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ABSTRACT

Future generations of mobile phones, including advanced
video and digital communication layers, represent a great
challenge in terms of real-time embedded systems. Program-
mable multicomponent architectures may provide suitable
target solutions combining flexibility and computation po-
wer. The aim of our work is to develop a fast and automatic
prototyping methodology dedicated to signal processing ap-
plication implementation on parallel heterogeneous architec-
tures, two major features required by future systems. This
paper aims to present the Algorithm Architecture Adequa-
tion methodology from both the description of application
and multicomponent architecture to the dedicated real-time
distributed executives. Then a comparison is done between
executives which use or not a resident Real-Time Operating
System. This work is finally illustrated by the execution of a
multimedia application based on a scalable LAR video codec.

1. INTRODUCTION

New embedded multimedia systems require more and
more computation power. They are increasingly complex to
design and need a time-to-market always shorter. Computa-
tion limits of systems (i.e. video processing, telecommunica-
tion physical layer) are often overcome thanks to specific de-
dicated circuits. Nevertheless, this solution is not compatible
with short time designs and future capacity adjustments. An
alternative can be provided by software components (DSP,
ARM) and hardware components (FPGA) since they are reu-
sable and programmable. The parallel and heterogeneous as-
pects of multicomponent architectures raise new problems in
terms of application distribution. A suitable design process
solution consists in using a rapid prototyping methodology.
The aim is then to go from a high level description of the
application to its real-time implementation on a target ar-
chitecture as automatically as possible. Moreover, Data Flow
Graphs (DFG) have proven to be an efficient representation
model to describe an algorithm applications. To this end, the
Algorithm Architecture Adequation (AAA) methodology is
presented. It is a rapid prototyping methodology, suitable
for transformation-oriented systems and heterogeneous mul-
ticomponent architectures. AAA methodology aims to auto-
matically generate dedicated real-time distributed executives
from both application and target architecture description
models. AAA methodology is well fitted for deterministic al-
gorithms. Indeed, all the executives are scheduled off-line by
this methodology and so they are suitable for deterministic
algorithms such as image processing algorithms.

The use of a RTOS is not necessary thanks to the off-line
scheduling. On-line scheduling implies more available data
and program on components and is well-suited when the ap-
plication behaviour can not be predicted [1]. The use of an
RTOS is no longer essential when the application behaviour

is known before the execution (for instance the image al-
gorithm we develop). Off-line scheduling releases ressources
which are often too limited in embedded systems. Never-
theless, the comparison between those two approaches on
the same application has to be done in order to know the
impact on the allocated memory, the effect on the inter-
component communications and the real-time behaviour of
the algorithm. The paper is organized as follows : section 2
introduces the AAA methodology. The executive specifica-
tions and the use of RTOS according to the AAA methodo-
logy are described in section 3. Application implementation
of the LAR codec and comparison of the results are explained
in section 4. Finally conclusions are given in section 5.

2. AAA FAST PROTOTYPING
METHODOLOGY

The aim of the AAA methodology is to find the best mat-
ching between an algorithm specifying the application to per-
form and a multicomponent architecture. Besides, real-time
and embedding constraints must be satisfied. AAA metho-
dology is based on graph theory to model the software ap-
plication and the hardware architecture. Both the software
and the hardware are described by distinct graphs. AAA
methodology transforms those two graphs with graph trans-
formations in order to find an optimized implementation.

2.1 Algorithm & architecture models

The application algorithm is modelled by a data flow
graph which is an oriented hyper-graph. Each vertex corres-
ponds to an operation of the algorithm and each edge re-
presents a data transfert between operations. DFG only sets
a partially order on the execution of operations thus two
operations which are not in data-dependence relation may
be executed in any order, particularly simultanously by two
processors. Thus, DFG shows the potential parallelism of an
algorithm [2].

