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ABSTRACT

In this paper, we propose a new method for reducing the
reverberation effects in convolutive blind source separa-
tion which lead to reduced intelligibility of the sepa-
rated sources (e.g., speech signals). The existing meth-
ods mainly try to maximize the separating performance
without paying much attention to the linear distortion
in the separated signals. We propose a modification
to the existing algorithms that reduces the distortions
introduced by the demixing filters. In particular we in-
vestigate the possibilities of modifying the frequency re-
sponses of the demixing filters to have no spectral peaks,
which leads to near allpass character of the overall sys-
tem. The good performance of the modified algorithm
will be demonstrated on real-world data.

1. INTRODUCTION

In recent years, many algorithms for blind source sepa-
ration of both instantaneous and convolutive mixtures
have been proposed. While the algorithms often per-
form quite well on white sources and short mixing chan-
nels, which are usually encountered in data transmis-
sion, the separation of convolutive mixtures in acoustic
environments with long reverberation times and non-
white sources still remains challenging. A serious prob-
lem in acoustic settings is the additional linear distor-
tion (reverberation) introduced by the demixing filters.
One therefore aims at recovering the source signals with
approximately the same power spectral densities as ob-
served at the microphones. For example, the recur-
rent network setup introduced by Jutten and Herault [1]
achieves this goal. Weinstein et al. [2] proposed to use
postfilters which should be the inverse of the demixing
filters. In practice the postfilters often drastically reduce
the separating performance. Ikeda and Murata [3] pro-
posed another setup which aims to recover the signals as
they have been received by the microphones. They used
the instantaneous case in the frequency domain. After
separating, he applied the inverse of the separating ma-
trix to each frequency bin of the separated signals, so
that the scaling ambiguity was resolved. However, the
same practical problems occur as with the method in
[2]. A new approach was proposed by Huang et al. [4].
They proposed to first identify the mixing channels, and
based on this information, build the demixing system.
Again, system inversion can cause numerical problems,
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and the method works only when the mixing channels
do not share common zeros. Under some strong condi-
tions, the method in [5], which is also based on mixing-
system identification, even allows for the recovery of the
original source without distortion. However, the conver-
gence of the method in practical applications could only
be shown for extremely short channels, which renders
the method inapplicable for acoustic scenarios.

In this paper we propose a modification to the up-
date rule of convolutive blind source separation that
reduces the reverberation while keeping the separating
performance almost constant. We study this modifica-
tion for the algorithm in [6], which uses the integrated
frequency-domain Kullback-Leibler divergence as its ob-
jective function and minimizes it with respect to the
time-domain coefficients of the demixing filters.

Notation. Convolution is denoted by ∗, and (·)T is
the transpose. I is the identity matrix. The opera-
tor diag(·) turns a vector into a diagonal matrix and
vice versa. Time-domain matrices and vectors are set
in boldface italic, and the frequency or z-domain corre-
spondents are set in regular boldface letters. A matrix
W(z) is the z-transform of a matrix sequence W (n),
where W(z) =

∑
n W (n)z−n.

2. PROBLEM STATEMENT

In real-world acoustic scenarios, the mixing channels can
be modeled by FIR filters of length L, where L can be
2000 or more, depending on the reverberation time and
sampling rate. In the following, we assume an equal
number of sources and sensors. Given the source vector
s(n) = [s1(n), . . . , sN(n)]T , the vector of observation
signals denoted by x(n) = [x1(n), . . . , xN (n)]T can be
described as

x(n) = H(n) ∗ s(n) =

L−1∑

l=0

H(l)s(n − l) (1)

where H(n) is a sequence of N ×N matrices containing
the impulse responses of the mixing channels. For the
separation, we use FIR filters of length M and obtain

y(n) = W (n) ∗ x(n) =

M−1∑

l=0

W (l)x(n − l) (2)

with y(n) = [y1(n), . . . , yN(n)]T being the vector of sep-
arated outputs and W (n) containing the unmixing co-
efficients. Fig. 1 shows the scenario for two sources and
sensors.
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Figure 1: BSS model with two sources and sensors.

The overall system can be described by

y(n) = W (n) ∗ H(n) ∗ s(n) = G(n) ∗ s(n), (3)

which reduces to a multiplication in the z-domain:

Y(z) = W(z)H(z)S(z) = G(z)S(z). (4)

The aim of BSS is to find W(z) from the observed
process x(n) so that

G(z) = PD(z) (5)

where P is a permutation matrix and D(z) an arbitrary
diagonal matrix. These matrices represent the two am-
biguities of BSS:

• There is no way to determine the order of the
sources.

• The separated signals are scaled and filtered versions
of the sources.

