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ABSTRACT

Imperceptibility is a concern in all watermarking techniques.
Consequently, most algorithms use a psychovisual mask. In-
terpolation techniques offer interesting perceptual properties
and have been abundantly studied in image processing. This
article aims at defining a class of watermarking algorithms
that take advantage of this property. This class generalizes
previous work on bilinear interpolation. A theoretical per-
formance study is proposed. Moreover, optimal decoding
as well as objective imperceptibility and security measures
are provided for the whole class. An application to spline
interpolation is studied.

1. INTRODUCTION

Digital watermarking consists in embedding data at the
content-level of digital media under the constraints of im-
perceptibility, security and robustness to attacks. Its appli-
cations range from digital rights management to integrity
protection. Watermark algorithms are either based on addi-
tive embedding, substitution by a codebook element or con-
straint imposition on the watermarked data. In the latter
case, the embedding is substitutive and decoding consists in
determining whether the received signal meets some prede-
fined constraints. For instance, the salient points of an image
can be warped to belong to a dense collection of lines [1].

In Direct Sequence (DS) Spread Spectrum watermark-
ing, the additive mark is the secret message modulated by
a pseudo-noise. The message can be detected later by cor-
relation with this pseudo-noise. Classical spread spectrum
methods are subject to host interference. Extensions pro-
vide improved performance [2] thanks to Wiener prefiltering
at the detector or optimal decoding for a given host im-
age statistical model. Informed watermarking provides bet-
ter performance by using at the embedding knowledge upon
both the host image and the detection technique [3]. Linear
Improved Spread Spectrum (LISS) [4] uses a new modula-
tion technique that removes the signal as source of inter-
ference. Recent advances focus on random binning inspired
from Costa’s work in information theory [5]. In practice,
a reasonably large but suboptimal binning codebook can
be constructed using quantization. In the popular Spread
Transform Scalar Costa Scheme (ST-SCS) [6], robustness to
noise is improved by quantizing the projection of the data
onto a pseudo-random vector.

Interpolation refers to the problem of constructing a con-
tinuously defined function from given discrete data. Image
interpolation techniques include, in range of increasing per-
formance, nearest-neighbor, bilinear [7], cubic-spline and B-
spline [8] interpolation. A comparison between the different
interpolation techniques in terms of approximation error and
execution time is provided in [7].

In watermarking schemes, interpolation acts usually as a
perturbation. Interpolation is involved in most geometrical
attacks such as rotation. Indeed, such attacks result in the

distortion of the original data coordinates. The interpola-
tion is then used to derive the pixel values on the original
discrete grid. Interpolation is also necessary to perform wa-
termarking in a continuous transformed domain such as the
Fourier-Mellin domain [9]. More specific algorithms also re-
fer to interpolation. A hierarchical and deterministic secret
sharing procedure built on polynomial interpolation is used
to construct the mark provided to an additive watermarking
scheme in [10]. 3D objects are represented by non-uniform
rational B-Splines that provide an insertion domain for sub-
stitutive algorithms [11]. In [12], a bilinear interpolation-
based watermarking algorithm W-interp was proposed.

Let M = [m(l)]l∈{1,...,L} denote the binary antipodal
message of size L. L is called the payload. Let I denote the
original image, W the mark and IW the watermarked image.
These quantities are handled as matrices as follows:

I = [i(n1, n2)]n1∈{1,...,N1},n2∈{1,...,N2}

The watermarked image IW = I + W is transmitted and

possibly attacked, leading to the image I
′

W . Under the as-
sumption of mild attacks, the noise model amounts to the
widespread AWGN channel model:

I ′
W = IW + B where b(n1, n2) ∼ N (0, σ2

B)

The simulations provide the averaged performance on the
test image set composed of Lena, Baboon, Fishingboat, Pep-
pers and Pentagon.
Let σ2

W denote the variance of W . For a given I, let define
the document to watermark ratio (DWR), the watermark to
noise ratio (WNR) and the Document to Noise Ratio (DNR):

DWR =
σ2

I

σ2
W

, WNR =
σ2

W

σ2
B

, DNR =
σ2

I

σ2
B

DWR (resp. DNR) measures W (resp. B) imperceptibility
with respect to the host image. WNR measures transmission
noise and attack influence.

