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ABSTRACT

Transformed codebooks are often obtained by a transformation
of a codebook, potentially optimum for a particular set of statis-
tical conditions, to best match the statistical environment at hand.
The procedure, though suboptimal, has recently been suggested for
feedback MISO systems because of their simplicity and effective-
ness. We first consider in this paper the analysis of a general vector
quantizer with transformed codebook. Bounds on the average dis-
tortion of this class of quantizers are provided to characterize the ef-
fects of sub-optimality introduced by the transformed codebook on
system performance. We then focus our attention on the application
of the proposed general framework to providing capacity analysis
of a feedback-based MISO system over correlated fading channels
using channel quantizers with both optimal and transformed code-
books. In particular, upper and lower bounds on the channel ca-
pacity loss of MISO systems with transformed codebooks are pro-
vided and compared to that of the optimal quantizers. Numerical
and simulation results are presented which confirm the tightness of
the theoretical distortion bounds.

1. INTRODUCTION

Communication systems using multiple antennas have recently re-
ceived much attention due to their promise of providing significant
capacity increases. The performance of the multiple antenna sys-
tems depends heavily on the availability of the channel state infor-
mation (CSI) at the transmitter (CSIT) and at the receiver (CSIR).
Most of the MIMO system design and analysis adopt one of two
extreme CSIT assumptions,complete CSITandno CSIT. In this pa-
per, we consider systems with CSI assumptions in between these
extremes. We assume perfect CSIR is available at the receiver, and
focus our attention on MIMO systems where CSI is conveyed from
the receiver to the transmitter through a finite-rate feedback link.
Recently, several interesting papers have appeared, proposing de-
sign algorithms as well as analytically quantifying the performance
of the finite-rate feedback multiple antenna systems.

Most past works on the analysis of finite-rate feedback MIMO
systems have adopted one of three approaches. The first is to ap-
proximate the channel quantization region corresponding to each
code point based on the channel geometric property. Mukkavilli et.
al. [1] derived a universal lower bound on the outage probability
of quantized MISO beamforming systems with arbitrary number of
transmit antennast over i.i.d. Rayleigh fading channels. Love and
et. al. [2] related the problem to that of Grassmannian line pack-
ing and provided corresponding performance bounds of multiple
antenna systems with finite-rate feedback. The second approach is
based on approximating the statistical distribution of the key ran-
dom variable that characterizes the system performance. This ap-
proach was used by Xia et. al. in [3] and Roh et. al. in [4], where
the authors analyzed the performance of MISO systems over i.i.d.
Rayleigh fading channels, and obtained closed form expressions of
the capacity loss (or SNR loss) in terms of feedback rateB and an-
tenna sizet. The third approach adopted by Narula et. al. in [5] is
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based on relating the quantization problem to the rate distortion the-
ory, where the authors obtained an approximation of the expected
loss of the received SNR due to finite rate quantization of the beam-
forming vectors in an MISO system. Moreover, Love and Heath
in [6] and Xia et. al. in [3] extended the beamforming codebook
design algorithms to correlated MIMO fading channels by using
transformed codebooks obtained by a rotation-based transformation
on an optimum codebook designed assuming i.i.d Rayleigh fading
channels.

Most of the analytical results available to date are case specific
and limited to i.i.d. MISO channels, and the approaches are hard
to extend to more complicated schemes. In this paper, we con-
sider the analysis of CSI-feedback-based multiple antenna system
from a source coding perspective. We do this by using the general
framework developed in [7] wherein channel quantization is formu-
lated as a general vector quantization problem with encoder side
information, constrained quantization space and non-mean-squared
distortion function. The analysis was developed for optimal quan-
tizers with perfect statistical knowledge. This paper first extends
the general distortion analysis to sub-optimal quantizers with trans-
formed codebooks. Distortion bounds of this class of quantizers are
provided to characterize the effects of sub-optimality introduced by
the transformed codebook on system performance. As an utiliza-
tion of the general framework, this paper further investigates the
effects of finite-rate CSI quantization on MISO systems over cor-
related fading channels. In particular, upper and lower bounds on
the system capacity loss due to the finite-rate channel quantization
are provided for MISO systems with transformed codebooks. Per-
formance comparisons between MISO CSI quantizers with optimal
and transformed codebooks are also provided under different chan-
nel correlations. Numerical and simulation results are presented
which confirm the tightness of the theoretical distortion bounds.