3. BLIND SEPARATION ALGORITHM

We here follow the method in [6], which uses the in-
tegrated Kullback-Leibler divergence in the frequency
domain as the objective function and minimizes it with
respect to the time-domain matrices W (n). This allows
us to overcome the local permutation problem known
from pure frequency-domain methods. The resulting
update rule is given by

W l+1(n) = W l(n) − µ
∂f(W l)

∂W l(n)
(6)

with W = [W (0), W (1), . . . , W (M −1)], l being the it-
eration index and f(·) denoting the integrated Kullback-
Leibler divergence. The expression for the gradient de-
rived in [6] is given by

∂f(W l)

∂W l(n)
=

π∫

−π

[I −D−1(l, ω)P(l, ω)]Wl(ejω)ejωndω

(7)
where

D(l, ω) = diag
(
[σr1

1 (l, ω), ..., σrN

N (l, ω)]T
)

(8)

and
P(l, ω) = Yr−1(l, ejω)YH(l, ejω), (9)

Yr−1(l, ejω) =
[∣∣Y1(l, e

jω)
∣∣r1−1

ejθ(Y1(l,ejω)), ...

...,
∣∣YN (l, ejω)

∣∣rN−1
ejθ(YN (l,ejω))

]T

with Yi(e
jω) being the short-time Fourier transforms of

yi(n), i = 1, 2, . . . , N and

σrp

p (l, ω) = βσrp

p (l, ω) + (1 − β)
∣∣yp(l, e

jω)
∣∣rp

. (10)

The parameter β with 0 < β < 1 is a moving-average
parameter, and rp is the order of an assumed generalized
Gaussian source model.

The method allows for long filters and is suitable
for separating real-room recordings, but it suffers from
linear distortions which are introduced by the demixing
filters and will be discussed in the next section.

4. REDUCING REVERBERATION
EFFECTS OF THE DEMIXING FILTERS

4.1 General considerations

The mixing filters hij(n) and demixing filters wij(n) in-
troduce, in general, a linear distortion to the signals, be-
cause only filtered versions of the sources can be recov-
ered with blind techniques. Depending on the objective
function used to measure the independence of the out-
puts and on the power spectra of the sources, the spec-
tral shaping of the outputs can be very strong, and cer-
tain frequencies can be emphasized significantly. Fig. 2
shows a typical frequency response of one of the demix-
ing filters designed to separate two competing voices in
a reverberant environment. Apparently, this filter has
a number of significant spectral peaks that help to en-
hance the measure of independence and the signal-to-
interference ratio (SIR) [7], but decrease the intelligibil-
ity of the separated voices. The perceived effect is an
added reverberation through the unmixing system. In
this particular example, the signals have been separated
with an SIR of almost 20 dB, but they are nearly un-
intelligible. Therefore, although there is a filtering am-
biguity, one is interested in recovering the sources with
approximately the same power spectral densities as the
ones observed at the sensors. As mentioned in the in-
troduction, a number of techniques have been proposed,
which often introduce their own problems such as the
need to find stable inverses to MIMO systems with long
impulse responses.

4.2 The postfilter method

Ikeda and Murata proposed in [3] to apply the inverse of
the unmixing matrix to the individual separated sources,
in order to recover the sources as observed at one of the
microphones. Starting from a separated output Yi(e

jω),
filtered versions of this source are computed as the en-
tries of the vector

vi(e
jω) = W−1(ejω) · [0 . . . 0, Yi(e

jω), 0 . . . 0]T . (11)

The postfilter Qji(e
jω) to obtain the separated source

from output i, but as observed at the jth microphone, is
thus given by the jith element of the inverse unmixing
matrix: Qji(e

jω) = [W−1(ejω)]j,i.
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The standard technique is to apply such postfilters
after the separation algorithm has converged. In Section
6 we will present experimental results for this method.
In addition, we study the behavior when the postfilter
is applied during the blind unmixing-filter update.

4.3 The new proposed methods

In this paper, we combat the reverberation problem by
demanding unmixing filters that nearly have an allpass
character.1 Thus, unlike the method in [3], we do not
aim at recovering the sources with the same phase as ob-
served at the microphones, but only try to obtain similar
power spectra.

Demanding the individual filters to be allpass does,
in general, not ensure that the overall system is allpass.
However, we will show in the following that it ensures
that the overall system has only spectral gaps and no
sharp spectral peaks. To show this, we consider the
postfilters Qij(z) that would allow us to reconstruct the
signals as they were recorded at the microphones, as
proposed in [3]. Thus, the inverses of the postfilters,
given by Uij(z) = 1/Qij(z), describe the transmission of
individual sources from the microphones to the outputs
y1 and y2 of the separation network. For a 2×2 system,
these filters are given by

Uij(z) := [W11(z)W22(z) − W21(z)W12(z)]/Wij(z).
(12)

Assuming allpass demixing filters with |Wij(e
jω)| = 1

and evoking the triangle inequality, it is easy to see that
0 ≤ |Uij(e

jω)| ≤ 2. This means that the demixing filters
can have spectral gaps, but no large peaks. When we
move from a 2×2 to an M×M system, the generalization
of the above property reads 0 ≤ |Uij(e

jω)| ≤ (M !) where
”!” stands for the factorial.

