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ABSTRACT

Phase noise causes significant degradation in the performance
of Orthogonal Frequency Division Multiplexing (OFDM)
based wireless communication systems. In the proposed com-
pensation scheme, the communication between the transmitter
and receiver blocks consists of two stages. In the first stage,
block-type pilot symbols are transmitted and the channel co-
efficients are jointly estimated with the phase noise in the time
domain. In the second stage, comb-type OFDM symbols are
transmitted such that the receiver can jointly estimate the data
symbols and the phase noise. It is shown by computer simu-
lations that the proposed scheme can effectively mitigate the
inter-carrier interference caused by phase noise and improve
the bit error rate of OFDM systems.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
widely recognized modulation technique for high data rate
communications over wireless links [1]. Because of its capa-
bility to capture multipath energy and eliminate inter-symbol
interference, OFDM has been chosen as the transmission
method for several standards, including the IEEE 802.11a
wireless local area network (WLAN) standard in the 5 GHz
band, the IEEE 802.11g WLAN standard in the 2.4 GHz band,
and the European digital video broadcasting system (DVB-
T). Also, the OFDM-based physical layer is being considered
by several standardization groups, such as the IEEE 802.15.3
wireless personal area network (WPAN) and the IEEE 802.20
mobile broadband wireless access (MBWA) groups. The
heightened interest in OFDM has resulted in tremendous re-
search activities in this field to make the real systems more
reliable and less costly in practice.

One limitation of OFDM systems is that they are highly
sensitive to the phase noise introduced by local oscillators [2,
3]. Phase noise is the phase difference between the phase of
the carrier signal and the phase of the local oscillator. The
distortion caused by phase noise is characterized by a common
phase error (CPE) term and an inter-carrier interference (ICI)
term. The CPE term represents the common rotation of all
constellation points in the complex plane, while the ICI term
behaves like additive Gaussian noise.

The high sensitivity of OFDM receivers to phase noise im-
poses a stringent constraint on the design and fabrication of
oscillators and the supplementary circuitry. There have been
works in the literature to mitigate the effects of phase noise in
the digital domain. This approach provides an efficient, low-
cost and reliable solution to the phase noise problem. Some
authors have proposed methods to compensate for the CPE
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term, in which the constellation rotation is estimated using pi-
lot tones embedded in OFDM symbols and then corrected by
the demodulator [4]. Since the ICI effect is either ignored or
treated as additive noise in these schemes, they perform poorly
if the phase noise varies fast in comparison to the OFDM sym-
bol rate. To overcome this difficulty, some ICI compensation
schemes have been proposed. In the self-cancellation method
presented in [5], each data symbol is transmitted using two ad-
jacent subcarriers, and the received symbols are linearly com-
bined to suppress ICI by exploiting the fact that the ICI coeffi-
cients change slowly over adjacent subcarriers. This technique
has the advantage of low implementation complexity, but it
reduces the spectral efficiency by one half. In [6], an FIR-
type equalizer is employed to compensate for phase noise, and
the filter coefficients are determined by the method of least
squares. Since the filter length is limited by the number of
pilot tones, it can only compensate for the ICI that is from
adjacent subcarriers. In [7], the phase noise process is approx-
imated by using a small number of sinusoidal components,
and it is suggested to insert some pilot tones outside the spec-
trum occupied by data transmission and estimate the model pa-
rameters of phase noise using the received pilot signals. This
scheme requires extra bandwidth and can only correct the ICI
from adjacent subcarriers because of the approximation made
in modeling. All these ICI compensation schemes assume that
the receiver has perfect channel state information; however, in
wireless communications, the channel is time-varying and the
receiver has to estimate the channel in the presence of phase
noise, which makes the scenario more complicated than what
has been studied before.

In this paper, we propose a new phase noise compensation
scheme for OFDM-based wireless communications with im-
proved performance. The scheme consists of a channel estima-
tion stage and a data transmission stage. In the channel estima-
tion stage, block-type pilot symbols are transmitted so that the
receiver can jointly estimate the channel coefficients and the
phase noise. Instead of estimating the channel coefficients and
phase noise in the frequency domain, we estimate them in the
time domain by using interpolation techniques to reduce the
number of unknowns. In the data transmission stage, comb-
type pilot symbols, which contain both data symbols and pilot
symbols, are transmitted, and the data symbols and the phase
noise components are jointly estimated at the receiver in order
to mitigate both the CPE and ICI effects of phase noise.