2. BACKGROUND INFORMATION

The finite-rate feedback-based multiple antenna system can be for-
mulated as a generalized fixed-rate vector quantization problem [7]
and analyzed by adapting tools from high resolution quantization
theory. In this section, we briefly describe the generalized high rate
quantization theory provided in [7]. Extension and application of
the distortion analysis to CSI-feedback-based MISO systems in the
context of correlated channels are provided in later sections.

2.1 General Vector Quantization Framework

The multiple antenna systems with finite-rate feedback can be mod-
eled as a generalized vector quantization problem with additional
attributes such as encoder side information, constrained quantiza-
tion space and non-mean-squared distortion measures. To be spe-
cific, the source variablex = (y, z) is a two-vector tuple with vec-
tory∈Q representing the actual quantization variable of dimension
kq andz∈ Z being the additional side information of dimensionkz.
Theencoder side informationz is available at the encoder but not
at the decoder. Based on a particular source realizationx, the en-
coder (or the quantizer) represents vectory by one of theN vectors
ŷ1, ŷ2, · · · , ŷN , which form the codebook. The encoding or the
quantization process is denoted asŷ =Q(y, z). The distortion of a
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finite rate quantizer is defined as

D = Ex

[
DQ

(
y, ŷ ; z

)]
, (1)

whereDQ

(
y, ŷ ; z

)
is a generalnon mean-squared distortionfunc-

tion betweeny and ŷ that is parameterized byz. It is further as-
sumed that functionDQ has a continuous second order derivative
(or Hessian matrix w.r.t. toy) Wz(ŷ) with the (i, j)th element
given by
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1
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. (2)

2.2 Distortion Analysis of the General Vector Quantizer

Under high resolution assumptions, large N, the average asymptotic
distortion can be represented by the following form, which is similar
to the Bennett’s integral provided in [8]
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whereEz(y) denotes the asymptotic projected Voronoi cell that
containsy with side informationz. In equation (3),λ(y) is a func-
tion representing the relative density of the codepoints, which is
called point density, such thatλ(y)dy is approximately the frac-
tion of quantization points in a small neighborhood ofy. Function
I
(
y ; z ; E

)
is the normalized inertia profile that represents the rela-

tive distortion of the quantizerQ at positiony conditioned on side
informationz with Voronoi shapeE. Bothλ(y) andI

(
y ; z ; E

)
are

the key performance determining characteristics that can be used to
analyze the effects of different system parameters, such as source
distribution, distortion function, quantization rate etc., on the finite
rate quantizer.

Note that if the source variable (vector)y is further subject to
kc constraintsgiven by the vector equationg(y) = 0, the asymp-
totic distortion integral given by (3) is still valid under some minor
modifications. In these cases, the actual degrees of freedom of the
quantization variable reduce fromkq to k′q = kq−kc, and the aver-

age asymptotic distortion decays exponentially with rate2−2B/k′q.

3. QUANTIZERS WITH TRANSFORMED CODEBOOK

In certain situations, the underlying source distributionp(y,z) or
the distortion functionDQ may vary continuously during the quan-
tization process. However, it is practically infeasible to design sep-
arate codebooks optimized for every different source distribution
and distortion function. In these cases, quantizers constructed by
transforming another codebook based on the current statistical dis-
tribution of the source variable is a promising alternative.

3.1 Problem Setup

It is first assumed that all the codebooks are generated from one
fixed codebookC0 which is designed to match source distribu-
tion p0(y, z), and distortion functionD0, Q with sensitivity matrix
W0,z(y). CodebookC0 has a point density given byλ0(y), and
a normalized inertial profileI0

(
y;z;E0,z(y)

)
that is optimized to

matches the distortion functionD0, Q, with E0,z(y) representing

the asymptotic Voronoi cell that containsy with side information
z. If the source distribution changes fromp0(y, z) to p(y, z) and
the distortion function becomesDQ instead ofD0, Q with sensitivity
matrix Wz(y) instead ofW0,z(y), the encoder and decoder will
correspondingly adopt a transformed codebookC from C0 by a gen-
eral one-to-one mappingF(·) with both of its domain and codomain
in spaceQ, i.e.

