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ABSTRACT

The standard MVDR beamformer has high resolution and in-
terference rejection capability when the array steering vec-
tor is accurately known. However, it is known to degrade if
steering vector error exists. Motivated by recent work in ro-
bust adaptive beamforming, we develop variants of the con-
strained robust adaptive beamformer that attempt to limit the
search in the underlying optimization problem to a feasible
set of steering vectors thereby achieving improved perfor-
mance. The robustness against steering vector error is pro-
vided through a spherical uncertainty set constraint, while a
set of magnitude constraints is enforced on each element of
the steering vector to better constrain the search in the space
of feasible steering vectors. By appropriately changing the
variables, the optimization problem is modified such that the
need for the magnitude constraints are avoided. The devel-
oped algorithm is tested in the context of speech enhance-
ment using a microphone array and shown to be superior to
existing algorithms.

1. INTRODUCTION

The standard MVDR beamformer has high resolution and in-
terference rejection capability when the array steering vector
is accurately known [1]. However, the performance of tradi-
tional adaptive beamformer can degrade severely in practice
when the Signal Of Interest (SOI) steering vector errors ex-
ist, which may be due to look direction error, array sensor
position error, and small mismatches in the sensor responses.
In such cases, the SOI might be mistaken as an interference
signal and be suppressed. Many robust beamforming algo-
rithms have been proposed to address this problem. Deriv-
ative constraint in the look direction is proposed in [2, 3].
Er and Cantoni proposed a robust beamforming algorithm
which restricts the error between the desired and actual beam
pattern of the array over a small spatial region around the
array’s look direction, allowing for uncertainty in the look
direction [4]. Norm constrained and white noise gain con-
strained adaptive beamformer is studied in [5, 6] and widely
used thereafter.

Recently some interesting robust adaptive beamformers
have been proposed. Robust adaptive beamforming using
worst-case performance optimization is proposed in [7, 8].
The problem is formulated as minimizing a quadratic func-
tion subject to infinitely many quadratic constraints. It is re-
duced to a second-order cone programming problem which
can be solved by interior point methods. Li and Stoica
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proposed the robust Capon beamformer (RCB) [9] where a
spherical uncertainty set constraint is enforced on the array
steering vector. They also developed a doubly constrained
robust Capon beamformer (DCRCB) [10] based on RCB,
wherein a norm constraint on the beamformer steering vector
is added. A comparison of these two beamformers is given
in [11] and a geometrical explanation is provided.

In this paper, motivated by the constrained robust adap-
tive beamformer developed by Li and Stoica. We develop
variants that attempt to limit the search in the underly-
ing optimization problem to a feasible set of steering vec-
tors thereby achieving improved performance.The robustness
against steering vector error is provided through a spheri-
cal uncertainty set constraint, while a set of magnitude con-
straints is enforced on each element of the steering vector to
better constrain the search to the space of feasible steering
vectors. By appropriately changing the variables, the opti-
mization problem is modified such that the need for the mag-
nitude constraints are avoided. The developed algorithm is
tested in the context of speech enhancement using a micro-
phone array and shown to be superior to existing algorithms.

2. BACKGROUD

2.1 Standard MVDR Beamforming (MVDR)

The MVDR beamforming is also called Capon beamform-
ing [1]. The problem is formulated as minimizing the output
energy of the beamformer while maintaining a constant re-
sponse in the look direction, i.e.

min
w

wHRw, s.t. wHa = 1. (1)

whereR is the signal correlation matrix.a is the SOI steering
vector. w is the beamformer weight vector. The solution to
this optimization problem is given by

w =
R−1a

aHR−1a
. (2)

2.2 Robust Capon Beamforming (RCB)

The Robust Capon Beamforming (RCB) is proposed in [9].
Supposea0 is the true SOI steering vector anda is the as-
sumed steering vector.a0 is assumed to be in the vicinity of
a. This can be expressed mathematically by the following
inequality

‖a0−a‖2 ≤ ε, (3)

whereε is a bound controlling the uncertainty in the assumed
look direction.
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The Capon beamforming problem can be reformulated as

max
σ2

σ
2, s.t. R−σ

2aaH ≥ 0. (4)

whereR is the signal correlation matrix.σ2 is the signal
power to be estimated.

