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ABSTRACT

It has been recently shown that some multiple-input multiple-
output (MIMO) channels under orthogonal space-time block co-
ding (OSTBC) transmissions can not be unambiguously identified
by only exploiting the second order statistics (SOS) of the received
signal. This ambiguity, which is due to properties of the OSTBC,
is traduced in the fact that the largest eigenvalue of the associa-
ted eigenvalue problem has multiplicity larger than one. Fortuna-
tely, for most OSTBCs that produce ambiguity, the multiplicity is
two. This means that the channel estimate lies in a rank-2 subspace,
which can be easily determined applying a first principal compo-
nent analysis (PCA) step. To eliminate the remaining ambiguity,
we propose to apply a constant modulus algorithm (CMA). This
combined PCA+CMA approach provides an effective solution for
the blind identification of those OSTBCs that can not be identified
using only SOS. Some simulation results are presented to show the
performance of the proposed method.

1. INTRODUCTION

In recent years, orthogonal space-time block coding (OSTBC) [1,2]
has emerged as one of the most promising techniques to exploit spa-
tial diversity and to combat fading in multiple-input multiple-output
(MIMO) systems. The special structure of OSTBCs implies that,
assuming that the MIMO channel is known at the receiver, the opti-
mal maximum likelihood (ML) decoder is a simple linear receiver,
which can be seen as a matched filter followed by a symbol-by-
symbol detector.

Training approaches are typically used to obtain an estimate of
the channel at the receiver. However, the use of a training sequence
implies a reduction on the bandwidth efficiency, which is avoided
by other approaches like differential space-time codes [3] or blind
channel estimation techniques [4-6]. Specifically, the blind chan-
nel estimation method proposed in [6] is based only on second or-
der statistics (SOS) and it has a reduced computational complexity.
However, for most of the tested OSTBCs, there exists an identifiabi-
lity problem when the number of receive antennas is ng = 1, which
is traduced in an eigenvalue problem with a largest eigenvalue of
multiplicity two. The problem of blind identifiability of OSTBC
channels has been recently studied in [7-9], but unfortunately, the
identifiability conditions on the underlying structure of the OSTBCs
remain unclear.

In this work we consider the idea of exploiting the higher order
statistics (HOS) of the signal to resolve the ambiguity problems of
SOS techniques. Specifically, we propose a two-stage technique.
In the first stage, the channel subspace is reduced by exploiting the
SOS of the received signal, which is done by means of the prin-
cipal component extraction (APEX) algorithm [10]. In the second
stage, the channel is estimated by applying the constant modulus al-
gorithm (CMA) in the previously extracted channel subspace. Alt-
hough the algorithm is based on the APEX and CMA, the same
idea can be applied using other algorithms, for instance, the analy-
tical constant modulus algorithm (ACMA) [11]. Finally, the perfor-
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mance of the proposed technique has been analyzed by means of
numerical examples in situations with SOS-ambiguity, showing a
better performance than methods based on the direct application of
HOS techniques.

2. SOME BACKGROUND ON OSTBCS

Throughout this paper we will use bold-faced upper case letters to
denote matrices, e.g., X, with elements x;;; bold-faced lower case
letters for column vector, e.g., x, and light-face lower case letters for
scalar quantities. The superscripts (-)7 and (-)¥ denote transpose
and Hermitian, respectively. The real and imaginary parts will be

denoted as R(-) and 3(-), and superscript (-) will denote estimated
matrices, vectors or scalars. The trace, range (or column space) and
Frobenius norm of matrix A will be denoted as Tr(A), range(A)
and ||A || respectively. Finally, the identity matrix of the required
dimensions will be denoted as I, and E|[-] will denote the expectation
operator.

A flat fading MIMO system with ny transmit and ng receive
antennas is assumed. The nr X ng complex channel matrix is

hiy e higg
H:[hl'“hﬂk}: ’
hnrl T hnrnk
where hj = [hy},...,hy, j]T contains the channel responses associa-

ted with the j-th receive antenna. The complex noise at the receive
antennas is considered both spatially and temporally white with va-
riance 2.

2.1 Data Model for OSTBCs

Let us consider a space-time block code (STBC) transmitting M
symbols during L slots and using n7 antennas at the transmitter side.
The transmission rate is defined as R = M /L, and the number of real
symbols transmitted in each block is

M= M for real constellations,
~ | 2M for complex constellations.

