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ABSTRACT

High speed and reliable data transmission over a variety
of communication channels, including wireless and mobile
radio channels, has been rendered possible through the use
of adaptive equalization. In practice, adaptive equalizers
rely heavily on the use of the least-mean square (LMS) al-
gorithm which performs sub-optimally in the real world that
is largely dominated by non-Gaussian interference signals.
This paper proposes a new adaptive equalizer which re-
lies on the judicious combination of the least-mean fourth
(LMF) algorithm, which ensures a better performance in a
non-Gaussian environment, and the power-of-two quantizer
(PTQ) which reduces the high computational load brought
about by the LMF and hence renders the proposed low-
complexity equalizer capable of tracking fast-changing chan-
nels. This paper also presents a performance analysis of the
proposed adaptive equalizer, based on a new linear approxi-
mation of the PTQ. Finally, the extensive simulation carried
out here using the quantized LMF corroborates very well
the theoretical predictions provided by the analysis of the
linearized proposed algorithm.

1. INTRODUCTION

Ever since its introduction in digital communication by Lucky
[1], adaptive equalization continues to enjoy a plethora of
practical applications and to offer researchers in this area a
rich source of deep theoretical challenges. The vibrancy
of this area of research is clearly evidenced by its many
footprints of success and the steady flow of interesting and
practical research results. Central to the wide success and
applicability of adaptive equalization is the ubiquitous adap-
tive least-mean square (LMS) algorithm [2] which is well-
known to be optimal for Gaussian interference signals. Un-
fortunately, the real world is largely dominated by non-Gaussian
interference signals, thus rendering the performance of any
LMS-based adaptive equalizer sub-optimal. Moreover, a
LMS-based adaptive equalizer suffers from a further loss

in performance when applied to wireless and mobile radio
channels that are fast-changing, both time and frequency-
dispersive and where long bursts may get unacceptably cor-
rupted if a fast-tracking operation is not in place.

To address this difficulty, several approaches, all aim-
ing at simplifying the structure of the underlying adaptive
scheme, were proposed [3, 4, 5]with varying degrees of suc-
cess. Most notable of these contributions are the approaches
used in [3] and [4] which achieve the required structural
simplicity through the use of the power-of-two quantizer
(PTQ) instead of the conventional analog-to-digital converter.
Whereas [3] relies on the use of nonlinear correlation mul-
tipliers, [4] hinges on the use of the popular LMS and at-
tributes the improvement gained in the overall performance
of the adaptive equalizer to the combined use of the LMS
and the PTQ.

In this paper, we propose a new approach which aims
to effectively address the 2 main difficulties (sub-optimality
in a non-Gaussian environment and lack of fast tracking
rapidly-changing channels) plaguing the use of the LMS-
based adaptive equalization. Our new approach is inspired
from the work of [6] which showed that the LMF, which es-
sentially relies on a non-mean square cost function, yields
a better performance than the LMS in some non-Gaussian
environments, e.g., uniform, sine, and square, but at the cost
of a higher (than in the LMS case) computational load and
from the work of [4] which demonstrated that the use of the
PTQ leads to a structural simplicity of the adaptive equal-
ization scheme and hence to an important reduction of the
normally high computational load of the LMF, thus endow-
ing an LMF-based equalizer with a fast tracking capability.

In addition to the beneficial and judicious combination
of the LMF and the PTQ, this paper also presents a deriva-
tion of a new and very useful linear approximation of the
PTQ’s input/output characteristics. This linear approxima-
tion greatly simplifies the performance analysis of the pro-
posed LMF-PTQ equalizer. The extensive simulation work
carried out here in various practical scenarios substantiates
very well the theory behind the proposed equalizer.
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2. THE LMF ALGORITHM FOR ADAPTIVE
EQUALIZATION

Consider the model of a linear channel with N -tap equalizer
shown in Figure 1.
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Fig. 1. Adaptive channel equalizer.

The equalizer input samples can be written as

x(n) =
N−1∑
i=0

h(i)a(n − i) + ν(n), (1)

where h(i), i = 0, 1, . . . , N − 1, is the channel impulse
response, a(n) denotes the nth data sample, ν(n) is the ad-
ditive noise added to the channel and N represent the length
of the equalizer. The estimated output, y(n), is defined as:

y(n) = wT (n)x(n), (2)

where w(n) = [w(0), w(1), · · · , w(N − 1)]T is the current
value of the adaptive weights, superscript T denotes trans-
pose operation, and x(n) = [x(n), x(n − 1), · · · , x(n − N

+1)]T represents the input vector.
The weight vector, w(n), is updated by the LMF algo-

rithm [6] according to:

w(n + 1) = w(n) + 2µe3(n)x(n), (3)

where µ is the step-size constant which controls stability
and rate of convergence and e(n) is the system’s output er-
ror sample at the nth moment and found by:

e(n) = d(n) − wT (n)x(n), (4)

where d(n) is the desired signal.