Use the new formulation, one can write the RCB problem
as

max
σ2,a

σ
2, s.t. R−σ

2aaH ≥ 0 and ‖a−a‖2 ≤ ε. (5)

Using the fact that, for any fixeda, the solution to (4) with
regard toσ2 is obtained by

σ̂
2 = 1/(aHR−1a) (6)

the optimization problem (5) can be written as

min
a

aHR−1a, s.t. ‖a−a‖2 ≤ ε. (7)

The solution can be found using Lagrange multiplier method
as

â0 = ā−U(I +λΓ)−1UH ā (8)

whereR= UΓUH is the eigenvalue decomposition ofR, and
λ is the Lagrange multiplier. Once the SOI steering vector
is estimated, the signal power can be estimated as in (6) and
the beamformer weight vector is easily obtained as in MVDR
beamforming (2).

One difficulty with this approach is that it tends to over-
estimate the signal powerσ2, because both the SOI power
and the SOI steering vector are taken as unknowns in prob-
lem (5). Thus,(σ2,a) and(σ2/α,α1/2a),∀α > 0 will give
the same itemσ2aaH . Suppose(σ2

0 ,a0) is the true solu-
tion to be found, the formulation of (5) will prefer the pair
(σ2

0/α,α1/2a0) if only α < 1 andα1/2a0 is still in the un-
certainty set. By the deduction above, we can be certain that
the solution to (5) will make the inequality constraint in (5)
active, i.e.‖â0−a‖2 = ε. This problem is solved in [9] by
a normalization step such that‖â0‖2 = N, whereN is the
number of sensor elements.

2.3 Doubly Constrained Robust Capon Beamforming
(DCRCB)

To avoid the signal power overestimation problem discussed
above in section 2.2, the Doubly Constrained Robust Capon
Beamforming (DCRCB) is proposed [10]. The problem is
formulated in a similar way as in (7) except that an extra
norm constraint on the steering vectora is added.

The problem is formulated as

min
a

aHR−1a, s.t. ‖a−a‖2 ≤ ε and ‖a‖2 = N (9)

The solution can be found using the Lagrange multiplier
method

â = (N− ε

2
)

U(I +λΓ)−1UH ā
āHU(I +λΓ)−1UH ā

(10)

whereR= UΓUH is the eigenvalue decomposition ofR, and
λ is the Lagrange multiplier. Then the beamformer weight
vector is easily obtained as in MVDR beamforming (2).

In both RCB and DCRCB, the boundε is chosen such
that all possible SOI steering vectorsa0 is included in the
uncertainty set described by (3).

3. MAGNITUDE CONSTRAINED ROBUST MVDR
BEAMFORMER

The RCB (section 2.2) and DCRCB (section 2.3) beamform-
ing algorithms may fail because the optimum solution ˆa to
the optimization problem (7) or (9) may not be a valid steer-
ing vector. A valid steering vector is usually structured and
is not any arbitrary element in the constrained set (3). We de-
velop variants of the constrained robust adaptive beamformer
that attempt to limit the search in the underlying optimization
problem to a feasible set of steering vectors thereby achiev-
ing improved performance. For an array with identical omni-
directional sensors, a valid steering vectora can be expressed
asa = [e− jωτ1,e− jωτ2, ...,e− jωτN ]T for the far field sources.
We observe that each element of the the steering vectora has
magnitude 1. Therefore an option is to enforce a set of mag-
nitude constraints on each element of the steering vectora
based on RCB (7) thereby making the search space smaller
and more feasible. The new optimization problem can be
formulated as

min
a

aHR−1a, s.t. ‖a−a‖2 ≤ ε and |ak|= 1,k = 1..N

(11)
where ak is the kth element of the steering vectora, i.e.
a = [a1,a2, ...,aN]T . Unfortunately, a closed form solution to
this optimization problem is not available and an optimiza-
tion routine has to be utilized.