C =
{
F(ŷ)

∣∣ ŷ ∈ C0
}

. (4)

3.2 Sub-optimal Point Density & Sub-optimal Voronoi Shape

Two types of sub-optimality arise when the transformed codebook
is used instead of the optimal one. One comes from the sub-optimal
point densityλtr(y) of the transformed codebook, which can be
derived fromλ0(y) by the following transformation

λtr(y) =
λ0

(
F−1(y)

)
∣∣Fd

(
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)∣∣ , Fd(y) =
∂F(y)
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If the source variable is subject tokc constraints given by the vector
equationg(y) = 0, the transformed point density is given by
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)
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whereV2(y) is an orthonormal matrix with its columns constitut-
ing an orthonormal basis for the orthogonal compliment of the range

spaceR
(

∂
∂ y g(y)

)
. Compared to the optimal point densityλ∗(y)

that matches top(y, z) andDQ, λtr(y) given by equation (5) is sub-
optimal and will lead to performance degradation. However, given
no restrictions on the transformation, there always exists anF that
makesλtr(y) exactly equal toλ∗(y).

The other sub-optimality arises from the fixed location of the
code points in the transformed codebookC, in the sense that the
Voronoi shape of the transformed codebook does not match the dis-
tortion functionDQ and hence is not optimized to minimize the
inertial profile. However, the Voronoi regionEtr,z(y) of the trans-
formed codebook is hard to characterize and depends both on the
transformationF as well as the distortion functionDQ. Fortunately,

the approximated inertial profilẽItr
(
F(y) ; z

)
of the transformed

codebook can be upper and lower bounded by equation (7). Fur-
thermore, if the source variable is subject tokc constraints given
by the vector equationg(y) = 0, the constrained inertial profile
Ĩc-tr

(
F(y) ; z

)
can be similarly bounded by equation (8).

3.3 Distortion Integral of Transformed Codebooks

By substituting the transformed point density (5) and the bounds of
the transformed inertial profile given by (7) into the distortion inte-
gration (3), we can upper and lower bound the asymptotic system
distortion of a transformed quantizer by the following form
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Similarly, by substituting (6) and (8) into (3), the asymptotic distor-
tion bounds of a constrained quantizer with transformed codebook
can also be obtained.

Similar to the case of the conventional product transformed
code [9], there exist trade-offs between the two sub-optimalities:
point density loss and Voronoi shape loss. To be specific, it is
always possible to find a transformationF(·) such that the trans-
formed point densityλtr(y) matches exactly to the optimal point
density λ∗(y). However, by doing so, the transformation may
cause severe “oblongitis” of the Voronoi shape in some cases, which
will lead to significant increment of the normalized inertial profile.
Therefore, a compromised transformation that optimally trades off
the two losses should be employed. This tradeoff is directly re-
flected in the distortion bound̃Dtr-Upp that bothĨtr-upp(y ; z) and
λ tr(y) in integration (9) depend on the transformationF(·).

4. OPTIMAL MISO CSI QUANTIZER

By utilizing the high-rate distortion analysis provided in Sec-
tion 2.1, this section provides a detailed investigation of the capacity
loss of a finite-rate quantized MISO beamforming system over cor-
related fading channels.

4.1 System Model

We consider an MISO system witht transmit antennas, one sin-
gle receive antenna, signaling through a frequency flat block fad-
ing channel. The channel impulse responseh is assumed to be
perfectly known at the receiver but partially available at the trans-
mitter through CSI feedback. It is assumed that there exists a fi-
nite rate feedback link ofB (N = 2B) bits per channel update
between the transmitter and receiver. To be specific, a codebook
C=

