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ABSTRACT

In this paper we present a super resolution Bayesian method-
ology for pansharpening of multispectral images which: a)
incorporates prior knowledge on the expected characteristics
of the multispectral images, b) uses the sensor characteris-
tics to model the observation process of both panchromatic
and multispectral images, c) includes information on the un-
known parameters in the model, and d) allows for the esti-
mation of both the parameters and the high resolution mul-
tispectral image. Using real data, the pansharpened multi-
spectral images are compared with the images obtained by
other parsharpening methods and their quality assessed both
qualitatively and quantitatively.

1. INTRODUCTION

Nowadays most remote sensing systems include sensors able
to capture, simultaneously, several low resolution imagesof
the same area on different wavelengths, thus forming a mul-
tispectral image, along with a high resolution panchromatic
image. For instance, the Landsat 7 satellite, equipped with
the ETM+ sensor, allows for the capture of a multispectral
image with six bands (three bands in the visible spectrum
plus three bands in the infrared) with a resolution of 30 me-
ters per pixel, a thermal band with a resolution of 60 meters
per pixel and a panchromatic band (covering a large zone on
the visible spectrum and the near infrared), with a resolution
of 15 meters per pixel.

The term multispectral image reconstruction using super
resolution as used in this paper, refers to the joint processing
of the multispectral and panchromatic images in order to ob-
tain a new multispectral image that, ideally, will present the
spectral characteristics of the observed multispectral image
and the resolution and quality of the panchromatic image.

A few approximations to this problem have been pro-
posed in the literature (see [11] for a comparative study).
Among them Principal Component Analysis (PCA) (see [5])
and wavelets based approaches [8] have been used. Price
[9] proposed a method relying on the statistical relationships
between the radiances in the low and high spatial resolution
bands. Recently a few super-resolution based methods have
also been proposed [4, 1].
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Integrated Action HG2004-0014, and by the ”Instituto de Salud Carlos III”
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Figure 1: Problem formulation, acquisition model and used
notation.

In this paper we formulate the reconstruction of a multi-
spectral image using super resolution techniques from a hi-
erarchical Bayesian perspective and derive a new method to
simultaneously estimate the parameters of the model and the
high resolution multispectral image from the observed im-
ages. The method extends the results already presented in
[7], where an iterative algorithm for the reconstruction prob-
lem, assuming the values of the parameters were known, was
proposed.

The paper is organized as follows. The acquisition
model is presented in section 2. In section 3 the hierachical
Bayesian paradigm for super resolution applied to multispec-
tral image reconstruction is presented and the required prob-
ability distributions are formulated. The Bayesian analysis is
performed in section 4 to obtain the reconstruction and pa-
rameter estimation algorithm. Experimental results on a real
Landsat 7 ETM+ image are described in section 5. Finally
section 6 concludes the paper.

2. ACQUISITION MODEL

Let us assume thaty, the multispectral image we would ob-
serve under ideal conditions with a high resolution sensor,
hasB bands

y = [yt
1,y

t
2, . . . ,y

t
B]t , (1)

each one of sizep = m×n pixels, witht denoting the trans-
pose of a vector or matrix. Each band of this image can be
expressed as a column vector by lexicographically ordering
the pixels in the band.
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Figure 2: Landsat 7 ETM+ band spectral response normal-
ized to one.

In real applications, this image is not available and, in-
stead, we observe a low resolution multispectral imageY
with B bands

Y = [Yt
1,Y

t
2, . . . ,Y

t
B]t ,

each one of sizeP = M×N pixels,M < m andN < n. Each
band of this image can be expressed as a column vector by
lexicographically ordering the pixels in the band. Figure 1
illustrates the acquisition model and the notation used.

Each band,Yb, is related to its corresponding high reso-
lution image by

Yb = Hyb +nb, ∀b = 1, · · · ,B, (2)

whereH is aP× p matrix representing the blurring, the sen-
sor integration function and the spatial subsampling (we as-
sume that this process is the same over the whole set of spec-
tral images), andnb is the capture noise, assumed to be Gaus-
sian with zero mean and variance 1/βb.