This paper is organized as follows: Section 2 generalizes
the approach of [12] to the class W-subst of substitutive wa-
termarking algorithms based on interpolation. Among this
class, Section 3 develops the example of W-spline, based
on spline interpolation, that offers better perceptual prop-
erties. An objective perceptual quality metric is introduced
to assess the approach efficiency. In [12], a Gaussian ap-
proximation of the interpolation error was used to study
the performance in the context of additive white Gaussian
noise (AWGN) attack. Section 4 derives an optimum decoder
based on the generalized Gaussian model. Section 5 provides
an experimental study of the robustness of W-spline to vari-
ous attacks. Section 6 proposes a new practical algorithm for
a security attack specifically tailored to the proposed class
of algorithms.

2. A CLASS OF WATERMARKING
ALGORITHMS BASED ON INTERPOLATION

A family of substitutive, known-host state [2], informed wa-
termarking schemes is presented in Fig.1.
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Figure 1: Class of watermarking schemes W-subst

Let select in I two non-overlapping sets of samples, of
respective coordinates G and S. G denotes the grid. The
watermark is embedded in S ⊂ [|1, N1|] × [|1, N2|] \ G. Let
NS denote the cardinal of S and PS = NS/L the redundancy.
S is divided into L non-overlapping, randomly constructed
sets of size PS : S = S1 ∪ ... ∪ SL, Si ∩ Sj = ∅ ∀i 6= j.
Sk is associated to the bit m(k) of the message. Let T de-
note a set of random parameters guaranteeing the security
of the algorithm. The secret key K consists of the water-
mark coordinates S and the associated security parameters
(K = {S,T }). Let I|G denote the restriction of I to G. Fi-
nally, let fS denote a function

fS(I|G;G, T ) = eI

producing an image eI such that eI|G = I|G and that I and eI
are perceptually close. Note that I|S is not provided to fS .
fS estimates some missing samples provided a subset of I.
Hence, fS can be considered as an interpolating function.

At the embedding, the values I|Sl
of the pixels in Sl

are substituted by their counterpart eI|Sl
provided by fS if

m(l) = 1. If m(l) = −1, IW |Sl
= I|Sl

.

The decoding compares I ′
W |S and fI ′

W |S . Let denote

R = fI ′
W |S − I ′

W |S . For a given bit m(l), the mean square

error ρ2(l) = 1
|Sl|

P
(n1,n2)∈Sl

r(n1, n2)
2 is compared to an

image-dependent threshold ν. If ρ2(l) < ν, the decision is
d(l) = +1, else d(l) = −1. ν can be chosen empirically as the

mean of the decoding results: ν = 1
L

PL
l=1 ρ2(l). However, a

theoretical threshold is derived in section 4 under appropri-
ate hypotheses about the interpolation error distribution.

This framework provides a blind watermarking scheme,
since I is not used at the decoding. It is substitutive in the
sense of constraints imposition. It is also a host-rejecting
watermarking method since in the absence of any attack,
perfect decoding, thus a rate NS/N1N2, can be achieved.
It is an informed coding method since I is used during the
generation of W . An informed embedding extension of W-
subst should use knowledge about the detection technique
during the embedding [3].

Note that fS will be often a linear function of the ele-
ments of G and will act as a local filter. The condition of
imperceptibility imposes that W modifies the high and mid-
dle frequencies of I. Under this assumption, fS behaves like
a low pass filter, and the watermark consists of high pass
coefficients of I.