In AAA methodology, so as to be precise in the model
description but not too much complex (i.e hardware level)
for implementation, finite state machine (FSM) is defined
like the atomic component of an architecture [2]. A proces-
sor or a specific circuit is then a composition of FSMs. In
this way, multicomponent architecture may be represented
by a network of FSMs interconnected with communication
media (bus, shared memories . . .). The architecture may be
modelled by non-oriented hypergraph where each vertex is a
processor and each hyper-edge represents a communication
media. In this model, a processor is composed by one opera-
tor and as many communicators as connected media. An ope-
rator executes operations which are a part of the algorithm
and a communicator executes a communication operation
when a data transfert is required. Operator and communi-
cator are connected together by a shared memory inside a
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Fig. 1 – Distribution & scheduling of an algorithm onto an architecture

same processor.
Figure 1 represents an architecture graph which is com-

posed of two processors and two media. Each processors are
constituted by a single operator and two communicators. Ar-
chitecture graph allows to exhibit the available parallelism
useful during the implementation.

2.2 Graph transformation

The implementation graph is obtained by transforming
the algorithm graph according to the architecture graph.
This transformation corresponds to a distribution and a sche-
duling of the algorithm graph. Distribution, also called parti-
tioning, allocate spatially parts of the algorithm onto compo-
nents of the architecture. It consists in realizing a partition
of the algorithm graph in different sub-graphs which describe
the operations to execute for each operators. Scheduling al-
locates temporally operations onto components. It consists
in executing sequentially all the operations allocated to an
operator. The execution order has to take into account of the
precedence required by the data-dependence between opera-
tions, otherwise total order of execution is automatically spe-
cified by adding precedence edge between operations without
data-dependence relations during the implementation. These
transformations are depicted in Figure 1 where the grayed
areas represent operators and communicators. Operations of
the algorithm are distributed on operators and communica-
tion operations are distributed on communicators. Schedu-
ling when operations have not data-dependence is represen-
ted by the bold arrows in order to avoid deadlocks (e.g B
must be computed before C ). Otherwise, data-dependences
must be respected (e.g A before B).

Efficient implementation graph is obtained by an opti-
mization which realize simultanously distribution and sche-
duling. There is a large number of possible implementations.
The optimization problem aims to select the most efficient
one between them (real-time constraints, architecture res-
sources. . .). Moreover, the problem of distribution and sche-
duling in case of multicomponent is known to be NP-hard
(an exhaustive research on all the possible fulfillments is in-
conceivable), this is why heuristics are used to match the
best approximation of the optimal solution. This heuristic
attempts to minimize the total execution time of the al-
gorithm running on the multicomponent architecture. The
definition of this greedy heuristic is described in [3].

2.3 Executive generation

As soon as an optimized implementation is determined,
an executive may be automatically generated for each opera-

tor. First of all, repetitions and synchronizations must be ad-
ded into the optimized implementation graph. Indeed, reac-
tive applications we want to implement are iterative by na-
ture whereas a DFG does not exhibit any their repetitive
feature. In this way, repetitions have to be inserted to each
sequence of operations and communications. Likewise sche-
duling the algorithm graph does not show synchronizations
between different sequencers of a processor. Since operators
and communicators are independent, synchronizations bet-
ween sequencers are necessary when a communication is re-
quired. To this end, semaphores are inserted in the imple-
mentation graph for each synchronization in order to gua-
rantee precedence between computation and communication
operations on the same processor [4]. Indeed, inter-processor
synchronizations (more precisely, inter-communicators) are
necessary for sending and receiving data. A more detailed
description is done in [2]. The following Petri network (Fig.
2) shows the intra-processor synchronizations of the different
sequencers for the figure 1 first processor (it is the same for
the second processor except send are replaced by receive)
where P and V 1 respectively waits for a semaphore un-
til a resource is available and releases semaphore after the
process has finished to use it. Semaphore parameters define
respectively the operation to synchronize and its path to the
communicator (e.g A1), if the buffer is full (1) or not (0) and
the medium which transfer the data.