{
v̂1, · · · , v̂N

}
, which is composed of unit norm transmit beam-

forming vectors, is assumed known to both the receiver and the
transmitter. Based on the channel realizationh, the receiver se-
lects the best code point̂v from the codebook and sends the cor-
responding index back to the transmitter. At the transmitter, vector
v̂ is employed as the transmit beamforming vector, and the system
channel model can be represented as

y = hH · (v̂ ·s)+n = ‖h‖ · 〈v, v̂〉 · s+n , (10)

wherey is the received signal (scalar),n ∼ Nc(0,1) is the ad-
ditive complex Gaussian noise with zero mean and unit variance,
hH ∈ C1×t is the MISO channel response with distribution given
by h ∼ Nc(0,Σh), and vectorv is the channel directional vector
given byv = h/‖h‖. The transmitted signals is normalized to
have a power constraint given byE [s2 ] = ρ, with ρ representing
the average signal to noise ratio at each receive antenna.

The performance of a finite-rate feedback MISO beamforming
system can be characterized by the capacity lossCLoss, which is
the expectation of the instantaneous mutual information rate loss
CL(h, v̂) due to the finite rate quantization of the transmit beam-
forming vector. This performance metric was also used in [4] and
is defined as

CL(h, v̂) =− log2

(
1− ρ · ‖h‖2

1+ρ · ‖h‖2 ·
(
1−|〈v, v̂〉|2

))
, (11)

4.2 MISO Systems with Optimal CSI Quantization

By employing the general framework described in Section 2.1, the
finite-rate quantized MISO beamforming system can be formulated
as a general fixed rate vector quantization problem. Specifically,
the source variable to be quantized is the channel directional vector
v of kq = 2t real dimensions, and the encoder side information is
the channel powerα = ‖h‖2. Moreover, under the norm and phase
constraints, i.e.v is a unit norm vector and is invariant to arbitrary
phase rotationejθ, the actual free dimensions of vectorv is re-
duced fromkq to k′q = 2t−2. The instantaneous capacity loss due
to effects of finite-rate CSI quantization is taken to be the system

distortion functionDQ(v, v̂ ; α), which is given by the following
form according to the definition given by (11)

DQ(v, v̂ ; α) =− log2

(
1− ρα

1+ρα
·
(
1−

∣∣〈v, v̂〉
∣∣2

))
. (12)

By utilizing the distortion analysis provided in [7], the normal-
ized inertia profile of the MISO system is tightly lower bounded by

Ĩc, opt(v;α) =
ρα

ln2 · (1+ρα)
· (t−1) ·γ−1/(t−1)

t

t
, (13)

whereγt is a constant coefficient equal toγt = πt−1/(t−1)!. The
minimal distortion of the MISO system is hence achieved by using
a codebook with an optimal point density given by

λ∗ (v) = β1 (ρ, t, Σh)
−1 ·

((
vHΣ−1

h v
)−(t+1)

× 2F0

(
t+1, 1; ;− ρ

vHΣ−1
h v

))(t−1)/t

. (14)

where2F0 is the generalized hypergeometric function, andβ1 is
a normalization constant that only depends on the antenna sizet,
channel correlation matrixΣh and system SNRρ. The average
system distortion (or capacity loss) of the quantized MISO system
is then tightly lower bounded by

D̃c-Low (Σh) =
ρ(t−1)β1 (ρ, t, Σh)

t/(t−1)

ln2 · |Σh| ·γt/(t−1)
t

·2−B/(t−1). (15)

5. MISO CSI QUANTIZER WITH TRANSFORMED
CODEBOOK

In practically situations, it is impossible to design different code-
books optimized for every instantiation of the channel covariance
matrix and use them adaptively. In these situations, it is convenient
to use a channel quantizer whose codebook is generated from a fixed
pre-designed codebook through a transformation parameterized by
the channel covariance matrix.

5.1 Problem Setup

To be specific, supposeC0 is the optimal codebook designed for the
i.i.d. MISO fading channels. When the elements of the fading chan-
nel responseh are correlated, i.e.h ∼ Nc(Σh), it is evident that
codebookC0 is no longer optimal. In order to compensate the mis-
match betweenC0 and the current channel statistics, a transformed
codebookC generated by a one-to-one mapping from codebookC0
given by equation (4) can be used. Optimization of the transforma-
tion F(·) turns out to be difficult, and hence a simple sub-optimal
transformation,

F(v̂) = Gv̂
/‖Gv̂‖ , (16)

was proposed in [3] [6] whereG ∈ Ct×t is a fixed matrix depends
on the channel covariance matrixΣh.