A simple but widely used model for the matrixH is to
consider that each pixel(i, j) of the low resolution image is
obtained according to (form = 2M andn = 2N)

Yb(i, j) =
1
4 ∑

(u,v)∈Ei, j

yb(u,v)+ nb(i, j), (3)

whereEi, j consists of the indices of the four high resolution
pixels Ei, j = {(2i,2 j),(2i + 1,2 j),(2i,2 j + 1),(2i + 1,2 j +
1)} (see right hand side of figure 1).

We note here thatH can be written as

H = DB, (4)

whereB is a p× p blurring matrix andD is a decimation
operator.

The sensor also provides us with a panchromatic image
x of size p = m× n, obtained by spectral averaging the un-
known high resolution imagesyb. This relation can be mod-
elled as

x =
B

∑
b=1

λbyb + ν, (5)

whereλb ≥ 0, b = 1,2, · · · ,B, are known quantities that can
be obtained, as we will see later, from the sensor spectral
characteristics, and weight the contribution of each bandyb
to the panchromatic imagex (see left hand side of figure 1),
andν is the capture noise that is assumed to be Gaussian with
zero mean and varianceγ−1.

3. BAYESIAN MODELING

Our first goal is to define a joint distribution p(Ω,y,Y,x) of
the high resolution panchromatic observed imagex, the low

resolution multispectral observationsY, the unknown high
resolution multispectral imagey, and the hyperparameters
describing their distributionsΩ.

To model the joint distribution, we utilize the hierarchi-
cal Bayesian paradigm (see, for example, [6]). In the hierar-
chical approach to super resolution of multispectral images
we have at least two stages. In the first stage, knowledge
about the structural form of the observation process and the
structural behavior of the high resolution multispectral image
is used in forming p(Y,x|y,Ω), and p(y|Ω), respectively.
These models depend on the unknown hyperparametersΩ.
In the second stage, a hyperprior on the hyperparameters,
p(Ω), is defined, thus allowing the incorporation of infor-
mation about these hyperparameters into the process.

ForΩ, y, Y, andx the following joint distribution is then
defined

p(Ω,y,Y,x) = p(Ω)p(y|Ω)p(Y,x|y,Ω). (6)

We note here that each of the two above mentioned condi-
tional distributions will depend only on a subset ofΩ, but we
use this more general notation until we precisely describe the
hyperparameters that defineΩ.

3.1 Degradation model

We assume thatY andx, for a giveny, and a set of parame-
tersΩ are independent and consequently

p(Y,x|y,Ω) = p(Y|y,Ω)p(x|y,Ω) . (7)

Given the degradation model for multispectral image super
resolution described by Eq. (2) the distribution of the ob-
servedY giveny and a set of parametersΩ is equal to

p(Y|y,Ω) =
B

∏
b=1

p(Yb|yb,βb)

=
1

Zβ
exp

{

−
1
2

B

∑
b=1

βb ‖ Yb −Hyb ‖
2

}

,(8)

whereZβ = ∏B
b=1(

2π
βb

)P/2.
Using the degradation model in Eq. (5), the distribution

of the panchromatic imagex giveny and a set of parameters
Ω is given by

p(x|y,γ) =
1
Zγ

exp

{

−
1
2

γ ‖ x−
B

∑
j=1

λ jy j ‖
2

}

, (9)

whereZγ = (2π
γ )p/2.

3.2 Image model

It is also necessary to specify the prior distribution of the
high resolution image and a set of parametersΩ, p(y|Ω).
Although other models are possible, in this paper we assume
no correlation between the different high resolution bands.
Then, our prior knowledge about the smoothness of the ob-
ject luminosity distribution within each band makes it possi-
ble to model the distribution ofy given a set of parametersΩ
by

p(y|Ω) =
B

∏
b=1

p(yb|αb) =
1

Zα

B

∏
b=1

exp

{

−
1
2

αb ‖ Cyb ‖
2
}

,

(10)
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whereC denotes the Laplacian operator, 1/αb is the variance
of the Gaussian distribution andZα ∝ ∏B

b=1(
2π
αb

)p/2.

