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A band (y,) of the high resolution
multispectral image
(y) we want to estimate

ABSTRACT

In this paper we present a super resolution Bayesian method- /
ology for pansharpening of multispectral images which: a)
incorporates prior knowledge on the expected charadterist
of the multispectral images, b) uses the sensor characteris
tics to model the observation process of both panchromatic

z8

and multispectral images, c) includes information on the un 8% ‘ 4 D 4
known parameters in the model, and d) allows for the esti- §5 Observed high resalution || A band (b ofthe observed low |
mation of both the parameters and the high resolution mul- @8 ‘ panchromatic mage | resolution meticpecralmage
tispectral image. Using real data, the pansharpened multi- o A ———
spectral images are compared with the images obtained by L g esoluton gY(hgszer(gase:Yh(ig)hTrye(ﬁg(uyﬁ&n
other parsharpening methods and their quality assesskd bot (¥) we want to estimate 5 " ywar

. . . . =
qualitatively and quantitatively. Figure 1: Problem formulation, acquisition model and used

notation.
1. INTRODUCTION

Nowadays most remote sensing systems include sensors able

: = 2 In this paper we formulate the reconstruction of a multi-
to capture, simultaneously, several low resolution imagfes

h it I hs. thus formi Epectral image using super resolution techniques from a hi-
the same area on different wavelengths, thus forming & muls 5 chical Bayesian perspective and derive a new method to
tispectral image, along with a high resolution panchromati gimitaneously estimate the parameters of the model and the
image. For instance, the Landsat 7 satellite, equipped W"[Eigh resolution multispectral image from the observed im-

the ETM+ sensor, allows for the capture of a multispectrageg The method extends the results already presented in

image with six bands (three bands in the visible spectrunmy where an iterative algorithm for the reconstructionlpr

plus three bands in the infrared) with a resolution of 30 Me1em, assuming the values of the parameters were known, was
ters per pixel, a thermal band with a resolution of 60 mete;ﬁroposed.
n

per pixel and a panchromatic band (covering a large zone The . : i
- : ; g paper is organized as follows. The acquisition
the visible specirum and the near infrared), with a re t model is presented in section 2. In section 3 the hierachical

of 15 meters per |<_J|xel. . . . Bayesian paradigm for super resolution applied to multispe
The term multispectral image reconstruction using SUp&f;»j image reconstruction is presented and the requirela-pro

resolution as used in this paper, refers to the joint praegss 4pijity distributions are formulated. The Bayesian anialjs

of the multispectral and panchromatic images in order t0 0bserformed in section 4 to obtain the reconstruction and pa-

tain a new multispectral image that, ideally, will presdt@ t 5 o161 estimation algorithm. Experimental results orea re
spectral characteristics of the observed multispectragln | 5n4sat 7 ETM+ image are described in section 5. Finally
and the resolution and quality of the panchromatic image. ¢oction 6 concludes the paper.

A few approximations to this problem have been pro-
posed in the literature (see [11] for a comparative study).
Among them Principal Component Analysis (PCA) (see [5]) 2. ACQUISITION MODEL

and wavelets based approaches [8] have been used. Prigg ys assume that, the multispectral image we would ob-

[9] proposed a method relying on the statistical relatiomsh  serye under ideal conditions with a high resolution sensor,
between the radiances in the low and high spatial resolutioRssg pands

bands. Recently a few super-resolution based methods have — I,y Lt 1)
also been proposed [4, 1]. Y=11Y2--»¥Y8l >

- P all ted by the “Comisioni g each one of sizp = mx n pixels, witht denoting the trans-
is work has been partially supported by the “Comision ibiaal de i is im
Ciencia y Tecnologia” under contract TIC2003-00880, key@reece-Spain pose of a vector or matrix. Each band of this image can be

Integrated Action HG2004-0014, and by the "Instituto deusiaCarlos II” ~ €Xpressed as a column vector by lexicographically ordering
project FIS G03/185. the pixels in the band.
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resolution multispectral observations, the unknown high
resolution multispectral imagg, and the hyperparameters