2. SYSTEM MODEL WITH PHASE NOISE

An OFDM system with phase noise is illustrated in Fig. 1.
At the transmitter, the information bits are first mapped into
constellation symbols, and then converted into a block ofN
symbolsx[k], k = 0,1, . . . ,N− 1, by a serial-to-parallel con-
verter. TheN symbols are the frequency components to be
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transmitted using theN subcarriers of the OFDM modulator,
and are converted to OFDM symbols by the unitary inverse
Fast Fourier Transform (IFFT). Then, a cyclic prefix of length
P (P≤N) is added to the IFFT output, and the resultingN+P
symbols are converted to a continuous-time baseband signal
x(t) for transmission.

At the receiver, the received block after OFDM demodula-
tion is y[k], k = 0,1, . . . ,N−1, whose elements are related to
the transmitted symbolsx[k], k = 0,1, . . . ,N−1, by

y[k] =
N−1

∑
r=0

α [r]H [ (k− r)N ]x[ (k− r)N ]+w[k], (1)

where(k− r)N stands for((k− r) modN), H[k] is the channel
response in thekth subcarrier,w[k] is the additive noise com-
ponent in thekth subcarrier, andα[r] is given by

α[r] =
1
N

N−1

∑
n=0

ejφ(nTs)e− j 2πrn
N , (2)

whereφ(t) is the phase noise at the local oscillator andTs is
the symbol time. Note thatH[k], k = 0,1, . . . ,N− 1, are the
Fourier transform coefficients of the discrete-time baseband
channel impulse responseh[n], i.e.,

H[k] =
L−1

∑
n=0

h[n]e− j 2πkn
N ,

whereL is the length ofh[n] (0≤ n≤ L− 1). OFDM mod-
ulation requiresP≥ L in order to eliminate the inter-symbol
interference. Expression (1) can be rewritten as

y[k] = α[0]H[k]x[k]+
N−1

∑
r=1

α [r]H [ (k− r)N ]x[ (k− r)N ]

+w[k],

where the termα[0]H[k]x[k] is called the common phase er-
ror (CPE) and∑N−1

r=1 α [r]H [ (k− r)N ]x[ (k− r)N ] is called the
inter-carrier interference (ICI). In the absence of phase noise,
we have the traditional relation

y[k] = H[k]x[k]+w[k],

which follows by settingα[0] = 1 andα [r] = 0 for r 6= 0. Us-
ing matrix notation, expression (1) can be represented as

y = AHx+w, (3)

where

y = [ y[0] y[1] . . . y[N−1] ]T ,

x = [ x[0] x[1] . . . x[N−1] ]T ,

w = [ w[0] w[1] . . . w[N−1] ]T ,

OFDM 
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Figure 1: Model of the OFDM system with phase noise.

A =




α[0] α[N−1] . . . α[1]
α[1] α[0] . . . α [2]

...
...

. ..
...

α[N−1] α[N−2] . . . α[0]


 , (4)

H =




H[0] 0 . . . 0
0 H[1] . . . 0
...

...
.. .

...
0 0 . . . H[N−1]


 .

3. MODELING OF PHASE NOISE

There are mainly two types of oscillators used in practice, de-
pending on whether or not they are used in a phase-locked loop
(PLL). We briefly describe the phase noise model for each one
of them.

3.1 Free-running Oscillator

The frequency deviationµ(t) of an oscillator is modeled as a
zero-mean white Gaussian random process with single-sided
power spectral density (PSD)N0 = ν/π, whereν is the oscil-
lator linewidth. The phase noiseφFree(t) generated by a free-
running oscillator is modeled by integratingµ(t), i.e.,

φFree(t) = 2π
∫ t

0
µ(λ )dλ ,

which turns out to be a Wiener process. The single-sided PSD
of φFree(t) is

Sφ ,Free( f ) =
ν

π f 2 .

3.2 Oscillator with PLLs

If the free-running oscillator is used in the1st-order PLL,
whose closed loop transfer function is modeled as

H(s) =
ωL

s+ωL
,

then the single-sided PSD of the phase noiseφPLL(t) is given
by

Sφ ,PLL( f ) =
ν

π
(

f 2 + f 2
L

) ,

where fL = ωL/(2π) is a measure of loop bandwidth.