3.3 Hyperprior on the hyperparameters

As mentioned earlierΩ denotes the set of hyperparameters
describing the distributions introduced above, that is,

Ω = (γ,β1, . . . ,βB,α1, . . . ,αB). (11)

A large part of the Bayesian literature is devoted to find-
ing hyperprior distributions p(Ω) for which p(Ω,y|x,Y) can
be calculated in a straightforward way or be approximated.
These are the so called conjugate priors [2]. Conjugate pri-
ors have, as we will see later, the intuitive feature of allowing
one to begin with a certain functional form for the prior and
end up with a posterior of the same functional form, but with
the parameters updated by the sample information.

Taking the above considerations about conjugate priors
into account, we will assume that the hyperparameters,ω ∈
Ω, are independent and follow a gamma distribution defined
by

p(ω |ao
ω ,co

ω) =
((ao

ω −1)co
ω)ao

ω

Γ(ao
ω)

ωao
ω−1exp[−(ao

ω −1)co
ω ω ],

(12)
whereω > 0 denotes a hyperparameter, and the two param-
etersco

ω > 0 andao
ω > 1 are assumed known. This gamma

distribution has the following mean, mode, and variance

E[ω ] =
ao

ω
(ao

ω −1)co
ω

, Mode[ω ] =
1

co
ω

(13)

Var[ω ] =
ao

ω
((ao

ω −1)co
ω)2 . (14)

Note that the mean and mode do not coincide.

4. BAYESIAN INFERENCE

Having defined the degradation, image, and hyperprior mod-
els, Bayesian inference is applied.

The inference approach we will follow consists of esti-
mating the hyperparameters inΩ by using

Ω̂ = argmax
Ω

p(Ω|Y,x) = argmax
Ω

∫

y

p(Ω,y,Y,x)dy,

(15)
and then estimating the high resolution multispectral image
by solving

y(Ω̂) = argmax
y

p(y|Ω̂,Y,x). (16)

Let us redefiney(Ω) by maximizing the log of a function
instead of the function itself, that is,

y(Ω) = argmax
y

logp(y|Y,x,Ω) . (17)

To estimate the hyperparameters and image, we note that

y|Y,x,Ω ∼ N (E[y|Y,x,Ω],cov[y|Y,x,Ω]) . (18)

The covariance of the posterior satisfies

cov[y|Y,x,Ω] = Q(Ω)−1, (19)

with

Q(Ω) =









α1C
tC 0p . . . 0p

0p α2C
tC . . . 0p

...
...

. . .
...

0p 0p . . . αBC
tC









+









β1H
tH 0p . . . 0p

0p β2H
tH . . . 0p

...
...

. . .
...

0p 0p . . . βBH
tH









+ γΛ⊗ Ip , (20)

the operator⊗ is the Kronecker product, and

Λ =











(λ1)
2 λ1λ2 . . . λ1λB

λ2λ1 (λ2)
2 . . . λ2λB

...
...

. . .
...

λBλ1 λBλ2 . . . (λB)2











. (21)

The mean of the posterior distributionE[y|Y,x,Ω], which
coincides with the mode of the posterior distribution, satisfies

E[y|Y,x,Ω] = Q(Ω)−1φ(Ω) (22)

whereQ(Ω) has been defined in Eq. (20) andφ(Ω) is the
(B× p)×1 vector

φ(Ω) =









β1H
t 0p . . . 0p

0p β2H
t . . . 0p

...
...

. . .
...

0p 0p . . . βBH
t









Y

+ γ









λ1Ip 0p . . . 0p
0p λ2Ip . . . 0p
...

...
. . .

...
0p 0p . . . λBIp

















x
x
...
x









.(23)

For simplicity, the dependency ofφ(Ω) on bothx andY is
not denoted explicitely.

To estimateΩ we now apply the E-M algorithm [3]. Let
us assume that we already have an estimateΩ′ of the un-
known parameters, then

U(Ω|Ω′) = Ey|Y,x,Ω′ [logp(y,x,Y,Ω)]

= const+(ao
γ −1) logγ − (ao

γ −1)bo
γγ

+ ∑
b

((ao
αb

−1) logαb − (ao
αb
−1)co

αb
αb)

+ ∑
b

((ao
βb
−1) logβb − (ao

βb
−1)co

βb
βb)

+ p
B

∑
b=1

logαb + P
B

∑
b=1

logβb + p logγ

− ‖ Cyb(Ω′) ‖2 −tr[CtCcov(yb|Y,x,Ω′)]

− ‖ Yb −Hbyb(Ω′) ‖2 −tr[HtHcov(yb|Y,x,Ω′)]

− ‖ x−
B

∑
b=1

λ jyb(Ω′) ‖2

−
B

∑
i=1

B

∑
j=1

λiλ jtr[cov(yi,y j|Y,x,Ω′)]
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Image Date Path Row
A 2000-07-30 200 031
B 2000-08-08 199 031

Table 1: Landsat 7 ETM+, L1G Orthorectified image sets.

