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ABSTRACT

Estimating the positions of sensor nodes is a fundamental and
crucial problem in ad hoc wireless sensor networks (WSNs).
In this paper, an accurate node localization method for WSNs
is devised based on the weighted least squares technique with
the use of time-of-arrival measurements. Computer simula-
tions are included to evaluate the performance of the pro-
posed approach by comparing with the classical multidimen-
sional scaling method and Cramér-Rao lower bound.

1. INTRODUCTION

Recent technological advances in wireless communications
and microsystem integration have enabled the development
of small, inexpensive, low-power sensor nodes which are
able to collect surrounding data, perform small-scale com-
putations and communicate among their neighbors. These
wirelessly connected nodes, when working in a collaborative
manner, have great potential in numerous remote monitoring
and control applications [1] such as asset management, habi-
tat monitoring, health caring, building automation, battlefield
surveillance as well as environment observation and forecast-
ing. Since sensor nodes are often arbitrarily placed with their
positions being unknown, sensor positioning is a fundamen-
tal and crucial issue for the wireless sensor network (WSN)
operation and management.

Node localization methods can be generally classified as
the deterministic [2]-[9] and probabilistic approaches [10]-
[11]. The simplest deterministic technique is to exploit the
connectivity information — who is within the communica-
tion range of whom — to derive the node positions with
the use of the anchor nodes subject to the proximity con-
straints imposed by the known connections, but it only pro-
vides coarse-grain location estimates. Mathematically, this
can be formulated as a linear programming or semi-definite
programming problem [3]. Apart from connectivity, range-
based schemes utilize node-to-node or hop distances and/or
angles, which are obtained from the pair-wise time-of-arrival
(TOA), time-difference-of-arrival, received signal strength
and/or angle-of-arrival measurements, for sensor positioning
with higher location accuracy, although it is possible to use
the average hop length and hop counts between indirectly
connected nodes to deduce distance information [4] as well.
Assuming that the range measurements errors are Gaussian
distributed, the maximum likelihood (ML) methods for node
localization correspond to the nonlinear least squares prob-
lem [5]-[7] which must be solved iteratively. In spite of at-
taining optimum estimation performance, the ML approach
requires centralized data processing with intensive computa-
tions and sufficiently precise initial estimates for global con-
vergence. Alternatively, the range-based measurements can

also be converted into linear equations where the node posi-
tions are easily solved even in a distributed manner but at the
expense of error accumulation [8]-[9]. Another computation-
ally attractive range-based positioning technique is to employ
multidimensional scaling (MDS) [2] which transforms the
pair-wise distance information into the relative coordinates
of nodes. On the other hand, particle filtering [10]-[11] is a
representative example of the probabilistic approach, where
each sensor stores a conditional density on its own coordi-
nates based on its measurements and the conditional density
of its neighbors for node localization, has a high potential of
tracking purposes at the cost of excessive computational re-
quirements. In this paper, a sequential algorithm for WSN
positioning, which belongs to the deterministic category, is
developed based on the weighted least squares (WLS) local-
ization approach suggested in [12] and [13].

The rest of the paper is organized as follows. In Section
2, the simple and efficient localization approach of [12] and
[13] will be firstly reviewed and then the development of the
sequential weighted least squares (SWLS) algorithm is pre-
sented. Simulation results are included in Section 3 to evalu-
ate the estimator performance by comparing with the classi-
cal MDS [2] method and Cramér-Rao lower bound (CRLB).
Conclusions and future works are provided in Section 4.

2. ALGORITHM DEVELOPMENT

In this section, we are going to derive a computationally at-
tractive node localization method. Before proceeding, we
review the two-step weighted least squares (TSWLS) algo-
rithm for position estimation of a single source [12]-[13],
which acts as a key component of our estimation approach.

2.1 Review of Two-step Weighted Least Squares Local-
ization Algorithm for Single Mobile Terminal
The TSWLS algorithm in [12] is shown to have close-to-
CRLB performance when the noise is sufficiently small. In
this subsection, its basic operation will be reviewed. Sup-
pose there are M ≥ 3 base stations (BSs) whose locations are
known a priori and a single mobile terminal (MT) with un-
known location. Let (x,y) be the MT position which is to
be determined and the known coordinates of the ith BS be
(xi,yi), i = 1,2, . . . ,M. The Euclidean distances between the
MT and BSs can be easily determined from the correspond-
ing TOA measurements, which are modelled as

ri = di +ni +qiU(α− p) i = 1,2, . . . ,M (1)

where di =
√

(x− xi)2 +(y− yi)2 = cti is the ideal distance
with c and ti are the speed of light and corresponding
noise-free TOA, respectively. The second and third com-
ponents represent the line-of-sight (LOS) error and possi-
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ble non-line-of-sight (NLOS) error, respectively. Let n =
[ n1 · · · nM ]T be the LOS noise vector which is dis-
tributed as n ∼N (0,C) where N (µµµ,Γ) means the Gaus-
sian distribution with mean µµµ and covariance Γ and C is
assumed to be known up to a proportionality constant. For
the NLOS counterpart, qi ∼ U (0,R), R is the maximum
NLOS distance, U (a,b) stands for the uniform distribu-
tion with a and b respectively the starting and ending points,
p∼U (0,1) ,α ∈ [0,1] is the probability of obtaining NLOS
distance measurement and U(p) denotes the unit step func-
tion. Without measurement errors, (1) becomes

ri = di =
√

(x− xi)
2 +(y− yi)