4. THE PROPOSED ALGORITHM

If both A andH in (3) were known, then the data vectorx
could be recovered, e.g., by solving [8]:

x̂ = arg min
x
‖ y−AHx ‖2 .

However, in practice, neither the channel matrixH nor the
phase noise matrixA are known to the receiver. In this sec-
tion, we propose a solution to deal with the situation when both
A andH are unknown at the receiver. The proposed algorithm
consists of two stages: one is the channel estimation stage, and
the other is the data transmission stage. In the channel estima-
tion stage, we use block-type pilot symbols to jointly estimate
H andA. In the data transmission stage, comb-type symbols
are transmitted such thatx can be jointly estimated withA by
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using theH estimated in the channel estimation stage. The
motivation for this algorithm is based on the fact that wireless
channels are usually slowly time-varying compared to phase
noise. Since the phase noise components may change signif-
icantly from one OFDM symbol to another, it is harmful to
use the previous estimate of phase noise to help detect the data
symbols in the subsequently received OFDM symbols. How-
ever, we can use the channel estimate for a few subsequent
OFDM symbols due to the slowly time-varying nature of wire-
less channels. This motivates our approach to compensate for
phase noise by using the joint channel estimation (with phase
noise) first and then followed by the joint data symbol estima-
tion (with phase noise). The algorithm is illustrated by Fig. 2.

4.1 Joint Channel and Phase Noise Estimation

In the block-type pilot symbols, all subcarriers are used to
transmit pilot symbols. For convenience of exposition, we as-
sume that each time only one OFDM symbol is used as the
block-type pilot symbol for channel estimation. Since there
are onlyN pilot tones in each block-type pilot symbol, it is
underdetermined to directly estimate the2N unknowns, i.e.,
α[k] andH[k], k = 0,1, . . . ,N−1. To overcome this difficulty,
we can reduce the number of unknowns by properly modeling
the channel and the phase noise process with fewer parame-
ters as follows. Since the lengthL of the discrete-time base-
band channel impulse response is usually less than the OFDM
symbol sizeN, we can relateH[k], k = 0,1, . . . ,N−1, to h[n],
n = 0,1, . . . ,L−1, through

h = Fhh′, (5)

where

h = [ H[0] H[1] . . . H[N−1] ]T ,

h′ = [ h[0] h[1] . . . h[L−1] ]T ,

Fh =




1 1 . . . 1

1 e− j 2π
N . . . e− j 2π(L−1)

N

...
...

. ..
...

1 e− j 2π(N−1)
N . . . e− j 2π(N−1)(L−1)

N




.

Instead of estimatingh, we can estimateh′. This reduces the
number of unknowns fromN to L.

For the phase noise, instead of estimatingα[k], k =
0,1, . . . ,N− 1, we can estimate the phase noise components
in the time domain, i.e.,ejφ(nTs), n = 0,1, . . . ,N − 1. In
order to reduce the number of unknowns, we can estimate
ejφ(m(N−1)Ts/(M−1)) for m= 0,1, . . . ,M−1 (M < N), and then

M M L

Time

Frequency
M M M M M M M

Pilot symbol

Data symbol

M LL
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Figure 2: Block diagram of the proposed algorithm.

obtain the approximation ofejφ(nTs), n= 0,1, . . . ,N−1, by in-
terpolation. Let

c =
[

ejφ(0) ejφ(Ts) . . . ejφ((N−1)Ts)
]T

,

c′ =
[

ejφ(0) e
jφ

(
(N−1)Ts

M−1

)
. . . ejφ((N−1)Ts)

]T
.

Then,

c≈Pc′,

whereP is an interpolation matrix to be determined. Using
(2), we have

a =
1
N

Fac≈ 1
N

FaPc′, (6)

where

a = [ α [0] α[1] . . . α[N−1] ]T ,

Fa =




1 1 . . . 1

1 e− j 2π
N . . . e− j 2π(N−1)

N

...
...

. ..
...

1 e− j 2π(N−1)
N . . . e− j 2π(N−1)2

N




.

Consequently, knowingx during training, we estimateA and
H by solving

min
c′,h′

‖ y−AHx ‖2, (7)

whereA is related toc′ by (6) andH is related toh′ by (5).
The estimates ofA andH from (7) will have an ambiguity of
a scaling factor, which can be resolved by constrainingα[0] to
be 1. The problem is overdetermined ifL+M < N.