In the following, two concepts to achieve allpass-like
unmixing filters will be proposed and investigated.

Method 1. In the first method, we amend the integrated
KLD f(W) by a term %1(W) with

%1(W) =

N∑

i=1

N∑

j=1

M−1∑

k=0

(|Wij(k)|2 − 1)2, (13)

where Wij(k) is the discrete Fourier transform (DFT) of
wij(n). The function %1(W) becomes zero when all fil-
ters Wij(z) are allpass. The modified update rule reads

W l+1(n) = W l(n) − µ
∂f(W l)

∂W l(n)
− λ

∂%1(W
l)

∂W l(n)
(14)

Method 2. The second concept is to define an objective
function in the logarithmized frequency domain in such
a way that it is minimized when the unmixing filters are
allpass. Here we choose the following:

%2(W) =

N∑

i=1

N∑

j=1

M−1∑

k=0

[W̃ij(k)]2 (15)

1True all-pass filters would have uniform frequency responses
but would not be demixing filters, in general.

with
W̃ij(k) = log(|Wij(k)|) (16)

The gradient becomes ∂%2(W)

∂fWij(k)
= 2W̃ij(k), and we ob-

tain the following update rule:

W̃ l+1
ij (k) = W̃ l

ij(k) − ε W̃ l
ij(k). (17)

Hence the update rule in the linear frequency domain:

W l+1
ij (k) = |W l

ij(k)|γ · ej 6 W l
ij (k) (18)

where γ = 1 − ε. The overall procedure is as follows:

• Calculate the first gradient as in (7) and make the
update according to (6):

W tmp(n) = W l(n) − µ
∂f(W)

∂W l(n)
(19)

• Set W l
ij(k) = DFT{wtmp

ij (n)}

• Calculate W l+1
ij (k) as in (18)

• Set wl+1(n) = IDFT{W l+1
ij (k)}

The objective functions %1(·) and %2(·) of methods 1
and 2, although being both minimized when all filters
are allpass, have slightly different properties, because
they show different asymmetries around the ideal case
where |Wij(k)| = 1. The objective function %1(·) is sen-
sitive to very large values of |Wij(k)|, whereas %2(·) is
sensitive to both very large and very small values of
|Wij(k)|.

5. PERFORMANCE MEASURES

5.1 Measurement of separating performance

When the original sources or at least the individual com-
ponents of the mixtures are available then the sepa-
rating performance can be measured by the signal-to-
interference ratio (SIR) defined as [7]:

SIRyi
= 10log10

E[(gii(n) ∗ si(n))2]

E[(
N∑

j=1,j 6=i

gij(n) ∗ sj(n))2]

(20)

5.2 Measurement of distortion

As stated in the last section, the demixing filters wij(n)
introduce a distortion to the separated signals that re-
sults in reverberation and can drastically reduce the in-
telligibility of the separated signals although the sepa-
ration was successful.

To quantify this type of distortion, the Spectral Flat-
ness Measure (SFM) can be used [8]. The SFM is de-
fined as

SFM =
Gm

Am

(21)

with Gm being the geometric and Am the arithmetic
mean of the power spectrum of a signal. To measure the
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distortion introduced by a filter w(n) we assume a white
noise signal filtered with w(n). The power spectrum
of the output depends only on the frequency response
W (ejω). Therefore the SFM can be computed as:

SFM =

N

√∏N−1
k=0 |W (k)|2

1
N

∑N−1
k=0 |W (k)|2

(22)

with W (k), k = 0, 1, . . . , N − 1 being the DFT of w(n).

The values of SFM range between 0 and 1. A value of
1 means that the filter is an allpass. Low values indicate
high linear distortions introduced by the filter.

6. EXPERIMENTAL RESULTS

To test the modified update rules, simulations were per-
formed on the ICA99 data [9]. This data set contains
real room recordings with individual contributions of
the sources to the microphones, so that the separating
performance can be calculated using (20).

We used separation filters of length 1024 and a step-
size parameter of µ = 0.01. The parameters of (7) were
set to the values proposed in [6].