[
i | “ \ describing their distributiong.
ZO1 fpapshion [ H I To model the joint distribution, we utilize the hierarchi-

‘ | cal Bayesian paradigm (see, for example, [6]). In the hierar
chical approach to super resolution of multispectral insage
we have at least two stages. In the first stage, knowledge
i about the structural form of the observation process and the
Figure 2: Landsat 7 ETM+ band spectral response normaktryctural behavior of the high resolution multispectahije
ized to one. is used in forming pY,x|y,Q), and gy|Q), respectively.

These models depend on the unknown hyperparam@ters
In the second stage, a hyperprior on the hyperparameters,
p(Q), is defined, thus allowing the incorporation of infor-
mation about these hyperparameters into the process.
ForQ, y, Y, andx the following joint distribution is then
defined

1 | \‘ / \

L [ L L I [ Y] v L NI
06 0.8 1 12 14 16 1.8 2 22 24
wavelength

In real applications, this image is not available and, in-
stead, we observe a low resolution multispectral imdge
with B bands

Y =Y}, YL, YL,

each one of siz€ = M x N pixels,M < mandN < n. Each
band of this image can be expressed as a column vector by P(Q,y, Y, x) = p(Q)p(y|Q)p(Y, x|y, Q). (6)

lexicographically ordering the pixels in the band. Figure lwe note here that each of the two above mentioned condi-
illustrates the acquisition model and the notation used.  tjonal distributions will depend only on a subsetafbut we

_Each bandyy, is related to its corresponding high reso- yse this more general notation until we precisely deschibe t
lution image by hyperparameters that defife

Yb:Hyb+nb7 Vb:]-v"'an

2 31 Degradation model

whereH is aP x p matrix representing the blurring, the sen- We assume th&Y” andx, for a giveny, and a set of parame-

sor integration function and the spatial subsampling (we adersQ are independent and consequently

sume that this process is the same over the whole set of spec- _

tral images), anay, is the capture noise, assumed to be Gaus- P(Y,xly,Q) =p(Yly,Q)p(x[y, Q). @)

sian wij[h zero mean and variancgfh. . Given the degradation model for multispectral image super
A simple but widely used model for the mat# is to  resolution described by Eq. (2) the distribution of the ob-

consider that each pix¢i, j) of the low resolution image is servedY giveny and a set of parametefsis equal to

obtained according to (fon=2M andn = 2N)

Yly,Q
Yb(laj):% yb(U,V)+nb(|,]>, (3) p( |y )

(UV)€EE; j

B
Yb|yo,
b|:|1p( blYb, Bo)

. exp{ LS Yo Hy ||2} ®)
= T - b b— b )
Zg 2b=l

whereE; j consists of the indices of the four high resolution
pixels Eij = {(2i,2]), (2 +1,2)),(2,2] +1),(2 + 1,2 +
1)} (see right hand side of figure 1).

. whereZg = 5_ (§F)P/2.
We note here thadtl can be written as

Using the degradation model in Eqg. (5), the distribution
of the panchromatic imagegiveny and a set of parameters

H=DB, Q is given by

4
whereB is a p x p blurring matrix andD is a decimation
operator.

The sensor also provides us with a panchromatic image
x of size p = mx n, obtained by spectral averaging the un-
known high resolution images,. This relation can be mod- WhereZy, = (
elled as

1 1 B )
p(xly,y) —Z—yexp{—ﬁvllx—JZlAJyJ [ } 9)
2 2
_;T)p/ )