3.1 Time Delay Based Robust MVDR Beamformer (rob-
MVDRtd)

By manipulating the variables, we can create a robust beam-
forming problem similar to problem (11). In particular, we
use the form of the steering vectorai for a specific frequency
ωi as

ai = [e− jωiτ1,e− jωiτ2, ...,e− jωiτN ]T (12)

As |ejωiτk| ≡ 1, optimizing over the time delay variablesτi
ensures the magnitude constraint in (11) is automatically sat-
isfied and thus need not be explicitly enforced. The new ro-
bust beamforming problem is formulated as

min
τ

aH
i R−1

i ai , s.t. |τk− τk| ≤ δk, k = 1..N (13)

whereRi is the signal correlation matrix for frequencyωi .
τ = [τ1,τ2, ...,τN]T , andτ = [τ1,τ2, ...,τN]T is the assumed
look direction time delay vector.δk,k = 1..N is a set of
bounds controlling the uncertainty in the look direction. The
new problem (13) can be solved by using an appropriate op-
timization routine.

We use a subspace trust region method which is based
on interior-reflective Newton algorithm to find the solution
to problem (13). We need the gradient and Hessian of the
objective functionh(τ) = aH

i R−1
i ai , whereai is specified by

(12). It is straightforward to obtain gradient as

∇τh = AR−T
i a∗i +A∗R−1

i ai (14a)

= real(A∗R−1
i ai) (14b)

where(.)∗ denotes conjugate and(.)T denotes transpose.

A = (− jωi)


a1 0 · · · 0
0 a2 · · · 0
...

...
...

...
0 0 · · · aN

 (15)
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whereak is thekth element of the steering vectorai , i.e.ai =
[a1,a2, ...,aN]T .

Also, the Hessian is obtained as

∇2
τh = real((− jωi)diag(aH

i R−1
i )A+AR−T

i A∗) (16)

In the context of broadband signals, for each frequency
componentωi of the signal one has to solve a problem
like (13). However, the objective minimizer̂τ is the true
time delay from the SOI to each microphone element, which
doesn’t depend on the frequencyωi . In other words, we want
to find a common minimizer̂τ that is valid for all the frequen-
cies. This is not automatic and has to be enforced. It can be
achieved by combining the series of beamforming problems
on individual frequency bins into a single problem to pro-
vide robustness. The broadband beamforming problem can
be formulated as

min
τ

∑
i
aH

i R−1
i ai , s.t. |τk− τk| ≤ δk, k = 1..N (17)

3.2 Angle Based Robust MVDR Beamformer (robMV-
DRangle)

The RCB (section 2.2), DCRCB (section 2.3) and robMV-
DRtd (section 3.1) algorithms assume uncertainty in the
steering vector, which takes both the SOI look direction error
and the array sensor’s position error into consideration. The
problem can be simplified when only SOI look direction er-
ror exists. For instance, in the case of 2-dimensional space
the sources’ incidence directions can be represented by only
one parameterθ . Hence, we can usev(θ) to substitute for
the steering vectora in (13). The new robust beamforming
problem can be written as

min
θ

v(θ)HR−1v(θ), s.t. |θ −θ | ≤ ε (18)

wherev(θ) = [e− jωτ1,e− jωτ2, ...,e− jωτN ]T , andτi , i = 1, ..,N
is functions ofθ based on the geometry of the array.θ is the
assumed look direction.ε is a bound controlling the uncer-
tainty in the assumed look direction. The problem (18) can
be solved by one dimensional numerical optimization algo-
rithm such as the golden section search method.

4. SIMULATION

4.1 Beamforming Algorithms Notation

We use the following notation for each beamforming algo-
rithm.

• OMVDR: the ideal MVDR beamforming which assumes
we know the true SOI steering vector

• MVDR: standard MVDR beamforming
• DS: conventional delay and sum beamforming
• RCB: robust Capon beamforming (section 2.2)
• DCRCB: doubly constrained robust Capon beamforming

(section 2.3)
• robMVDRtd: time delay based robust MVDR beam-

forming (section 3.1)
• robMVDRangle: angle based robust MVDR beamform-

ing (section 3.2)

Figure 1: Cepstral distance between recovered signal’s spec-
trum and the SOI’s spectrum, only look direction error exists.

4.2 Simulation Scenario

In this section, we provide numerical examples on speech
enhancement using a microphone array to compare the per-
formances of various beamformers. We assume a circular
microphone array with 8 sensors. The 8 sensors are equally
distributed on a 20cm diameter circle and indexed counter
clockwise. The sources, both the SOI and interference sig-
nals, are plane waves which exist in the same plane as the
circular array. We define the origin of the coordinate sys-
tem to be the center of the circular microphone array, and
define angle 0◦ to be the direction of the 8th microphone.
The angle increases counter clockwise, which means the 1st
microphone is at angle 45◦, the 2nd microphone is at angle
90◦, and so on. In the simulation, every source signal is a
single channel speech sentence, which is around 1s in dura-
tion. The sampling rate is 8kHz. Short Time Fourier Trans-
form (STFT) is used to transform the multichannel data into
the frequency domain and the narrowband beamforming al-
gorithms are then applied. The frame length is 0.25s (200
samples), with a step length of 0.125s (100 samples). A 256
points FFT is used on each frame.

