, problems (9) and (10) are not
equivalent in general. This can be seen by examining the
optimality of beamforming. When perfect CSI is available,
the optimal Q is always of rank one and aligned with the
worst case channel1. But this is not necessarily true for the
optimal Q in (9). Although not too frequent, it is not difficult
to find a numerical example where (9) results in rank(Q) >
1.

Moreover, even if we allow a high rank solution, the re-
sulting SINRs γ1 and γ2 are not necessarily equal. Due to the
standard minimax inequality, we always have

γ1 ≤ γ2. (11)

Interestingly, the following theorem provides a condition for
equality in (11) without the need for solving (10):

Theorem 1. Let Q, α and γ be the optimal solution of (9).
If Q− γZ+αIÂ 0, then γ1 = γ2.

4. DERIVATIONS AND PROOF

The formulation of (4) and (5) as SDPs is based on optimiz-
ing the SINRs instead of the rates, and rewriting each of these
problems as a minimization of a ratio of quadratic forms sub-
ject to a quadratic constraint (RQ). Then, we use a recent
result that transforms such problems into SDPs [12].

We begin with (4). It is easy to see that after omitting the
log(1+ x) function, the inner minimization

min
‖g−h‖2≤ε

gT Qg
gT Zg+1

(12)

is an RQ. We define

y = s
[

g
1

]
(13)

where s 6= 0, and rewrite (12) as2

min yT
[

Q 0
0T 0

]
y

s.t. yT
[

Z 0
0T 1

]
y = 1

yT
[

I −h
−h hT h− ε

]
y ≤ 0

(14)

Due to a special case of strong duality, (14) can be solved
using its Lagrange dual (see [12] for more details)

max
γ,α≥0

min
y

{
yT

[
Q 0
0T 0

]
y (15)

+γ
(

1−yT
[

Z 0
0T 1

]
y
)

+αyT
[

I −h
−h hT h− ε

]
y
}

.

Quadratic forms are bounded from below only if they are
positive semidefinite. Therefore, the dual is

maxα≥0,γ γ

s.t.
[

Q− γZ+αI −αh
−αhT α

(
hT h− ε

)− γ

]
º 0 (16)

1See (18) in the proof below.
2Actually, there is an additional implicit constraint [y]K+1 6= 0 which

ensures that s 6= 0, but it is easy to see that this constraint is implied by the
other constraints since y = 0 is infeasible.

Omitting the log(1+x) function and replacing the inner min-
imization in (4) with (16) yields (9).

We now turn to (5). Again, we omit the log(1+ x) func-
tion and obtain the following simple solution for the inner
maximization

P
gT g

gT Zg+1
= max

Qº 0
Tr{Q} ≤ P

gT Qg
gT Zg+1

(17)

along with the optimal argument

Q = P
ggT

gT g
. (18)

From a communication theory point of view, this is the well
known result that when the channel is known, the optimal
linear transmit method is beamforming along it. Plugging
this result into the outer minimization yields

min
‖g−h‖2≤ε

PgT g
gT Zg+1

(19)

which is again an RQ. As before, we define y as in (13). This
yields

min yT
[

PI 0
0T 0

]
y

s.t. yT
[

Z 0
0T 1

]
y = 1

yT
[

I −h
−h hT h− ε

]
y ≤ 0.

(20)

and its dual

max
γ,α≥0

min
y

{
yT

[
PI 0
0T 0

]
y (21)

+γ
(

1−yT
[

Z 0
0T 1

]
y
)

+αyT
[

I −h
−h hT h− ε

]
y
}

which is given by (10).
We now prove the theorem by showing equivalence be-

tween the Lagrange duals of (9) and (10). The dual of (9)
is

γ1 =





minWº0,λ≥0 λP

s.t. λI− [ I 0 ]W
[

I
0T

]
º 0

Tr
{
W

[
Z 0
0T 1

]}
= 1

Tr
{
W

[
I h
hT hT h− ε

]}
≤ 0

(22)

which can be written as

γ1 =





minWº0,λ≥0 Pλmax

(
[ I 0 ]W

[
I
0T

])

s.t. Tr
{
W

[
Z 0
0T 1

]}
= 1

Tr
{
W

[
I h
hT hT h− ε

]}
≤ 0.

(23)
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Similarly, the dual of (10) (which is also the bidual and the
tight SDP relaxation of (20)) is

γ2 =





minWº0,λ≥0 PTr
{

[ I 0 ]W
[

I
0T

]}

s.t. Tr
{
W

[
Z 0
0T 1

]}
= 1

Tr
{
W

[
I h
hT hT h− ε

]}
≤ 0.

(24)

It remains to show that if Q− γZ+ αI Â 0, then (23) and
(24) are equivalent. The positive definiteness implies that

rank(Q− γZ+αI) = n (25)

and that

rank
([

Q− γZ+αI αh
αhT α

(
hT h− ε

)− γ

])
≥ n. (26)

Due to the complementary slackness condition associated
with the first constraint in (9) we have

W
[

Q− γZ+αI αh
αhT α

(
hT h− ε

)− γ

]
= 0, (27)

where W º 0 is the Lagrange dual matrix in (23). Combin-
ing (26) and (27) yields

rank(W)≤ 1. (28)

Finally, if the rank of a matrix is less than or equal to one,
then λmax{·} = Tr{·}. Thus, the objective functions of (23)
and (24) are equal, i.e., γ1 = γ2.

5. NUMERICAL EXAMPLE

In this section, we provide more insight using a numerical
example. The SDP formulations in Section 3 allow us to nu-
merically solve the maxmin and the minmax problems and
compare their solution. The parameters in this example are
as follows. The number of transmit antennas is K = 4. The
interference is modeled as Z = YYT where Y is a K×K
matrix with independent, zero mean and unit variance nor-
mal random variables. Similarly, the channel h is a length
K vector with independent, zero mean and unit variance nor-
mal random variables. The volume of the ellipsoid is given
by ε = 0.3hT h. The available transmitted power is P = 10.
Given these parameters, we estimated the probability density
function (PDF) of R1 and R2 using Monte Carlo simulations.
For comparison, we also simulated the resulting rate R0 using
the naive approach where

Q = P
hhT

hT h
(29)

i.e., when the transmitter designs its transmission assuming
that g = h. The results are presented in Figure 1.

It is easy to see that the naive approach performs worse
than both the maximin and the minimax approaches. Com-
paring the PDF of R1 and the PDF of R2 shows that there is a
slight advantage for perfect CSI. However this advantage is
very small and it seems that in most applications the maximin
approach in (9) performs sufficiently well. It is not shown in
the figure, but the resulting Qs in all of the simulations were
always of rank one, i.e., in this specific example beamform-
ing was always found optimal. However, it is not difficult to
find a case where this is not true.
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Figure 1: Estimated probability density function of the
achievable rates R0, R1 and R2.

6. CONCLUSIONS

Motivated by the growing use of multiuser broadcast chan-
nels and the necessity of CSI in the transmitter side, we con-
sidered the problem of linear transmitter design in MISO
compound channels with interference. We derived new ef-
ficient algorithms for the transmitter design with and with-
out perfect CSI. Interestingly, even in this simplified linear
setting there are many surprising results. For example, the
existence of a saddle point and the optimality of beamform-
ing are no longer necessarily true. These results motivate the
continuation of research on this simple channel model. In
addition, future work should also consider the application of
non linear transmission schemes for the compound channel
with interference.
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