5.2 Capacity Loss Analysis of Transformed MISO Quantizers

First of all, according to the codebook transformation given by (16),
the transformed point density functionλc-tr(v) can be obtained as
the following form, from equation (6),

λc-tr(v) = γ−1
t · |Σ|−1 ·

(
vHΣ−1v

)−t
, Σ = G ·GH . (17)

which is equivalent to the PDF of a unit-norm complex vec-
tor x/‖x‖ with x having complex Gaussian distributionx ∼
Nc(0, Σ). It is evident that the transformed point density given
by (17) does not match to the optimal point density functionλ∗(v)
given by (14) in the general case. However, for MISO systems with
a large number of antennas and in high-SNR and low-SNR regimes,
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it can be shown that the optimal point densityλ∗(v) reduces to be
the source distributionp(v) of the directional vectorv, given by

lim
t→∞ λ∗(x) = pv (x) = γ−1

t · |Σh|−1 ·
(
xHΣ−1

h x
)−t

. (18)

In this case, by choosing matrixG as a productG = UΛ
1
2 with

matricesU andΛ form the eigen-value decomposition of the chan-
nel covariance matrixΣh = UΛUH, one can generate a trans-
formed codebook with optimal point densityλc-tr(v) ≈ λ∗(v).
Hence, there is no distortion loss caused by the point density
mismatch, although the system suffers from the oblongitis of the
Voronoi shape (or the shape loss).

By substituting the transformation given by (16) into equation
(8), the inertial profile of the transformed codebook can be upper
and lower bounded by the following form

Ĩc-tr-upp
(
v ; α

)
=

γ
− 1

t−1
t ρα

(
vH Σ−1v

)

t · ln2 · (1+ρα)
· tr
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) ≥ Ĩc-tr-low
(
v ; α

)
= Ĩc-opt

(
v ; α

)
.(19)

whereĨc-opt
(
v ; α

)
is the optimal inertia profile given by equation

(13). It is evident from (19) that except unitary rotations of the i.i.d.
codebook, any non-trivial transformation of the codebook will lead
to mismatched Voronoi shape and hence causes inertial profile loss.
Therefore, a codebook transformation that compromises both the
point density loss and the inertial profile loss is favored. However,
the optimization of the overall distortion w.r.t. matrixG is diffi-
cult and beyond the scope of this paper. As a special case, when
the transformation is chosen to match the point density only, i.e.,

G = UΛ
1
2 , the average distortion bounds of a MISO system with

transformed codebook can be obtained

D̃c-tr-Low (Σh) =
(t−1) · |Σh|

1
t−1 ·β2

ln2 · t ·2− B
t−1 , (20)

D̃c-tr-Upp(Σh) =
|Σh|

1
t−1 ·β3

ln2 · t ·2− B
t−1 . (21)

where the coefficientsβ2 andβ3 are given by

β2 = E




ρ ·
(
hHΣ−1

h h
) t

t−1

(
1+ρ · ‖h‖2) · ‖h‖ 2

t−1


 (22)

β3 = E




ρ ·
(
hHΣ−1

h h
) 2t−1

t−1
(
t · ‖h‖2−hHΣhh

)

(
1+ρ · ‖h‖2) · ‖h‖ 4t−2

t−1


 . (23)

5.3 Comparison with Optimal CSI Quantizers

Interestingly, in high-SNR and low-SNR regimes with a large num-
ber transmit antennast, the average system distortion of CSI quan-
tizers with transformed codebook can be upper and lower bounded
by some multiplicative factors of the optimal quantization distor-
tion, which is represented in equations (24) and (25). Note that the
constant coefficientsc1 andc2 can be viewed as the upper bounds

of the penalty paid for using a transformed codebook instead of op-
timal design. As verified by the numerical example shown in Sec-
tion 6, c1 andc2 are slightly greater than1 for most channels that
are not “highly” correlated. This means that the intuitive choice of
F given in [3] [6] is a fairly good solution especially for cases when
the channel covariance matrix has a relative small condition number
(for channels not so “correlated”).