B 3.2 Image model

x=Y AgYp+V, 5 . . o

bZl bYb ®) It is also necessary to specify the prior distribution of the
" high resolution image and a set of parame@rsp(y|Q).
whereA, > 0,b=1,2,.--,B, are known quantities that can ajthough other models are possible, in this paper we assume
be obtained, as we will see later, from the sensor spectrdly corelation between the different high resolution bands
characteristics, and weight the contribution of each band  Then our prior knowledge about the smoothness of the ob-
to the panchromatic image(see left hand side of figure 1), isct luminosity distribution within each band makes it foss

andv is the capture noise that is assumed to be Gaussian Wila to model the distribution of given a set of parametefs
zero mean and variange®. by

3. BAYESIAN MODELING

Our first goal is to define a joint distributior{Q,y, Y, x) of
the high resolution panchromatic observed imagthe low

B 1 B 1 )
p(v19) = [ pivsian) = 5- [ exp{ a0 | Cyo I7}.
(10)
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whereC denotes the Laplacian operatofal, is the variance  with

of the Gaussian distribution ay 0 5, (3T)P/2. wC'C 0, ... 0
. Op athC e Op
3.3 Hyperprior on the hyperparameters Q(Q) = i ] _ )
As mentioned earlief denotes the set of hyperparameters 0 o0 ' anClC
describing the distributions introduced above, that is, P P e B
Q:(VvBla"'aBB;ala"'aaB)- (11) Op BZHtH Op
+ . . .
A large part of the Bayesian literature is devoted to find- : : :
ing hyperprior distributions () for which p(Q,y|x,Y) can 0p 0p ... BgH'H
be calculated in a straightforward way or be approximated. +  yA®I,, (20)

These are the so called conjugate priors [2]. Conjugate pri-
ors have, as we will see later, the intuitive feature of allmyv  the operator is the Kronecker product, and
one to begin with a certain functional form for the prior and

end up with a posterior of the same functional form, but with A)? Adz ... Ads
the parameters updated by the sample information. A2Aq ()\2)2 ... A2AB
Taking the above considerations about conjugate priors N= . . . (21)
into account, we will assume that the hyperparameters, . . ' :
Q, are independent and follow a gamma distribution defined Asd1 Ash2 ... (Ae)?
by The mean of the posterior distributid{y|Y,x,Q], which
(88, — 1)c? )aﬁ, o coincides with the mode of the posterior distribution,sfags
p(w]al),cp,) =~~~ — o~ texg —(af, — 1)cj w],
r(a3) 12) Ely|Y,x,Q = Q(Q)9(Q) (22)

wherew > 0 denotes a hyperparameter, and the two paramwhere Q(Q) has been defined in Eq. (20) awdQ) is the
eterscd, > 0 anda?, > 1 are assumed known. This gamma (B x p) x 1 vector
distribution has the following mean, mode, and variance

0 ) B%)Ht Boﬁ oo gp
Elw] = m ., Modgw] = = (13)  g@Q) = :p 2: fp Y
(0] t
Varlw] = (20, fai)c?o—)z- (14) 2:Ip (:)pp B(B)? .
Note that the mean and mode do not coincide. Ty O_p /\Z_Ip O_p X (23)
4. BAYESIAN INFERENCE ():p o:p )\B:Ip x

Having defined the degradation, image, and hyperprior mo
els, Bayesian inference is applied.

The inference approach we will follow consists of esti-
mating the hyperparameters@nhby using

Gor simplicity, the dependency ¢f(Q) on bothx andY is
not denoted explicitely.

To estimateQ) we now apply the E-M algorithm [3]. Let
us assume that we already have an estingstef the un-
known parameters, then

Q = argmap(Q[Y,x) =argmax/ p(Q,y,Y,x)dy,
o @ Jy U(Q|Q) = Eyy xar[logp(y,x. Y. Q)]

(15)
and then estimating the high resolution multispectral imag = constt (ay, — 1)logy — (a, — 1)bly
by solving + %((a?xb —1)logay — (ag, — 1)cq, ab)
Q) = argmap(y|Q,Y,x). 16
V(@) =argmapyia, ¥,x) B A e )