For a STBC, the n-th block of data can be expressed as

M/
Sn] =Y. Cislnl,
=1

where Cy, are the STBC code matrices,

[ R,
sln] = { Sy ),

and ry[n] denotes the k-th complex symbol of the n-th STBC block.
The combined effect of the STBC code and the j-th channel can
be represented by means of the vectors

k<M,
k>M,

wk(hj):Ckhj, k=1,...,M’./
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and taking into account the isomorphism between complex vectors
wy(h;) and real vectors Wy (h;) = [%(wk(hj))T,S(wk(hj))T}T
we can define the extended code matrices

=3(Cy)

_ | R(C) ok
k

3(C)

Qz

which imply Wy (h;) = Cihj, withh; = [R (h.,-)T,S(hj)T]T. The
signal at the j-th receive antenna is

ZWk

Jseln] +njn],

where n [n] is the white complex noise with variance c2.

[R(y,[n)", S (y;la)")"
j[n])T]T, the above equation can be

Defining now the real vectors ¥ ;[n] =
and fj[n] = [R(n;[n]))",3(n
rewritten as

¥jln] = j)seln) +1j[n) = W (h;)s(n] + i {n],

M/
Y Wi (h
k=1
where s[n] = [si[n],....sp[n J]” contains the M’ transmitted real
symbols and W (h;) = [ 1(hj)--- Wy (h;)]. Finally, stacking all
- T
| =[F1 ], Falml] "

the received signals into ¥[n we can write

where W(H) = [WT(h)---
analogously to y[n].

In the case of orthogonal STBCs (OSTBCs), the matrix W (H)
satisfies

WT(hnR)}T, and fi[n] is defined

W H)W(H) = [H|L (1

which, considering H known and a Gaussian distribution for the
noise, reduces the complexity of the ML receiver to find the closest
symbols to the estimated signal [3]

W (H)yl
ElE

The necessary and sufficient conditions on the code matrices
Cr e Cl"r (k1 =1,...,M'), to satisfy (1) are [3]

T k=1
H _ 9
Ci Cl—{ —CHC, k41

which also imply S [n]S[n] = ||s[1]||*T and

o I k=l
re ) L :
Ckcl—{ ~CTC, kAL

3. PREVIOUS WORK ON BLIND CHANNEL
ESTIMATION UNDER OSTBC TRANSMISSIONS

In this section, we review some previously proposed techniques for
blind channel estimation under OSTBC transmissions. These met-
hods can be divided into two groups: those solely based on second
order statistics (SOS) of the received signals (or subspace methods),
and those which exploit the higher order statistics (HOS) of the
transmitted signals. Furthermore, the channel identifiability pro-
blems for both SOS and HOS techniques are pointed out.

3.1 Blind Channel Estimation based on SOS

Several SOS techniques have been proposed for blind channel es-
timation [4—6]. These subspace methods are very attractive due to
their closed-form structure, and their good performance for a suf-
ficiently large number of data samples. On the other hand, SOS
methods do not exploit the particular properties of the source sig-
nals, which can even imply identifiability problems.

Among the subspace methods, the method proposed in [4] is
a general technique for STBCs, which does not exploit the special
structure of OSTBCs, and the OSTBC techniques proposed in [5]
and [6] are based on the relaxation of the finite alphabet property
of s[n], and the direct extraction of §[n] or H, respectively. Speci-
fically, it has been shown that the method proposed in [6] is able to
blindly identify the channel up to a real scalar ambiguity in most
of the analyzed OSTBCs when the number of receive antennas is
ng > 1. This method is based on the maximization of the following
problem

argmax Tr <WT(ﬂ)RyW(ﬂ)> . os.t. WIH)W(H) =1,
H
@)
where Ry is the correlation matrix of the observations ¥ [n]

2

Ry = E[y [y 1)) = WE)R,W (H) + T-1,

and Ry = E[s[n]s”[n]] is the correlation matrix of the information
symbols. Finally, it can be proved in a straightforward manner [6]

that the solution of (2) is given by any estimated channel matrix H
with ||H|| = 1 satisfying

range(W (H)) = range(W (H)). 3)

3.1.1 Equivalent PCA problem
Let us start rewriting Tr (WT(I:I)RS,W(I:I)) as

M/
Y, i (H)Ryw,(H),
k=1

where Wk(ﬂ) = [WZ(ﬁ]),...,WZ(ﬁM/)]T
W(ﬁ) Assuming that the MIMO channel remains constant during
N OSTBC blocks, and defining Y = [§[0] - §[N — 1]], the finite
sample estimate of Ry can be obtained as Ry = fYYT Using
this estimate, and takmg (1) into account, the channel identification
criterion (2) can be rewritten as

is the k-th column of

b =1,

where h = [ﬁ{ hT ]”. Finally, considering Wy (h;) = C

L nR
the above criterion ylelds

argmax n’z’Zh s.t. \|f1|| =1, (€))
h
where the data matrix is defined as Z = [Z[0]” --- Z[N — 1]7]7, and
¥ G e [n1C1
Z[”} - : )
5’{ [n} CM’ ynR [n] CM’

i.e., the criterion (2) is equivalent to a principal component analy-
sis (PCA) problem. Assuming a Gaussian noise distribution, the
relaxed ML estimate of the signal is

8[n] = Z[n]h.