The optimization problem given by (7) is nonlinear and
nonconvex. Suppose thatA is known. The optimalh′ is then
given by

h′o = (F∗hX
∗A∗AXFh)

−1F∗hX
∗A∗y,

whereX = diag{x}. By substitutingH = diag{Fhh′o} into
(7), the optimalc′ is given by

c′o = arg min
c′

‖y−A ·diag
{
Fhh′o

} ·x‖2.

In implementation, we use the following two-step iterative al-
gorithm to find a sub-optimal solution to (7):

Start with an initial guess ĉ′0. For example,

ĉ′0 = [ 1 1 . . . 1 ]T .

Then, execute Step 1.) and Step 2.) iteratively for i = 1,2, . . ., until there
is no significant improvement in the objective function ‖y−ÂiĤix‖2:

Step 1.) Let âi−1 = 1
NFaPĉ′i−1, and find the associated optimal

ĥ′i−1 by solving the following least-squares problem:

ĥ′i−1 = argmin
h′

‖ y−Âi−1Hx ‖2,

where x, y are known and Âi−1 is determined by âi−1 through (4).

Step 2.) Let ĥi−1 = Fhĥ
′
i−1, and find the associated optimal ĉ′i by

solving the following least-squares problem:

ĉ′i = argmin
c′
‖ y−AĤi−1x ‖2,

where Ĥi−1 = diag
{
ĥi−1

}
.

The obtained̂H will be used in the data transmission stage
when comb-type symbols are transmitted. In the next subsec-
tion, we assume thatH is known to beĤ.
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4.2 Joint Data Symbol and Phase Noise Estimation

In each comb-type OFDM symbol, assume thatQ carriers are
used for pilot tones andN−Q carriers for data symbols. Sim-
ilarly, instead of estimatingα[k], k = 0,1, . . . ,N− 1, we es-
timate the phase noise components in the time domain, i.e.,
ejφ(m(N−1)Ts/(M−1)) for m = 0,1, . . . ,M − 1, and then obtain
ejφ(nTs), n = 0,1, . . . ,N−1, by interpolation. The estimation
problem can be formulated as

min
c′,xdata

‖y−AHx‖2 ,

which can be rewritten as

min
c′,xdata

∥∥y−ApilotHpilotxpilot −AdataHdataxdata
∥∥2

, (8)

wherexpilot is the sub-vector ofx that consists of all the pilot
symbols andApilot , Hpilot are its associated sub-matrices from
A and H, andxdata is the sub-vector ofx that consists of
all the data symbols andAdata, Hdata are its associated sub-
matrices fromA andH. Since there areN−Q unknown data
symbols inxdata andM unknowns inc′, then the problem is
overdetermined ifQ > M.

Since the optimization problem given by (8) is similar to
the joint channel estimation problem we just solved, we can
follow the same procedure to solve it. IfA is known, the opti-
malxdata is given by

xdata,o = H−1
data(A

∗
dataAdata)

−1A∗
data

(
y−ApilotHpilotxpilot

)
.

Then the optimalc′ is given by

c′o = arg min
c′

∥∥y−ApilotHpilotxpilot −AdataHdataxdata,o
∥∥2

.

A sub-optimal solution can be found by the following iterative
procedure:

Use the method given in [4] to estimate the CPE coefficient α[0], and
let

ĉ′0 = [ α̂ [0] α̂[0] . . . α̂ [0] ]T .

Then, recursively execute Step 1.) and Step 2.) for i = 1,2, . . ., until
there is no significant improvement in the objective function:

Step 1.) Let âi−1 = 1
NFaPĉ′i−1, and find the associated optimal

x̂data,i−1 by solving the following least-squares problem:

x̂data,i−1 = arg min
xdata

‖ y−Âpilot,i−1Hpilotxpilot −Âdata,i−1Hdataxdata ‖2,

whereÂpilot,i−1 andÂdata,i−1 are determined bŷai−1 according to (4).
Step 2.) Find the optimal ĉ′i by solving the following least-squares

problem:

ĉ′i = argmin
c′

∥∥y−ApilotHpilotxpilot −AdataHdatax̂data,i−1
∥∥2

.

We first estimate the CPE coefficientα[0] in order to cor-
rect the scaling ambiguity in̂H. Finally, the obtained̂xdata
is mapped into bits.