Let us redefing (Q) by maximizing the log of a function

B B
instead of the function itself, that is, + p Z logay, + P Z log B, + plogy
b=1 b=1
Q) = argmaxo Y,x,Q). 17
y( ) g y gp(y| y X5 ) ( ) o || Cyb(Q,> ||2 7tI‘[CtCCOV(yb|Y,X, Q,)]
To estimate the hyperparameters and image, we note that ~ — || Yo — Heyn(Q') [|* —tr[H'Heov (yp| Y, x, Q)]
B
y|Y,x,Q ~ 4 (Ely|Y,x,Q],cov[y|Y,x,Q]). (18) — lx=3 Ajyn(@) |17
b=1

The covariance of the posterior satisfies

w

\
Me

covly[Y.x.0] = Q(@)™ (19) PR S

1I=1]
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Image Date Path | Row
A 2000-07-30| 200 | 031
B 2000-08-08| 199 | 031

Table 1: Landsat 7 ETM+, L1G Orthorectified image sets.

DifferentiatingU(Q|Q’) with respect taQ we obtain at
its maximum

1 &1, P l[Cyn(@) P
ap  p+ag —1"" ptag —1 p

p tr[C'Ccov(yp|Y,x,Q')]

+ Vb (24)
p+ag, —1 p
1_ Bt o P Yo Hy(@)|P
Bo P+(ag -1 Ptag -1 P
P tr[H'Heov (yp|Y,x,Q')]
2
R 5 ¥b (25)
1 &-1 P Ix— 35 1 Ays(Q) |2
y p+ady-1" p+ad-1 p
B 58, Aiditr[cov(yi,yi|Y,x, Q'
+ PO ZZjl iAjtricov(yi,yjl )](26)
p+ad—1.4 p

(b)

Figure 3: Details of the (a) false color multispectral im#ge
and (b) panchromatic imagein Table 1.

Image Aj_ /\2 A3 /\4
A 0.0467 | 0.1759| 0.1883| 0.5891
B 0.0118 | 0.1918| 0.1495| 0.4990

Table 2: Estimatedy, values for the used images.

According to the ETM+ sensor spectral response in
Fig. 2, the panchromatic image only covers the spectrum of a
part of the first four bands of the multispectral image. Hence
we apply the proposed method wih= 4.

In order to apply Algorithm 1, we need to know the con-
tribution of each band to the panchromatic image, that &s, th

These equations provide a very interesting interpretagfon Vvalues ofAp, b=1,2,...,B in Eq. (9). These values have
the estimated hyperparameters at convergence. The hyp&@en obtained by solving far = (As,...,As)

parameter estimates are a weighted sum of their maximum
likelihood estimatesal, = 1,Vw € Q) and the inverse of the

modes of their hyperprior distributions (see Eg. (13)).

A 4
A = argmin| x — > MYy |2, (28)
=1

Based on the above development we propose the follow-
ing algorithm for the estimation of the hyperparameters and\/herngp denotes the upsampled (by bicubic interpolation)

the high-resolution image

Algorithm 1 lIterative estimation o€ andy(Q).

1. Choose Q°. Setk = 0.
2. Compute y(Q°) using Eq. (17) for Q = QO.
3. Repeat

i) Setk=k+1,

i) Use Q' = QX1 in the right hand side of Eqgs. (24),
(25) and (26) to obtain QK in the left hand side of
these equations.

iii) Computey(QX) using Eq. (17) for Q = QK.

until

Iy(@9-y@ | _,
|y (@9 |

wheree is a prescribed bound.

(27)

5. EXPERIMENTAL RESULTS

version of Yy, to the size of the panchromatic image The
values obtained fok for each image in Table 1 are shown in
Table 2.

The initial set of paramete€3 in Algorithm 1 were cho-
sen from the bicubic interpolation of the multispectral gaa
yY, using the following equations

a) = p/lICypl%, b=1,...B, (29)

B = P/|Y,—Hyd|?2, b=1...,B (30
B

Vo= p/lx= 5 Aeyp P (31)
b=1

The value ofe = 10-® was used in Eq. (27) as the prescribed
bound.