:'1)



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Finally, we must point out that the reformulation of the estimation
method as a PCA problem permits a straightforward derivation of
adaptive versions of the algorithm [6], for instance, by direct appli-
cation of the Oja’s rule [10, 12].

3.1.2 Identifiability problems

The constraint W (H)W (H) = I in (2), which implies ||H|| = 1,
introduces a real scalar ambiguity in the estimation process. This
is a common indeterminacy for all the blind estimation techniques,
then in the sequel we will assume | H| = |[H| = 1. A more im-
portant indeterminacy results from (3), which can be rewritten as
W (H) = W(H)Q, where Q is an orthogonal matrix (i.e., real and
unitary) of dimensions M’ x M’. Therefore, it is easy to prove [9]
that the indeterminacy problems are due to the properties of the code
and the channel and not to the specific criterion (2). Furthermore,
by exploiting the properties of the code matrices, we have proved
in [9] that if there exist an indeterminacy problem, then we can find
an spurious channel H-* (vectorized as h1), such that hTh+ =0,
and

W(HY) =W(H)Q, 5)

where Q is an orthogonal skew-symmetric matrix (i.e., Q7 = —Q).
The effect of this indeterminacy is that the largest eigenvalue of the
PCA problem (4) has a multiplicity larger than one, which is equi-
valent to the eigenvalue multiplicity problems pointed out in [5]
and [6]. In these cases, the channel can not be unambiguously ex-
tracted without exploiting the HOS of the signals or applying linear
precoding techniques [6,9, 12].

Unfortunately, although the identifiability conditions based on
SOS have been studied in [7, 9], their relationship with the underl-
ying structure of the OSTBCs remains unclear. However, the expe-
rimental results in [6] have shown that, for most of the indetermi-
nacy cases, the multiplicity of the associated eigenvalue problem (4)
is two, i.e., there only exists a unique orthogonal skew-symmetric

matrix Q and channel H satisfying (5).

3.2 Blind Channel Estimation based on HOS

If the belonging of the source signals to a finite set .7 is not rela-
xed, and under Gaussian distributed noise, the maximum likelihood
decoder amounts to minimize

N-1
_argmin Y |[§[n] — W (H)3[n]|%,
H;3[nje.s™ n=0

which is a extremely challenging problem. Different solutions to
this problem have been presented in [5, 13]. Specifically, the su-
boptimal method proposed in [5], which is called the cyclic ML, is
based on alternating minimizations over the channel and the signal
estimates, whereas the techniques in [13] assume BPSK or QPSK
source signals and are based on a semidefinite relaxation (SDR) ap-
proach (suboptimal) or the sphere decoder (optimal). However, the
computational complexity of these algorithms remains prohibitive
for adaptive processing.

In [14], the application of the well-known constant modulus al-
gorithm (CMA) to blind channel estimation in OSTBC systems has
been proposed. Firstly, the direct application of the CMA to the
observations §[n] ensures the existence of M’ local minima given
by Wi (H), for k= 1,...,M’. Secondly, taking into account the re-

lationship between the channel H and the equalizers W (H), the

s

authors propose a CMA problem over the channel estimate h, en-
suring that the true channel h constitutes one local minimum of the
CMA cost function. However, since the CMA can converge to any
local minimum, there still exists an indeterminacy problem which
is solved in [14] by including some pilot symbols.

3.2.1 Identifiability problems

Analogously to the SOS case, the identifiability of the channel ex-
ploiting the HOS of the source signals depends on the OSTBC, the

channel, and the specific characteristics of the information signals.
In [8] the authors study the identifiability conditions under the as-
sumptions of real OSTBCs and BPSK signals, introducing the de-
finition of non-rotatable and strictly non-rotatable codes. Here, we
must note that, assuming that all the source signals belong to a finite
alphabet ., and considering a number of received blocks sufficien-
tly large [15], the indeterminacy problem is reduced to the existence
of a spurious channel H satisfying (5), where in this case, Q must
be not only orthogonal and skew-symmetric, but also a permutation
matrix (with only a nonzero element in each row and column), for
instance

0 1 0 0
10 0 0
Q=19 0 0o 1
0 0 -1 0

Then, as it was expected, we can deduce that the indeterminacy
conditions in the HOS case are more restrictive than that of the SOS
case (Q must also be a permutation matrix). Then, many of the
ambiguity problems of SOS methods can be avoided by exploiting
the HOS. The HOS-indeterminacy problem is still present in a small
set of well-known OSTBCs (see the table of non-rotatable codes
in [8]), including the Alamouti code [1].