The algorithm is characterized by the choice of a lowpass
function fS , a grid G, the positions S, outside the grid, of
NS watermarked pixels, and the security parameters T .

3. PARTICULAR CASE OF SPLINE
INTERPOLATION

The framework presented in Section 2 generalizes the water-
marking algorithm proposed in [12]. In the particular case
studied in [12], fS was derived from bilinear interpolation on
a given grid G. In this paper, the case of spline interpolation
is addressed.

3.1 Spline interpolation

Suppose that a continuous signal g(x) must be interpolated
from given discrete, regularly spaced values {g(k)}k∈Z. Most
techniques, such as linear interpolation, use convolution by
finite-support synthesis functions. In theory, perfect recon-
struction of band-limited functions could be obtained by
cardinal sine interpolation. However, interpolants of infi-
nite support cannot be used in practice. B-splines allow to
implement interpolation by an infinite-support interpolant,
called cardinal spline, with a reasonable computational cost
[8]. They offer the best approximation performance for the
least complexity [7]. Let denote η3 the cardinal cubic spline
(cf Fig. 2). Then the interpolation result gspline(x) is

gspline(x) =

+∞X

k=−∞
g(k)η3(x − k) (1)

B-splines are piecewise polynomial functions whose
pieces are smoothly connected together. Let denote β3(x)
the B-spline synthesis function of degree 3 (cf Fig. 3). Let
denote x the integer part of x. Then (1) is equivalent to

gspline(x) =

x−2+3X

k=x−2

c(k)β3(x − k)

where c(k) is computed from {g(k)}k∈Z and the sampling
of β3(x) by computationally efficient filtering. Moreover, a
two-dimensional extension is possible [8] :

ispline(x, y) =

x−2+3X

k=x−2

y−2+3X

k=y−2

c(k, l)β3(x − k)β3(y − l)
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Figure 2: Cardinal B-spline of 3rd degree
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Figure 3: B-spline synthesis functions of degree 0,1,2,3

3.2 Watermarking algorithm W-spline

Like in [12], we propose to use the chessboard-like grid
G = (2Z + 1) × 2Z ∪ 2Z × (2Z + 1), which allows for a com-
putationally efficient implementation.

If (n1, n2) ∈ Sl with m(l) = 1, i(n1, n2) is replaced by :

ei(n1, n2) = ispline(n1 + τx(n1, n2), n2 + τy(n1, n2))

where the elements of T = {τx(n1, n2), τy(n1, n2)}(n1,n2)∈S
are independent random variables uniformly distributed over
] − 1

2
, + 1

2
[. These random shifts are introduced to improve

the security level of the algorithm (cf Section 6).
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3.3 Distortion evaluation

Imperceptibility of a watermark is empirically observed for
DWR> 38 dB. Let εI denote the interpolation error. In our
case, DWR = 2σ2

I N/σ2
εI

NS . For a given DWR, one can find
NS , the maximum number of pixels to be substituted. NS
depends on I and the interpolation technique. Psychovisual
studies have shown that modifications in regions of high local
variance is less perceptible, allowing to design perceptual
masks for the classical DS technique [13]. Similarly, the use
of interpolation guarantees that modifications occur mainly
in these regions. Moreover, the resulting watermark is highly
correlated to the host image.

Objective metrics can assess the perceptual image qual-
ity. The Structural Similarity metric (SSIM) [14] measures
the degradation of structural information, ranging from 0
(no similarity) to 1 (no distortion). Experimental results
(cf Tab.1) show that according to this criterion, W-spline
outperforms the classical DS technique combined with the
Noise Visibility Function (NVF) [13] mask or combined with
embedding in the DCT domain with an appropriate psycho-
visual mask [2].