DifferentiatingU(Ω|Ω′) with respect toΩ we obtain at
its maximum

1
αb

=
ao

αb
−1

p + ao
αb
−1

co
αb

+
p

p + ao
αb
−1

‖ Cyb(Ω′) ‖2

p

+
p

p + ao
αb
−1

tr[CtCcov(yb|Y,x,Ω′)]

p
∀b (24)

1
βb

=
ao

βb
−1

P+(ao
βb
−1)

co
βb

+
P

P + ao
αb
−1

‖ Yb −Hyb(Ω′) ‖2

P

+
P

P+ ao
αb
−1

tr[HtHcov(yb|Y,x,Ω′)]

P
∀b (25)

1
γ

=
ao

γ −1

p + ao
γ −1

co
γ +

p
p + ao

γ −1
‖ x−∑B

b=1λbyb(Ω′) ‖2

p

+
p

p + ao
γ −1

B

∑
i=1

∑B
j=1λiλ jtr[cov(yi,y j|Y,x,Ω′)]

p
(26)

These equations provide a very interesting interpretationof
the estimated hyperparameters at convergence. The hyper-
parameter estimates are a weighted sum of their maximum
likelihood estimates (ao

ω = 1,∀ω ∈ Ω) and the inverse of the
modes of their hyperprior distributions (see Eq. (13)).

Based on the above development we propose the follow-
ing algorithm for the estimation of the hyperparameters and
the high-resolution image

Algorithm 1 Iterative estimation of̂Ω andy(Ω̂).

1. Choose Ω0. Set k = 0.
2. Compute y(Ω0) using Eq. (17) for Ω = Ω0.
3. Repeat

i) Set k=k+1,
ii) Use Ω′ = Ωk−1 in the right hand side of Eqs. (24),

(25) and (26) to obtain Ωk in the left hand side of
these equations.

iii) Compute y(Ωk) using Eq. (17) for Ω = Ωk.
until

‖ y(Ωk)−y(Ωk−1) ‖
2

‖ y(Ωk) ‖
2 < ε (27)

whereε is a prescribed bound.

5. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on the set of Landsat
ETM+ images [10] shown in Table 1. Multispectral image
regions of interest of size 128×128 pixels, and their corre-
sponding 256×256 pixel regions of the panchromatic image,
were used in the experiments. Figure 3 displays the region
of interest for image A in Table 1. The image on the left is
a false (RGB) color image composed of bands 4, 3 and 2 of
the Landsat ETM+ multispectral image.

(a) (b)

Figure 3: Details of the (a) false color multispectral imageA
and (b) panchromatic imageA in Table 1.

Image λ1 λ2 λ3 λ4
A 0.0467 0.1759 0.1883 0.5891
B 0.0118 0.1918 0.1495 0.4990

Table 2: Estimatedλb values for the used images.

According to the ETM+ sensor spectral response in
Fig. 2, the panchromatic image only covers the spectrum of a
part of the first four bands of the multispectral image. Hence,
we apply the proposed method withB = 4.

In order to apply Algorithm 1, we need to know the con-
tribution of each band to the panchromatic image, that is, the
values ofλb, b = 1,2, . . . ,B in Eq. (9). These values have
been obtained by solving forλ = (λ1, . . . ,λ4)

λ̂ = argmin
λ

‖ x−
4

∑
b=1

λbY
up
b ‖2, (28)

whereYup
b denotes the upsampled (by bicubic interpolation)

version ofYb to the size of the panchromatic imagex. The
values obtained forλ for each image in Table 1 are shown in
Table 2.