2, i = 1, · · · ,M (2)

Squaring both sides of (2) yields

r2
i = x2

i + y2
i −2xix−2yiy+ x2 + y2

⇒−2xix−2yiy+R = r2
i −Ki, i = 1, · · · ,M (3)

where Ki , x2
i + y2

i and R , x2 + y2. In doing so, (3) is re-
organized into a set of linear equations in x, y and R. In the
presence of noise, we define the first step estimation error e1
of the form:

e1 = h1−G1z (4)

where

h1 =




r2
1−K1

...
r2

M−KM




G1 =



−2x1 −2y1 1

...
...

...
−2xM −2yM 1




z = [ x y R ]T

with the superscript T denotes the matrix transposition. In
the first step, x,y and R are assumed to be independent and
hence their WLS estimates are computed as

ẑ =
(
GT

1 W1G1
)−1

GT
1 W1h1 (5)

where W−1
1 = E

(
e1eT

1
) ≈ BCB, E is the expectation op-

erator, B = diag(r1, · · · ,rM) is the diagonal matrix of range
measurements. In the second step, the relationship of x,y and
R is utilized and we define the resultant estimation error e2:

e2 = h2−G2zp (6)

where

h2 =
[

ẑ2
1 ẑ2

2 ẑ3
]T

G2 =

[ 1 0
0 1
1 1

]

zp =
[

x2 y2
]T

and ẑi, i = 1,2,3, represent the ith element of ẑ. By only
considering the linear terms of E

(
e2eT

2
)

which is valid for
small noise conditions, the WLS estimate of zp is given by

zp =
(
GT

2 W2G2
)−1

GT
2 W2h2 (7)

where W−1
2 = E

(
e2eT

2
) ≈ B1cov(ẑ)B1, cov(ẑ) =(

GT
1 W1G1

)−1 and B1 = diag(ẑ1, ẑ2,0.5). The final
position estimate is

[ x y ]T = diag(sgn([ẑ1, ẑ2]))
√

zp (8)

where sgn stands for the signum function. For more details
and variants of the algorithm, interested reader is referred to
[12] and [13].

2.2 Development of Sequential Weighted Least Squares
Algorithm for Ad Hoc Wireless Sensor Networks
In this subsection, the TSWLS algorithm is extended for
WSN localization. Let M be the total number of sensors and
denote the position of the ith sensor by (xi,yi). For simplicity,
the WSN is assumed to be fully-connected and the distance
measurement between the ith and jth sensors is

ri, j = di, j +ni, j +qi, jU(α− p) i, j = 1, · · · ,M, i < j (9)

where di, j =
√

(xi− x j)
2 +(yi− y j)

2, ni, j ∼ N
(

0,σ2
i, j

)
,

and qi, j ∼U (0,R). The quantities di, j, ni, j and qi, jU(α− p)
are respectively the noise-free distance, LOS error and NLOS
error between the ith and jth sensors.

If all positions of the sensors are unknown, their position
estimates can only be expressed in terms of a few ones. In
this paper, concrete result for direct comparison and eval-
uation is preferred and thus relative position estimation is
avoided. Without loss of generality, the positions of the first
k ≥ 3 sensors are assumed to be known in order to uniquely
determine the locations of the other (M− k) ones. As a re-
sult, all distance measurements among these sensors are free
of noise, that is, ni, j = qi, j = 0, i, j = 1, · · · ,k, i < j.

In the first step, the distance information between un-
known sensors will not be used. The position of the ith sen-
sor, i = k+1, · · · ,M, is estimated using the distance measure-
ments between the ith sensor and the k known sensors, that
is, ri, j, j = 1, · · · ,k, by utilizing the TSWLS algorithm de-
scribed in the previous subsection. In other words, we treat
the k known sensors to be the BSs and the (M− k) unknown
ones to be the MTs, then apply the TSWLS one-by-one to
get the position estimates of the (M− k) sensors.

After obtaining the (M− k) position estimates, the loca-
tion of the ith sensor is re-estimated by assuming the po-
sition estimates of the other (M− k−1) sensors to be the
true locations. The TSWLS is applied again to estimate the
position of the ith sensor using the distance measurements
ri, j, j = 1, · · · , i− 1, i + 1, · · · ,M. In a nutshell, we treat
the ith sensor to be the MT and the other M− 1 sensors to
be the BSs, then update the (M− k) sensors sequentially by
the TSWLS. The main difference between this step and the
previous step is that the number of ”BSs” increases from k to
M−1.