DS 0.9827 DS+NVF 0.9897
DS+DCT 0.9897 W-spline 0.9929

W-spline w/o T 0.9964 W-interp w/o T 0.9961

Table 1: Comparison of SSIM quality metric, DWR=38 dB

4. OPTIMAL DECODING

This section studies the theoretical performance of W-spline
in the presence of AWGN attack. When the attack parame-
ter σ2

B is known, a theoretical detection threshold is derived
and performs significantly better than the empirical thresh-
old. When σ2

B is unknown, the theoretical performance can
as well be derived and consistency with simulations is demon-
strated.

4.1 Interpolation error distribution

The histogram of the interpolation error εI for a given image
I shows that the generalized Gaussian density (GGD) is an
appropriate distribution model (Fig. 4). This family of pdfs,
also called generalized Laplacian, is defined as:

fx(x) = Ae−|αx|c , x ∈ R

A and α are function of the standard deviation σ and a shape
parameter c :

α =
1

σ

„
Γ(3/c)

Γ(1/c)

«1/2

A =
αc

2Γ(1/c)
.

where Γ denotes the gamma function. c = 2 corresponds to
the Gaussian density function and c = 1 to the Laplacian.
Algorithms are available for estimating σ and c from the
histogram [2]. On the test set, c varies from c = 0.81 to
c = 1.21 for W-spline.

The GGD has been used in various empirical image stud-
ies in the spatial domain. The difference between the lumi-
nance of two adjacent pixels of a natural image follows a
GGD [15]. Moreover, natural image are shown to be differ-
encially Laplacian [16], i.e. a linear combination of adjacent
pixels in a k × k window has a Laplacian density, provided
that the sum of the coefficients is null. The bilinear inter-
polation functions meet this condition, as well as spline in-
terpolation if it is approximated to a finite support. Note
that a large family of lowpass functions fS can also meet
this condition. The following performance study is still valid
for the corresponding watermarking algorithms.
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Figure 4: Histogram of the interp. error, Lena

4.2 AWGN influence

Let r(n1, n2) = εIW
(n1, n2) + εB(n1, n2), εIW

and εB being
the respective contributions to R of the image and the noise.
The variance of εB(n1, n2) can be expressed as (1 + kT )σ2

B ,
where the constant kT depends on T :

kT =

+∞X

k=−∞

+∞X

l=−∞
E[(η3(τx − k)η3(τy − l))2]

It can be computed numerically as kT ' 0.58 without shifts,
kT ' 0.77 with uniform distribution over ]− 1

2
, + 1

2
[. In com-

parison, for W-interp [12] a straightforward computation of
kT was possible: kT = 4( 1

4
+ σ2

T )2 for any distribution of T

with zero mean and variance σ2
T . This leads to kT = 0.25

without shifts and kT = 4
9

' 0.44 with uniform distribu-
tion. Note that the influence of the noise is reduced in the
absence of any shift and that W-spline performs poorer than
W-interp because of the existence of negative pixel weights.

4.3 Neyman-Pearson Detector

For simplicity and without any loss of generality, this sec-
tion considers a single bit mark (L = 1) with m(1) = 1. The
detection problem consists in a binary hypothesis test:
• hypothesis H0: absence of mark,
• hypothesis H1: presence of a mark.
Let Pd denote the probability of detection, Pfa the probabil-
ity of false alarm. The Neyman-Pearson detector maximizes
Pd for a given Pfa under the assumption of a GGD of R.

Under hypothesis H1, the substitution at the embedding
leads to εIW

(n1, n2) = 0, thus cR|H1
= 2 and σ2

R|H1
= σ2

εB
.

Under hypothesis H0, εIW
(n1, n2) follows a GGD. Since the

characteristic function of a GGD has no closed form, the pdf
of R must be estimated numerically. Experiments show that
it is also very close to a GGD. The theoretical pdf of R is
computed by convolution: fR|H1

= fεIW
∗ fεB

. Then cR|H0

is estimated by least-square optimization.
The corresponding test statistics is given by:

T =
X

S
(|αR|H1

r(n1, n2)|
cR|H1 − |αR|H0

r(n1, n2)|
cR|H0 )

According to the Central Limit Theorem, T is approx-
imately Gaussian with respective mean µT |H0

, µT |H1
and

variance σ2
T |H0

, σ2
T |H1

that depend on PS , c, σ2
B and σ2

εI
.