4. PROPOSED TWO-STAGE CHANNEL ESTIMATION
ALGORITHM

The empirical results in [6] have shown that, for most of the tes-
ted OSTBCs, the SOS-ambiguity problem can be avoided by using
ng > 1 receive antennas. However, when the number of receive
antennas is ng = 1, most of the OSTBCs exhibit an ambiguity pro-
blem which is traduced in the largest eigenvalue of the associated
problem ((4) in our case) having multiplicity two. In this section
we propose a new technique which exploits the HOS of the source
signals in order to avoid this indeterminacy problem. Equivalently,
the dimension of the channel subspace is reduced by means of SOS,
which implies a lower complexity than the direct application of the
HOS algorithm. Specifically, the proposed method extracts the two
main eigenvectors of the PCA problem in (4), which constitute an
orthogonal basis for the channel, and finally, we apply the CMA al-
gorithm to the principal components to obtain the correct channel
estimate.

Although the algorithm has been developed considering an ei-
genvalue multiplicity of two (which is justified by the experimen-
tal results in [6]) and a CMA, the same idea can be applied, in a
straightforward manner, to other multiplicity orders or HOS algo-
rithms.

4.1 First Stage: PCA - APEX Algorithm

The first stage of the proposed algorithm reduces to obtain the two
main eigenvectors of the PCA problem in (4). This can be done
by the direct solution of the eigenvalue problem or by means of the
APEX algorithm [10]. Considering, without loss of generality, a
noise-free case, the two main eigenvectors §; and g, of the PCA
problem (4) form an orthogonal basis for the correct and the spu-
rious channels h and b, i.e.

G=[h 0]V’
where G = [g] &) and V is an orthogonal matrix. The direct

application of the APEX algorithm yields, for k = 1,...,M’, the
following update rules

(&1, (6)
[n]&> — afig [n], (7

ﬁk] [}’l] =7

LS Il

ﬁkz [}’l] =7
& = & + HaPEX (ﬁkz [n) 2 [n] — i, [nlél) , =12, (8

a = a+ papex ({1 [n] — adigz[n]) dra[n], Q)
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Initialize &1 # &> # 0 (&7 &> = 0), f # 0, and £+ with (10).
Initialize a = ¢ = e+ = 0, and select UAPEX, UCMA> He-

for n=1,2,... do
for k=1,.... M’ do
APEX Algorithm

Obtain iy [n] and iy, [n] with (6) and (7).
Update &;, &> and a with (8) and (9).
CMA R
Obtain the CMA output §¢[n] = [ [1], dgz [n]] £.
Obtain the orthogonal output §i-[n] = [ [n], fix2 [n]] £L
Obtain ¢ and é1 with (11) and (12).
if ¢ > ¢* then
Interchange é = é+, §;[n] =
end if
Update f with (13) and obtain L with (10).
Obtain the channel estimate fl Gf.
end for
end for

A,f [n] and update f = £+

Algorithm 1: Blind OSTBC channel estimation algorithm based
on APEX-CMA.

where Z[n] = [§1 [0]Cy, ..., 51 [n]Cy] "' is the input signal, iy 1],
{2 [n] are the principal components, a is the APEX deflation weight,
and papgx is the step-size.

4.2 Second Stage: HOS - CMA

Taking into account that since Q is skew-symmetric, its diagonal
elements are zero, and considering independent source signals s;[n],

it can be easily seen that the elements s;[n] = 2! [n]h and si-[n] =

2,7; [n)h" are independent. This fact can be exploited in order to
extract the information signal by means of the CMA. The CMA

cost function is
212 2
N T B
JCMA(f) =FE |:(‘Zk [n]h‘ —}/) :| s

where the channel estimate is obtained as a linear combina-
tion of the two principal eigenvectors, i.e., h = Gf and y =
E[|s[n]|*]/E]|sk[n]|*] is the CMA dispersion constant. Here, we
must note that, since V is an orthogonal matrix, the local minima
of the CMA cost function are given by the columns of V [14]. The
existence of two local minima represents a new ambiguity problem,
which is due to the CMA and not to the OSTBC. In order to solve
thls problem we propose to test the 51gnals estimated by means of
h=Gf and its orthogonal complement ht = GFfL, where 1 i

easily obtained as
= {(1) _01} f. (10)