3. THE SIMPLIFIED ALGORITHM–LMF BASED
POWER-OF-TWO QUANTIZER

A power-of-two quantizer is defined by Duttweiler [3] as:

q(u) = 2�ln |u|�sgn(u), (5)

where �u� is the largest integer less than u and sgn(u) is the
sign of u defined as:

sgn(u) =
{

1 u ≥ 0
−1 u < 0

The quantizer defined by (5) is an infinite bit quantizer. How-
ever, in a real application, a finite bit quantizer is often used.
The analysis of a finite bit power-of-two quantizer incorpo-
rated with LMS algorithm is given by Xue and Liu in [4],
where they have indicated that a B-bit power-of-two quan-
tizer converts an input u to a “one-bit” word according to:

q(u) =

⎧⎨
⎩

sgn(u), |u| ≥ 1;
2�ln |u|�sgn(u), 2−B+1 ≤ |u| < 1;
0, |u| < 2−B+1.

(6)

In this work, we have adopted the simplification of equa-
tion (6) and applied it to LMF algorithm resulting in LMF
based power-of-two quantizer (LMF-PTQ). Instead of the
updating algorithm (3), the equalizer coefficient update is
carried out according to:

w(n + 1) = w(n) + 2µq[e3(n)]sgn[x(n)], (7)

where q[e3(n)] is the modified power-of-two quantizer for
LMF algorithm and is defined by:

q[e3(n)] =

⎧⎨
⎩

sgn[e(n)], |e(n)| ≥ 1;
2�3 ln |e(n)|�sgn[e(n)], 2

−B+1
3 ≤ |e(n)| < 1;

0, |e(n)| < 2
−B+1

3 .
(8)

Note here that (8) has been straightforwardly obtained from
(6) by replacing the quantizer input u by e3(n).

Finally, Figure 2 illustrates the transfer characteristics
of such quantizer with B = 4 bits .
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Fig. 2. Input-Output characteristics of a 4-bit power-of-two
quantizer.
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4. CONVERGENCE ANALYSIS OF LMF-PTQ
ALGORITHM

In the following, a linearized analysis is presented. It is
obvious that the analysis of Equation (8) will be complex
because of the presence of the error cube update. We there-
fore resort to a linearized approach through approximation
of the quantizer function q[e3(n)] to a linear function. This
is done by drawing a straight line passing through the center
of each step of the quantizer transfer characteristic. Such
line is shown dotted in Figure 2. Although, the approach
may give less accurate results, but it will surely render the
analysis more tractable.

A geometrical analysis of Figure 2 leads to the following
approximation, as shown in Appendix A:

q[e3(n)] ≈ 7
8
e(n). (9)

4.1. Convergence in the Mean

On using approximation (9), equation (7) becomes

w(n + 1) = w(n) +
7
4
µe(n)sgn[x(n)]. (10)

Now, let us define the coefficient error vector v(n) = w(n)−
wopt, where wopt denotes the optimal coefficient vector.
Subtracting wopt from both sides of (10) and taking the ex-
pected value of both sides of it, using the independence as-
sumption [2] and applying Price theorem [7], the mean be-
haviour for the coefficient misalignment vector of the LMF-
PTQ is shown to be governed by the following recursion:

E{v(n + 1)} =

[
I− 7

4

√
2
π

µ
R
σx

]
E{v(n)}, (11)

where σx and R are, respectively, the standard deviation of
the input signal and the input autocorrelation matrix.

Therefore, sufficient condition for the convergence in
the mean of the LMF-PTQ algorithm is governed by:

0 < µ <
4

7Nσx

√
2π. (12)

4.2. Convergence in the Mean-Square

We begin by subtracting the optimal coefficient vector, wopt

from both sides of (7). Accordingly, we have

v(n + 1) = v(n) + 2µq[e3(n)]sgn[x(n)]. (13)

Let us define
E[‖v(n)‖2] = θ(n). (14)

It follows from (13) that with white inputs, Equation (14)
looks like the following:

θ(n + 1) = θ(n) + 4Nµ2E{q2[e3(n)]} + 4µ

×E{q[e3(n)]vT (n)sgn[x(n)}. (15)

Misadjustment
Nµσx

16
7

√
1
2π

− Nµσx

Time constant − 1

ln

(
1 − 7

2

√
2
π

µσx +
49
16

Nµ2σ2
x

)

Table 1. A summary of the convergence analysis results for
the LMF-PTQ algorithm.