Let Q(x) =
R +∞

x
1√
2π

e−u2/2du and Q−1(x) its inverse.

The Neyman-Pearson detector decides H0 when T < ν with

ν = σT |H1
Q−1(Pfa) + µT |H1

, thus Pd = Q

„
ν − µT |H0

σT |H0

«

4.4 Decoding problem

The decoding problem consists in estimating the binary
original message from I ′

W . The decoding performance is
measured experimentally through the bit error rate (BER):

BER = (1−
PL

l=1 δ(d(l), m(l)))/L, where δ denotes the Kro-
necker symbol. The optimal decision threshold νth minimizes
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the BER. Assuming the equiprobability of the binary mes-
sage symbols, νth is solution of ∂BER

∂ν
(νth) = 0. This yields

νth =
σT |H1

µT |H0
+σT |H0

µT |H1

σT |H0
+σT |H1

. Fig. 5 displays the experi-

mental and theoretical BER. The theoretical threshold νth

is an improvement to the empirical one ν.
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Figure 5: Choice of ν: L=2048, WNR=-4 dB, Lena

5. SUBOPTIMAL DECODING AND
ROBUSTNESS

Attacks on robustness aim at distorting imperceptibly IW in
order to prevent a correct decoding. The evaluation criterion
is the BER. In this section, W-spline is compared in terms of
robustness to W-interp [12] and to the classical algorithms
DS [2], DS with Wiener prefiltering (DS+W) [2], ST-SCS [6]
and LISS [4]. Since the attack parameters are unknown to
the embedder, the empirical threshold (cf Section 2) is used,
which provides suboptimal decoding.

As shown by the study of kT , W-interp is more robust
than W-spline to the AWGN attack. Fig.6 shows that for
a reasonable WNR and high L, W-spline outperforms DS,
DS+W and LISS (but not ST-SCS). When WNR and/or L
are low, DS+W and LISS are more robust [12]. Note that for
low BERs of Fig.6, the optimum decoder theoretical perfor-
mance might not be very accurate due to the Gaussian ap-
proximation of T . The robustness of W-interp to denoising,
JPEG compression and histogram equalization was demon-
strated in [12]. W-spline robustness to these attacks is very
similar to that of W-interp (cf Fig.7 for denoising).

The scaling attack consists changing the size of IW .
When it is re-scaled later to its original size by bilinear inter-
polation, this amounts to a low-pass filter. When the shrink-
ing factor is reasonable, i.e. WNR is not too low, W-spline is
robust to this attack based on interpolation (cf Fig.8). Note
that a scaling factor of 0.5 corresponds to DNR=22 and to
a perceptible attack.

W-spline presents the same vulnerability to desynchro-
nizing attacks as spread-spectrum and quantization-based
algorithms, as shown in [12] for W-interp and the rotation
attack. Specific resynchronization techniques are to be de-
signed.
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Figure 6: Robustness to AWGN, WNR=-4 dB, DWR=38 dB
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6. SECURITY

Attacks on security aim at uncovering or estimating the se-
cret key K from a given No observations of data watermarked
with K. The security level of an algorithm is defined as
the minimum number of observations required to estimate
K with a sufficient precision. Tools based on information
theory have been recently developed to assess the theoretic
security level of watermarking schemes [17]. Practical algo-
rithms implement attacks on security for the classical spread
spectrum and quantization-based schemes [17]. According
to the terminology of [17], W-subst does not make a perfect
watermark covering, since it modifies the distribution of the
interpolation error. This section proposes two security at-
tack algorithms specifically tailored to W-subst, as well as
simulations assessing its security level.