The initial set of parametersΩ0 in Algorithm 1 were cho-
sen from the bicubic interpolation of the multispectral image,
y0, using the following equations

α0
b = p/ ‖ Cy0

b ‖
2, b = 1, . . . ,B, (29)

β 0
b = P/ ‖ Yb −Hy0

b ‖
2, b = 1, . . . ,B, (30)

γ0 = p/ ‖ x−
B

∑
b=1

λby
0
b ‖

2 . (31)

The value ofε = 10−6 was used in Eq. (27) as the prescribed
bound.

One important issue with Algorithm 1 is the selection of
the hyperprior parameters. As we have already commented,
if we selectao

ω = 1,∀ω ∈ Ω, Algorithm 1 obtains the maxi-
mum likelihood estimate of the hyperparameters, thus mak-
ing the observed data fully responsible for the estimation of
the parameters. However, we usually have some information
about the possible values of the parameters and, with the pro-
posed method, we can incorporate this information into the
estimation process. In this paper we chose such parameters
by applying Algorithm 1 to each bandb independently using
λb = 1, b = 1, . . . ,4, thus justifying the panchromatic image
only from the spectral bandb. This will provide us with esti-
mates forαb andβb for each bandb = 1, . . . ,4, that we will
use as values forco

αb
andco

βb
, b = 1, . . . ,4, respectively. The
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(a) (b)

(c) (d)

Figure 4: Reconstructions of imageA using (a) bicubic in-
terpolation, (b) the Price method, (c) the proposed method
with ao

ω = 1,∀ω ∈ Ω, and (d) the best reconstruction with
the proposed method.

algorithm also provides us with four estimates ofγb, one for
each band, that we combine asco

γ = 1
4 ∑4

b=1 γb.
In our experiments we chose a set of five values forao

ω
such thatao

ω −1/(N +ao
ω −1), with N = p or N = P depend-

ing on the parameterω , ω ∈ Ω, ranges from 0 to 1. Note that
(ao

ω −1)/(N + ao
ω −1) is equal to zero forao

ω = 1 and it is
equal to one forao

ω = ∞. In this case, we practically do not
take into account the maximum likelihood estimates of the
hyperparameters and all the information on the hyperparam-
eters is provided byco

ω .
Table 3 shows a numerical comparison in terms of

PSNRb = 10log10

{

2552×P/ ‖ Yb −Dyb(Ω̂) ‖2
}

of the
reconstructions using bicubic interpolation, the Price method
[9], the proposed method withao

ω = 1,∀ω ∈ Ω, and the pro-
posed method whenao

ω is chosen to obtain the best recon-
struction. The best reconstruction is obtained, for imageA
with ao

αb
= p − 1, ao

βb
= P − 1,b = 1, . . . ,4, andao

γ = ∞
and, for imageB, with ao

αb
= 1, ao

βb
= 1,b = 1, . . . ,4, and

ao
γ = ∞. Figure 4 shows the reconstructions corresponding to

imageA.
From the reported data it is clear that the proposed

method outperforms bicubic interpolation and the Price
method, both in quantitative and qualitative terms when no
information for the hyperparameters is provided although
better results are obtained when some prior knowledge is in-
cluded into the estimation process.

6. CONCLUSIONS

In this paper the reconstruction of multispectral images has
been formulated from a super resolution point of view. A
hierachical Bayesian method for estimating both the recon-
structed pansharpened images and the model parameters,
within the Bayesian framework, has been proposed. Based
on the presented experimental results, the new method out-

Image band MI MII Alg. 1, ao
ω = 1 Alg. 1

A 1 21.0 19.1 21.7 21.7
2 19.8 18.1 20.4 20.6
3 17.2 15.5 17.5 17.8
4 20.1 17.8 20.1 20.6

B 1 18.1 17.0 18.8 18.9
2 16.8 15.8 17.2 17.4
3 14.8 13.7 15.1 15.3
4 17.4 16.4 17.8 18.1

Table 3: PSNR (dB) obtained by bicubic interpolation (MI),
the Price method [9] (MII), the proposed method withao

ω =
1,∀ω ∈ Ω (Alg. 1, ao

ω = 1), and the best reconstruction by
the proposed method (Alg. 1) for each band.

performs both bicubic interpolation and the method in [9].
In our future work non stationary image priors and the use of
total variation methods will be considered.
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