Again using approximation (9), Equation (15) becomes

θ(n + 1) = θ(n) +
49
16

Nµ2E{e2(n)} +
7
2
µ

×E{e(n)vT (n)sgn[x(n)]}. (16)

With the assumption that the sequence x(n) is an i.i.d. with
zero mean and variance σ2

x, it can be shown that the LMF-
PTQ algorithm will converge in the mean-square sense if
the step size µ is governed by:

0 < µ <
8

7Nσx

√
2
π

. (17)

Finally, Table 1 gives the expressions of the misadjustment
factor and the time constant of the proposed algorithm. were
not derived here (due to space limitations) but included for
completeness of the study.

5. SIMULATION RESULTS
An 11-tap transversal equalizer with varying quantization
resolution ranging from 3 to 9 bits has been simulated. The
input symbol sequence is a random bipolar signals, i.e., ({a(n)} =
±1). As an example of a non-Gaussian environment, a uni-
formly distributed noise with SNR=20 dB was added to the
output of the channel. The dispersive channel considered
here has an impulse response of the raise-cosine type [2]
given by:

h(n) =

⎧⎨
⎩

1
2

[
1 + cos

(
2π(n − 1)

W

)]
, n = 1, 2, 3

0, otherwise
(18)

where W is a parameter that determines the eigenvalue spread
of the signal input. W was set equal to 3.1 and 3.3 to pro-
vide an input autocorrelation matrix eigenvalue spread of 11
and 21, respectively. A sample of our simulation results is
shown here in Figures 3 and 4, where the learning curves
are shown for the cases: B=3, 5, 7 and 9. As can be seen
from these figures, a good agreement between simulation
and theory has been achieved.

The proposed algorithm was also successfully tested in
other practical scenarios involving time varying channels
(e.g., mobile channels) and different noise environments.
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Fig. 3. Analytical and experimental learning curves for
adaptive equalization using LMF-PTQ algorithm. Eigen-
value spread of 11.
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Fig. 4. Analytical and experimental learning curves for
adaptive equalization using LMF-PTQ algorithm. Eigen-
value spread of 21.

Due to space limitation, these results cannot be reported
on here. Moreover, it should be noted that there are other
low complexity algorithms (e.g., block adaptive, frequency-
domain, partial update, just to name a few); however, a
comparison between these algorithms and our proposed low
complexity algorithm warrants by itself a separate study.

6. CONCLUSION
A new equalizer based on a judicious combination of the
LMF algorithm and the PTQ quantizer was presented. As
such, this equalizer enjoys better performance in a non-Gaussian
environment and a fast tracking capability needed for a suc-
cessful handling of rapidly-changing channels. The pro-
posed equalizer’s performance was also analyzed and all the
theoretical predictions were very well supported by our ex-
tensive simulation work. Finally, the success of this work
provides ample encouragement to investigate the performance

of a whole class of new equalizers that are driven by more
general adaptive algorithms governed by non-mean square
cost functions of the general form : J = E[e2p(n)], with
p > 2.
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A. APPENDIX: DERIVATION OF THE LINEAR
APPROXIMATION IN (9)

From the first quadrant of Figure 2, the mid points of the
steps are:
2

−B+2
3 + 2

−B+1
3

2 , 2
−B+3

3 + 2
−B+2

3

2 , 2
−B+4

3 + 2
−B+3

3

2 , and
so on. The slope of the line joining these mid points can be
expressed as:

∆q(u3)
∆u

=
2

−B+3
3 − 2

−B+2
3

2
−B+4

3 + 2
−B+3

3

2 − 2
−B+3

3 + 2
−B+2

3

2

(19)

Putting B = 4, we obtain ∆q(u3)
∆u = 0.885 ≈ 7

8 .

B. REFERENCES
[1] R. Lucky, “Automatic equalization for digital commu-

nication,” Bell Syst. Tech. J., vol. 44, pp. 547–588, Apr.
1965.

[2] S. Haykin, Adaptive Filter Theory. Upper Saddle River,
NJ: Prentice-Hall, 4th ed., 2002.

[3] D. Duttweiler, “Adaptive filter performance with non-
linearities in the correlation multiplier,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing,
vol. 30, no. 4, pp. 578–586, 1982.

[4] P. Xue and B. Liu, “Adaptive equalizer using finite-bit
power-of-two quantizer,” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 34, no. 6,
pp. 1603–1611, 1986.

[5] J. Bermudez and N. Bershad, “A nonlinear analytical
model for the quantized LMS algorithm-the arbitrary
step size case,” IEEE Transactions on Signal Process-
ing., vol. 44, pp. 1175–1183, May 1996.

[6] E. Walach and B. Widrow, “The least mean fourth
(LMF) adaptive algorithm and its family,” IEEE Trans-
actions on Information Theory, vol. 30, no. 2, pp. 275–
283, 1984.

[7] A. Papoulis and S. U. Pillai, Probability, Random Vari-
ables and Stochastic Processes. New York: McGraw-
Hill, 4th ed., 2002.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