Specifically, we form the error measures e = E {( S ($k[n]) — Sk [n])z]

andet =E {( F($tn) =8¢ [n])z] , which are adaptively updated as

&= (1~ He)2+ e (f (Seln]) —$kln))?, (11
= (1= p)e* +pe (1 (5¢1n]) —f,f[n])z, (12)
where §i[n] = 2! [n }h and $i-[n] = 2] [n }hL are the estimated sig-

nals at the CMA output, f(- ) denotes the decision function over the
constellation symbols, and p, is a smoothing parameter. In this way,
if the error measure & is higher than é- we deduce that the CMA is

converging to the spurious local minimum and h, £, §; [n] and é are

|
o
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Figure 1: Channel estimate MSE and error measures. SNR=30dB.

interchanged with flJ‘, £+, §]ﬂ- [n] and ét. Finally, considering a
step-size Ucpra, the CMA updating rule is

B =1+ cwa (v= ) [ ) do )" 50, (13)
and the overall algorithm is summarized in Algorithm 1.

5. SIMULATION RESULTS

In this section the performance of the proposed method is evaluated
through two simulation examples. In all the simulations, the i.i.d
source signal belongs to a 16-QAM constellation. The observations
are affected by zero-mean, circular, complex Gaussian noise with
variance 62. We have tested the 3/4 OSTBC code for M = 3 com-
plex symbols, L = 4 time slots and ny = 4 transmit antennas, which
is presented in Eq. (7.4.10) of [3]. The number of receive antennas
is ng = 1, which provokes an ambiguity problem if the channel es-
timation is solely based on SOS [6]. Specifically, the multiplicity of
the largest eigenvalue of the PCA problem in (4) is two.

In the first example we have tested the perfor-
mance of the proposed algorithm in a deterministic situa-
tion. We have transmitted OSTBC blocks by a channel
h = [-0.16,-0.62,0.05,0.43,0.44,0.44], with a received
SNR=30dB. The learning rates are uapgx = 0.02, tucma = 0.02
and u, = 0.01. Figure 1 shows the evolution of the channel
estimate MSE and the error measures & and ¢+, and Fig. 2 shows
the evolution of the estimated channel coefficients and the real
and imaginary parts of the estimated symbols. The error measure
curves show that after 500 iterations the CMA converges to the
correct vector f, as we can see in Fig 2. Furthermore, the evolution
of the estimated channel coefficients shows the effect of the
interchanges between h and h' during the first 500 iterations. The
large number of transitions can be reduced by decreasing L.

In the second example we have tested a realistic situation,
where the elements of the flat fading MIMO channels are zero-
mean, circular, complex Gaussian random variables with variance
612{, the averaged transmitted energy per antenna and time inter-
val is 1/nr, and the SNR at the transmitter side is defined as
IOIOgIO(GI%I /62). We have tested the proposed algorithm and the
direct application of the CMA over the observations §, which is
the first approximation proposed in [14]. The algorithm parameters
have been selected as guappx = 0.2, tcma = 0.05 and p, = 0.001.
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Figure 2: Evolution of the estimated channel coefficients and signal.
SNR=30dB.

In the case of the direct application of the CMA, the learning rate
is 4 = 0.005, and in order to compare with the proposed method,
the ambiguity on the estimated vector Wy has been solved using 50
blocks of training symbols. The results of 300 independent reali-
zations for two different SNRs have been averaged, and they are
shown in Fig. 3, where we can see that the proposed method (la-
beled as APEX+CMA) outperforms the technique proposed in [14]
(labeled as CMA).

6. CONCLUSIONS

In this paper, the problem of blind identifiability of MIMO channels
under OSTBC transmissions has been analyzed. We have presen-
ted the identifiability problems when the channel estimation is ba-
sed solely on second order statistics (SOS), and we have exploited
the higher order statistics (HOS) of the transmitted signals to re-
solve the ambiguity. Specifically, we propose a two-stage algorithm
which firstly reduce the subspace of possible channels by exploiting
the SOS, and then apply a HOS technique. Although the proposed
algorithm is based on the adaptive principal component extraction
(APEX) algorithm and the constant modulus algorithm (CMA), the
same idea can be exploited with other SOS and HOS techniques.
Finally, we have shown by means of numerical examples that the
combination of SOS and HOS provides better performance than the
direct application of HOS techniques.
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