Finally, the second step is repeated again by treating the
updated position estimates of the (M− k) unknown sensors
to be the true locations. The recursion is terminated to pro-
duce the finalized position estimates when the difference of
results between successive iterations is sufficiently small.

To summarize, the SWLS works as follows:
1. Apply the TSWLS localization algorithm described in

Section 2.1 to obtain the position of the ith sensor, i =
k + 1, · · · ,M, using the distance measurements ri, j, j =
1, · · · ,k.
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2. After all the positions of the (M− k) unknown sensors
have been estimated, apply the TSWLS to estimate the
positions of the ith sensor, i = k + 1, · · · ,M, using the
distance measurements ri, j, j = 1, · · · ,M, j 6= i.

3. Repeat Step 2 until convergence of position estimates.
It is noteworthy that the SWLS algorithm can be applied even
when the WSN is not fully-connected as long as each sensor
has at least three distance measurements. In that case, step 1
should be modified as:
1. Apply the TSWLS to obtain the position of the ith sen-

sor, i ∈ {k +1, · · · ,M} which is connected to at least 3
of the k known sensors using the corresponding distance
measurements. After that, treat the estimated sensors to
be the known sensors and estimate the positions of the
remaining sensors. This process is repeated until the po-
sitions of all the (M− k) sensors have been obtained.

Compared to other methods which require the WSN to
be fully-connected or divide the WSN into smaller fully-
connected regions, namely cliques, our algorithm is certainly
more flexible and adapted to practical environment. Further-
more, the SWLS algorithm is distributed in nature, that is, it
allows each sensor to share the computational burden and is
not necessary to have a centralized computer to process the
computations.

3. NUMERICAL EXAMPLES

Computer simulation has been conducted to evaluate the
performance of the proposed TOA-based WSN positioning
approach. We compare the mean square position errors
(MSPEs) of the SWLS algorithm with the classical MDS as
well as CRLB in WSN localization. The noise power of ni, j

is obtained by σ2
i, j = d2

i, j/SNR where SNR is the signal-to-
noise ratio. In the following simulations, the total number of
sensors M and the number of known sensors k are set to 14
and 4, respectively. The 10 unknown sensors are located in a
100 m ×100 m area and the 4 known sensors are located at
the four corners as shown in Figure 1. The SWLS method is
iterated 5 times for each trial and all results are averages of
1000 independent runs. The WSN is fully-connected and the
average of the 10 MSPEs corresponding to the 10 unknown
sensors is plotted to show the overall performance.

In the first scenario, all the distance measurements are
considered as LOS paths and thus α = 0. It can be seen from
Figure 2 that the MSPEs of the MDS method are higher than
the CRLB by over 8 dBm2 while the MSPEs of the SWLS
method are about 1 dBm2 more than the CRLB, which indi-
cates its approximate optimality.

In the second scenario, the effects of NLOS propagation
are investigated. The probability of obtaining NLOS distance
measurements and the maximum NLOS distance are set to
α = 0.1 and R = 5, respectively while the other settings are
the same as the first scenario. It can be seen from Figure 3
that the MSPEs of the SWLS method are at least 5 dBm2 less
than those of the MDS method. It demonstrates that the su-
periority of the SWLS over the MDS method in NLOS prop-
agation environment.

In the third scenario, the positions of the 10 unknown
sensors are located randomly but limited to the 10000 m2

area in each independent run. The CRLBs computed in the
1000 runs are averaged and all the other simulation param-
eters are the same as the first scenario. From Figure 4, it

can be observed that the MSPEs of the SWLS method are
about 2 dBm2 above the CRLB while the difference between
the MDS and the CRLB is around 7 dBm2. It also demon-
strates that the SWLS is generally more superior than the
MDS method.

Finally, the third test is repeated with NLOS propagation.
By comparing the MSPEs of the SWLS and MDS methods,
the robustness of the SWLS is again shown in Figure 10,
which indicates that in general, the SWLS method outper-
forms the MDS method in NLOS propagation situation.

4. CONCLUSIONS AND FUTURE WORKS

A node localization algorithm has been developed for ad hoc
wireless sensor networks based on weighted least squares
technique. Simulation results show that the performance of
the proposed method is better than the classical multidimen-
sional scaling method in both line-of-sight and non-line-of-
sight environments.

From the simulations, it is observed that the SWLS algo-
rithm is suboptimal. Therefore, future work will be carried
out to polish up the SWLS algorithm to produce optimal re-
sults. Moreover, methods such as M-estimate technique in
the literature can be applied to further increase the robust-
ness of the SWLS method in NLOS propagation situation.
On the other hand, the computational burden of computing
matrix inversion can be lessen by using fast algorithms in the
scientific computing literature, which is expected to make the
SWLS more computationally attractive.
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Figure 1: Positions of the sensors
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Figure 2: Mean square position error versus SNR at LOS environment with

fixed-position sensors
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Figure 3: Mean square position error versus SNR at NLOS environment

with fixed-position sensors
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Figure 4: Mean square position error versus SNR at LOS environment with

random-position sensors
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Figure 5: Mean square position error versus SNR at NLOS environment

with random-position sensors
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