4.3 Selection of the Interpolation Matrix P

4.3.1 PSD of the phase noise is known

If the PSD of the phase noise is known, the optimal interpola-
tion matrixPo can be obtained by minimizing the mean square
error of interpolatingc from c′, i.e.,

Po = arg min
P

E
∥∥ c−P c′

∥∥2
,

from which the optimalPo is given byPo = Rcc′R
−1
c′ , where

Rcc′ = E{cc′∗} andRc′ = E{c′c′∗}.

4.3.2 PSD of the phase noise is unknown

In this case, an interpolation matrixPL ∈RN×M is constructed
from linear interpolation, and its element at thenth row andmth

column is given by (9) (see the equation at the top of the next
page) forn = 1,2, . . . ,N andm= 1,2, . . . ,M. It can be shown
that for free-running oscillators, the optimal interpolatorPo is
approximately equal to the linear interpolatorPL if νTs¿ 1.

5. COMPUTER SIMULATIONS

The proposed scheme is simulated in comparison with the
ideal OFDM receiver with perfect phase noise compensation,
the CPE correction scheme [4], and the ICI compensation
schemes proposed in [5–7]. The system bandwidth is20MHz,
i.e.,Ts = 0.05 µs, and the constellation used for symbol map-
ping is 16-QAM. The OFDM symbol size isN = 64 and the
prefix length isP = 20. The channel length is6, and each tap
is independently Rayleigh distributed with the power profile
specified by 3 dB decay per tap. The assumed channel length
in the time domain for channel estimation isL = 12, the length
of the phase noise vector to be estimated isM = 4 or 8, and the
number of pilot tones in the comb-type symbols isQ= 8 or 16.

Fig. 3 shows the simulated system performance when the
phase noise is generated by a free-running oscillator. The
phase noise spectrum forν = 5 kHz is plotted in Fig. 3(a).
Fig. 3(b) compares different schemes in terms of the un-
coded bit error rate (BER) for the phase noise spectrum with
ν = 5 kHz. It is also demonstrated in Fig. 4 that the proposed
scheme can significantly improve the system performance for
the phase-loop locked oscillators.
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Figure 3: Simulation results when the phase noise is generated
by a free-running oscillator.

In Fig. 5, the proposed phase noise compensation scheme
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PL(n,m) =





m− (n−1)(M−1)
N−1 , if (m−1)(N−1)

M−1 ≤ n−1 < m(N−1)
M−1 ,

(n−1)(M−1)
N−1 − (m−2), if (m−2)(N−1)

M−1 ≤ n−1 < (m−1)(N−1)
M−1 ,

0, otherwise,

(9)
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Figure 4: Simulation results when the phase noise is generated
by a1st-order PLL oscillator.

is compared with the self-cancellation scheme proposed in [5],
the frequency-domain FIR-type equalizer proposed in [6], and
the ICI suppression method using sinusoidal approximation
proposed in [7]. In this simulation, we assume that the re-
ceivers have perfect channel information and the phase noise
is generated by a1st-order phase-loop locked oscillator with
ν = 5 kHz and fL = 50 kHz. It is shown in the figure that
the FIR-type equalizer and the ICI suppression method using
sinusoidal approximation do not perform well for this type of
fast-changing phase noise because they can only compensate
for the ICI from adjacent subcarriers. The self-cancellation
scheme works as well as the proposed method since it uses two
subcarriers to transmit one data symbol, which brings the ben-
efit of diversity gain as in MIMO communications. However,
the self-cancellation method reduces the spectral efficiency by
one half. In the simulation, each OFDM symbol can trans-
mit N−Q = 48 data symbols in the proposed scheme but
only N/2= 32symbols in the self-cancellation scheme, which
demonstrates that the proposed method can achieve50%more
spectral efficiency than the self-cancellation method.
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Figure 5: Comparison of different ICI compensation methods.
The phase noise is generated by a1st-order PLL oscillator with
ν = 5 kHz and fL = 50kHz.

6. CONCLUSIONS

In this paper, a phase noise compensation scheme is proposed
for OFDM-based wireless communications. The proposed
scheme consists of two phases. One phase is the joint chan-
nel and phase noise estimation, and the other phase is the joint
data symbol and phase noise estimation. The simulations show
that the proposed scheme can effectively improve the system
performance in terms of the bit error rate. Since oscillators
with ultra-low phase noise usually have the disadvantage of
high implementation cost and high power consumption, the
improvement will significantly reduce the cost and power con-
sumption from the perspective of hardware designers.
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