6. NUMERICAL AND SIMULATION RESULTS
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Figure 1: Capacity loss of a3×1 MISO system with different CSI
feedback rateB = 1,2, · · · ,10 bits per channel update

We plot in Fig. 1 the system capacity loss due to the finite-
rate quantization of the CSI versus the feedback rateB for a 3× 1
MISO system over correlated fading channels. The spatially corre-
lated channel is simulated by the correlation model in [10]: A lin-
ear antenna array with antenna spacing of half wavelength, uniform
angular-spread in[−30◦,30◦] and angle of arrivalφ = 0◦. Both the
simulation results with optimum code book generated by the inner
product criterion proposed in [4] and the analytical evaluation of
distortion lower bound̃Dc-Low given by (15) are shown in the plot,
demonstrating the accuracy of the proposed asymptotic distortion
analysis provided in Section 4.

Fig. 2 demonstrates the system capacity loss by using trans-
formed codebook versus feedback rateB for the same3×1 MISO
system over correlated fading channels with adjacent antenna spac-
ing D/λ = 0.5 and different system SNRs atρ = −10, and20
dB, respectively. For comparison purpose, both the distortion
lower boundD̃c-tr-Low given by (20) and the distortion upper bound
D̃c-tr-Upp given by (21) as well as the system distortion by using the
optimal codebooks are also included in the plot. It can be observed
from Fig. 2 that the distortion lower bound̃Dc-tr-Low is tight and
the performance of the CSI quantizer with transformed codebook is
close to that of the optimal codebooks.

In order to see the effects of channel correlation on the system
performance, we also plot in Fig. 3 the distortion ratio of correlated
fading channels to i.i.d. fading channels (normalized capacity loss)
of a3×1 MISO system versus antenna spacingD/λ with both op-
timal and transformed codebooks, and with system SNRρ = −10

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



1 2 3 4 5 6 7 8 9 10

10
−2

10
−1

10
0

Feedback Rate B

C
ap

ac
ity

 L
os

s 
(B

it/
C

ha
nn

el
 U

se
)

Distortion (Capacity Loss) Analysis of 3× 1 MISO System with Tranformed Codebook

Simu, Transformed Codebook
Simu, Optimal Codebook
Analysis, D

c−tr−Low

Analysis, D
c−tr−Upp

SNR = 20dB

SNR = −10dB

Figure 2: Capacity loss of a3× 1 correlated MISO system using
CSI quantizers with transformed codebook.
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Figure 3: Comparison of normalized capacity loss of a3×1 MISO
system with optimal and transformed codebooks.

dB and quantization rateB = 10 bits. For comparison purpose,
the ratio of the distortion bounds, i.e.̃Dc-tr-Low(Σh)/D̃c-tr-Low(It)

and D̃c-tr-Upp(Σh)/D̃c-tr-Upp(It), are also included in the plot. It
can be observed from Fig. 3 that the analytical bounds agree well
with the obtained simulation results. In order to see the tightness
of the distortion bounds̃Dc-tr-Upp and D̃c-tr-Low in high-SNR and
low-SNR regimes, Fig. 4 plots the constant coefficientc1 and c2
versus the number of transmit antennast for correlated MISO chan-
nels with adjacent antenna spacingD/λ = 0.5. It can be observed
from the plot that the performance degradation caused by the trans-
formed codebook is less than10% in low-SNR regimes and22% in
high-SNR regimes for MISO systems with more than10 transmit
antennas.

7. CONCLUSION

We first investigated in this paper a general vector quantizer with
transformed codebook. Bounds on the average distortion of this
class of quantizers were provided to characterize the effects of sub-
optimality introduced by the transformed codebook on system per-
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Figure 4: Demonstration of the tightness of the distortion bounds.

formance. As an application of the proposed general framework,
we provided in this paper a capacity analysis of the feedback-based
MISO systems over correlated fading channels using channel quan-
tizers with both optimal and transformed codebooks. To be specific,
upper and lower bounds on the channel capacity loss of MISO sys-
tems with transformed codebooks were provided and compared to
that of the optimal quantizers. Numerical and simulation results
were presented and further confirmed the tightness of the theoreti-
cal distortion bounds.
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