6.1 Proposed approach

In the context of digital forensics, [18] proposed to expose
tampering by detecting interpolation traces. Indeed, most
digital cameras use specific algorithms for missing sample
interpolation. In the tampered areas of the image, this form
of interpolation might disappear. Thus, one can detect and
even locate digital forgeries. Unlike fragile watermarking,
this technique does not resort to a prior signature insertion.
An Expectation-Maximization (EM) algorithm is used to es-
timate simultaneously the interpolated pixels and the specific
interpolation weights [18]. In the context of this paper, this
EM algorithm has been adapted to estimate K = {S, T }.

The first security attack consists of Popescu and Farid’s
EM algorithm, applied to IW (No = 1). In the unwater-
marked case, the interpolation error model is the GGD rather
than the uniform distribution used in [18]. The prior prob-
ability of a pixel to be in S is derived from the DWR. The
EM algorithm provides an estimation of the weights, as well
as the map of the probability that each pixel to be marked
(on Fig.9, dark pixels correspond to high probabilities). The
algorithm estimates also the variance σ2

EM of the interpola-
tion error on the estimated watermarked pixels and with the
estimated pixel weights. When the algorithm converges to
correct weights, σ2

EM → 0 since the interpolation error is null
on the marked points. For a given DWR, S is estimated as
the coordinates of the NS/2 probability map greatest values.

In the second attack, the attacker has access to No > 1
images {Ik

W }k∈{1..No} watermarked with the same key K.
For each (n1, n2), the EM algorithm is applied to the collec-
tion {ikW (n1, n2)}k∈{1..No} and their neighborhoods. On S,
the prior probability that a pixel is marked is 1/2. S con-
sists of the points of lowest watermarked case variance since
the algorithm converges on (n1, n2) ∈ S if No is sufficiently
large. At the output, an estimation of (τx(n1, n2), τy(n1, n2))
is provided. The probability map allows then to decode M .

6.2 Practical results

Simulations have been performed on W-interp [12] for sim-
plicity. Extensions to W-spline (approximated to finite in-
terpolant support) and to other instances of W-subst are
possible. Images from the test image set [19] are tiled to
reach large No.
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If No = 1, the attack is successful only if T is null or
constant for all watermarked pixels and only for a low DWR
(cf Fig.11). If T is randomly generated for each (n1, n2) ∈ S,
the attack fails for any DWR, which confirms that W-interp
is secure when a single image is known.

If No > 1 and T is variable, T can be uncovered only
when No is very large (cf Fig.11). However, σ2

EM decreases
fastly on S when No increases and a rough estimation of
S becomes possible. If the attacker has access to less than
No = 103 images, W-interp is secure to this attack.

Figure 9: EM probability map, Lena, T constant, (left) not wa-
termarked, (right) watermarked, DWR=32 dB
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Figure 11: Attack on security, No > 1

7. CONCLUSION

A generic class of substitutive informed watermarking algo-
rithms W-subst has been proposed. Imperceptibility of these
schemes has been assessed through an objective quality met-
ric. An optimum decoder has been derived in the context of
AWGN attack. A specific practical attack on security has
been designed in order to study the security level. All these
tools are suitable for a large subset of W-subst.

Moreover, W-spline, a specific method based on spline in-
terpolation, has been proposed. Objective evaluation shows
that it offers good properties of security and imperceptibil-
ity. Simulations using a suboptimum decoder show that it
provides good robustness to the classical waveform attacks,
which was also the case of W-interp, a previously proposed
algorithm based on bilinear interpolation. Specific means to
improve the robustness of this kind of algorithm to geomet-
rical attacks are under study.

An informed embedding extension of the framework W-
subst is possible by the use of optimization under constraints.
For instance, the perceptual quality or/and robustness to a
given attack can be optimized thanks to genetic algorithms
[20], where the population members differ by the algorithm
parameters.
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