One important issue with Algorithm 1 is the selection of
the hyperprior parameters. As we have already commented,
if we selectad, = 1,Vw € Q, Algorithm 1 obtains the maxi-
mum likelihood estimate of the hyperparameters, thus mak-
ing the observed data fully responsible for the estimation o
the parameters. However, we usually have some information

The proposed algorithm has been tested on the set of Landssdiout the possible values of the parameters and, with the pro
ETM+ images [10] shown in Table 1. Multispectral image posed method, we can incorporate this information into the
regions of interest of size 128128 pixels, and their corre- estimation process. In this paper we chose such parameters
sponding 256 256 pixel regions of the panchromatic image, by applying Algorithm 1 to each barwindependently using
were used in the experiments. Figure 3 displays the regioh, =1,b=1,...,4, thus justifying the panchromatic image

of interest for image A in Table 1. The image on the left isonly from the spectral barial This will provide us with esti-

a false (RGB) color image composed of bands 4, 3 and 2 ahates fora, and;, for each band = 1,...,4, that we will

the Landsat ETM+ multispectral image. use as values fag, andcgb, b=1,...,4, respectively. The
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Figure 4: Reconstructions of imadeusing (a) bicubic in-
terpolation, (b) the Price method, (c) the proposed method
with a2, = 1,Vw € Q, and (d) the best reconstruction with

the proposed method.

algorithm also provides us with four estimatesgfone for
each band, that we combine@s= % 551 .

In our experiments we chose a set of five valuesahr
such thag?,—1/(N+ a2, — 1), with N = por N = P depend-
ing on the parametep, w € Q, ranges from 0 to 1. Note that

(a%—1)/(N+a2 —1) is equal to zero ford, = 1 and it is

equal to one for?, = «. In this case, we practically do not
take into account the maximum likelihood estimates of the g
hyperparameters and all the information on the hyperparam-

eters is provided by,

Table 3 shows a numerical comparison in terms of

PSNR, = 10log,o{25% x P/ || Y, — Dys(Q) ||} of the
reconstructions using bicubic interpolation, the Pricétrod

[9], the proposed method withf, = 1,Vw € Q, and the pro-
posed method whea?, is chosen to obtain the best recon-
struction. The best reconstruction is obtained, for image

with a5, = p—1, agb =P-1b=1..4 anda) = »
and, for imageB, with a3 = 1, agb =1b=1,...,4, and

ay = . Figure 4 shows the reconstructions corresponding to

imageA.

From the reported data it is clear that the proposed
method outperforms bicubic interpolation and the Price
method, both in quantitative and qualitative terms when no
information for the hyperparameters is provided although
better results are obtained when some prior knowledge is in-

cluded into the estimation process.

6. CONCLUSIONS

In this paper the reconstruction of multispectral images ha,
been formulated from a super resolution point of view. A
hierachical Bayesian method for estimating both the recon-
structed pansharpened images and the model paramet
within the Bayesian framework, has been proposed. Bas
on the presented experimental results, the new method out-

Image | band| MI | MIl | Alg.1,a2,=1 [ Alg. 1
A 1 210 19.1 21.7 217
2 19.8] 18.1 20.4 20.6

3 17.2] 155 17.5 17.8

4 20.1| 17.8 20.1 20.6

B 1 18.1| 17.0 18.8 18.9

2 16.8 | 15.8 17.2 17.4

3 14.8 | 13.7 151 15.3

4 1741 16.4 17.8 18.1

Table 3: PSNR (dB) obtained by bicubic interpolation (Ml),
the Price method [9] (MIl), the proposed method wafh =
1,Vw € Q (Alg. 1, &, = 1), and the best reconstruction by
the proposed method (Alg. 1) for each band.

performs both bicubic interpolation and the method in [9].
In our future work non stationary image priors and the use of
total variation methods will be considered.
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