Table 1 shows the SIR measure of separation perfor-
mance and the spectral flatness measure for the origi-
nal algorithm (denoted as plain) and the two postfilter
modifications discussed in Section 4.2. We see that for
the plain method, the separation in terms of the SIR is
very good, but the linear distortion introduced by the
demixing filters is very high, as seen from the low SFM
values. The frequency response of the filter w11(n), de-
signed with the plain method is depicted in Fig. 2. It
clearly shows a number of strong peaks. Applying the
postfilter minimizes the linear distortions introduced by
the filters, but it also drastically reduces the separation
performance. Applying the postfilter correction during
every iteration yields filters that perform better in terms
of separation and distortion. This indicates that the
algorithm converges to a different and better final so-
lution when the postfilter-normalization step is carried
out during the blind coefficient-update iteration.

Table 2 shows how the separation performance and
the distortion for our proposed first algorithm based on
the measure %1(·) for different values of λ. With λ = 0
we get the original plain setup. As the influence of λ
grows, the separation performance decreases, but the
achieved spectral flatness and the intelligibility increase.
Hearing tests confirm this behavior. With the original
rule, the separated signals are barely intelligible, while
with increasing λ, the audible distortions vanish. The
perceived effect is a reduction of the room size from
a long tunnel to a small, but empty living room. For
comparison, Fig. 3 shows the frequency response of an
optimized filter. As one can see, the frequency response
is much smoother than the one in Fig. 2.

Table 3 shows results for the second proposed
method based on the measure %2(·) for different choices
of γ. To allow for a better comparison of the different
algorithms, Fig. 4 depicts the average SIR’s over the av-
erage SFM. From this figure, one can clearly see that
the method based on %2(·) performs better than the

Table 1: Comparison of the separating performance of
postfilter methods. ”postfilter” stands for applying the
postfilter once at the end of the iteration, and ”postfil-
ter+” means using it in every iteration.

Method P lain Postfilter Postfilter+

SIR1 12.20 4.37 5.84

SIR2 19.84 6.87 7.17

SFM11 0.19 0.81 0.90

SFM12 0.19 0.38 0.56

SFM21 0.27 0.54 0.61

SFM22 0.33 0.81 0.90

Table 2: Comparison of the separating performance
with update rule based on %1(·).

λ · 10−3 0 0.01 0.02 0.04 0.08 0.15

SIR1 12.20 9.92 9.46 9.36 9.56 9.18

SIR2 19.84 16.73 15.60 14.94 14.73 13.25

SFM11 0.19 0.31 0.38 0.48 0.61 0.78

SFM12 0.19 0.29 0.34 0.42 0.54 0.67

SFM21 0.27 0.36 0.42 0.47 0.56 0.63

SFM22 0.33 0.48 0.54 0.61 0.72 0.80

Table 3: Comparison of the separating performance
with update rule based on %2(·).

γ 1 .9998 .9996 .9994 .9992 .9990

SIR1 12.20 10.32 9.38 9.70 10.04 9.56

SIR2 19.84 19.43 16.54 15.85 14.79 12.39

SFM11 0.19 0.48 0.64 0.72 0.77 0.81

SFM12 0.19 0.43 0.60 0.67 0.73 0.76

SFM21 0.27 0.44 0.56 0.64 0.68 0.73

SFM22 0.33 0.57 0.68 0.76 0.79 0.82

one based on %1(·). Compared to the plain output of
the demixing system without shaping the spectra, both
techniques significantly enhance the SFM and the in-
telligibility at a slight reduction of the SIR. Fig. 4 also
shows that both proposed methods reduce the linear dis-
tortions of the individual unmixing filters to the level of
the postfilter method and still show up to 7 dB better
separating performance.

Fig. 5 depicts the power spectrum of an original sig-
nal, as observed at one of the microphones, and the cor-
responding spectra of the separated source, using the
plain method and the one based on %2(·). As one can
see, the spectrum of the separated signal using the new
update rule is much closer to the original speech spec-
trum than the one for the plain method.

7. CONCLUSIONS

In this paper, we have proposed a new update rule
for blind source separation in reverberant environments.
The results obtained with real-world data clearly show
that the new update rule generates demixing filters
which have much smoother frequency responses than the
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Figure 4: Average SIR versus average SFM for different
separation methods and varying parameters. The free
parameters are λ in case of %1(·) and γ in case of %2(·)).

ones produced with a plain blind separation algorithm.
The smoother frequency responses result in less rever-
beration in the separated signals, and, as a consequence,
the intelligibility of speech is significantly enhanced with
the new method. Although the proposed modifications
have only been studied for the use with Kullback-Leibler
divergence based blind source separation, they are also
applicable to source separation using other techniques
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Figure 5: Comparison of the power spectra of original
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such as joint diagonalization of second-order correlation
matrices.
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