4.3 Simulation Results

The performance of various beamformers is measured by
the cepstral distance between the recovered signal’s spec-
trum and the original SOI’s spectrum. The cepstral distance
is used because it is a perceptual metric commonly used in
speech processing to measure distortion. Fig.1 shows the
beamformers’ performance versus SNR, which is signal to
white noise ratio. Only one SOI and one interference signal
exist in this experiment. The interference signal and SOI has
the same level of energy. The interference signal come from
direction 90◦. The assumed look direction is 180◦, while the
true SOI direction is 178◦, which means a 2◦ look direction
error. There’s no sensor position error in this experiment.

Fig.2 shows the beamformers’ performance by cepstral
distance when there exist not only the look direction error,
but also sensor position error. The displacement error for
each sensor is generated by an uniformly distributed random
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Figure 2: Cepstral distance between recovered signal’s spec-
trum and the SOI’s spectrum, both look direction error and
sensor position error exist.

variable whose maximum value is 3mm. All the other set-
tings are the same as those of the aforementioned experiment.

The OMVDR beamformer gives the optimal perfor-
mance and bounds the performance that can be attained by
these class of adaptive beamformers. Our simulation results
clearly demonstrate that the proposed robMVDRtd beam-
former consistently performance well and is very close in
performance to the OMVDR beamformer. The robMVDRtd
beamformer outperforms the conventional fixed DS beam-
former and other adaptive beamformers such as MVDR,
RCB and DCRCB. The proposed robMVDRangle beam-
former works extremely well when only look direction error
exists. It has the same performance as the optimal OMVDR
beamformer in this condition. However, it deteriorates and
has performance comparable to the standard MVDR beam-
former when sensor position error exists. This highlights the
sensitivity of angle based formulation. Although the norm
constraint on steering vector is introduced in the DCRCB
method to prevent overestimation of signal power in the RCB
method, our simulations show that the DCRCB method has
worse performance than the RCB method. This can be ex-
plained by noting that even when an extra norm constraint
on steering vector is added, the minimizer to the optimiza-
tion problem (9) is still not a valid steering vector. This phe-
nomenon can be observed by examining the beampatterns
in Fig.3. Listening to the reconstructed speech indicates the
output of the RCB/DCRCB to be better than the DS beam-
former even though it is not evident from the cepstral dis-
tance measure employed.

Fig.3 shows the magnitude beam pattern of various
beamformers on one sample data. This sample data is se-
lected from the data set used to generate Fig.1. The SNR is
43dB. It is evident that the beam pattern of the robMVDRtd
method is close to that of the OMVDR beamformer. The
MVDR beamformer forms two deep nulls, one in the inter-
ference direction, the other in the SOI direction. The RCB
and DCRCB method can steer a null in the interference di-
rection (90◦) at low frequency range, while at middle to high
frequency range, their beam patterns are similar to that of DS

beamformer. This can be explained by the choice of uncer-
tainty boundε. The boundε is chosen such that all possible
SOI steering vectorsa0 are included in the prescribed uncer-
tainty set. This usually brings on a big value ofε at high
frequency, which results in many infeasible steering vectors
being included in the uncertainty set (3). Thereby the min-
imizer to the optimization problem (7) and (9) is no longer
a valid steering vector in the high frequency range. A close
observation of the steering vector which minimizes the op-
timization problem (7) and (9) at high frequency range con-
firms the above reasoning. The element magnitudes of those
steering vectors have been found to be far away from 1.
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(a) OMVDR beamformer (b) standard MVDR beamformer

(c) DS beamformer (d) RCB beamformer

(e) DCRCB beamformer (f) robMVDRtd beamformer

Figure 3: Beam pattern of various beamformers over angleθ and frequency bins. The look direction is 180◦, the true SOI
direction is 178◦, and the interference direction is 90◦.
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