For instance, operation A is computing and writing in
the memory buffer AD, a semaphore {A1,1,SAM1} is sent
to the communicator Com1 which is waiting for it (assume
Opr1 execution slower than Com1 ) and has now access to
AD, communication operation send(AD) sends its contents
to processor2 then it sends a semaphore {A1,0,SAM1} to
OPR1 which have now access to the buffer. Since commu-
nication sequence Com1 is faster, Com1 must wait for the
buffer AD is full to access it. It should be noted that syn-
chronizations are managed automatically in AAA.

Then, this executive graph is transformed into macro-
executives which are as many as processors of the architec-
ture. The generic executive is composed of a list of macro-
instruction which specifies memory allocation, communica-
tion sequence(s) and computation sequences. These macro-
executives are generics i.e. they are independents from a spe-
cific programming language. It authorises to transform later
in the appropriate language specified by the different target
operators (C or assembler for DSP, VHDL for FPGA. . .).
This is the purpose of section 3.

1Probeer and Verhoog mean decrease and increase in Dutch
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Fig. 2 – Petri net of the execution graph

2.4 SynDEx
SynDEx2 is a system level CAD software principally de-

signed at INRIA Rocquencourt Research Unit (France) in
development with our image processing lab. This tool sup-
ports the AAA methodology for rapid protyping and for the
implementation optimization of distributed real-time embed-
ded applications onto “multicomponent” architectures. Syn-
DEx allows to generate as many executives as processors
of the multicomponent architecture respecting the methodo-
logy aforementioned.

3. GENERIC EXECUTIVE SPECIFICATION

Macro-executives are generated following the AAA me-
thodology. We need to transform these different generic exe-
cutives in order to have compilable executives which may be
downloaded in the target processor.

3.1 Translation
Each generic executive is translated in a compilable exe-

cutive by a macro-processor. The macro-processor trans-
forms this list of macro-instructions into compilable code for
a specific processor target. It replaces macro-instructions by
their definition given in the corresponding library (also cal-
led kernel) which is dependent on a processor target and/or
a communication medium. The translation is done thanks to
these libraries. One of them is generic and do not depend
on the algorithm. It supports the architecture specification
such as memory allocations, sequence synchronizations and
also inter-operator transfers. The other kind of libraries per-
mits to describe the algorithm specification such as func-
tion definitions or function-calls. Since the macro-executive
is generic, there is a large number of possible downloadable
source code, thus users have to specify the most appropriate
translations as possible. The free software Gnu-m4 is the
macro-processor we use to transform the macro-executive
into compilable source. Notice, in both cases, real-time dis-
tributed executives are statics, the deterministic behaviour
of the real-time execution is guaranteed off-line by the dis-
tribution scheduling heuristic.

2Synchronized Distributed Executive

3.2 Real-Time Operating Systems in AAA context

Our approach in this article is to compare two different
translations. One the one hand, we have realized a “clas-
sical” translation in the sense of AAA [5]. The “classical”
approach consist in straightly tranlating the optimized ge-
neric executive in the suitable programming language. On
the other hand, we have also realized a translation which al-
lows to manage a RTOS. This approach consist in translating
the generic executive in order to configure a resident RTOS
which is able to manage the different sequences as well as
synchronizations between them. To this end, we developed
new libraries to specify the translation of macro-intructions.
Figure 3 describe the two approaches from software descrip-
tion to hardware implementation.
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Fig. 3 – Software to hardware : two approaches

A RTOS is an operating system that is developed for
real-time applications. It allows to manage multi-threaded
processes. In this approach, computation and the communi-
cation AAA sequences are several threads synchronized by
the use of semaphores. Synchronizations are now managed
by the RTOS i.e we do not put “manually” a value (0 or 1) for
each semaphore to lock or unlock a shared memory unlike it
is done in the other approach. Notice that we use the RTOS
only for allowing the creation and the scheduling of threads
and the management of synchronizations in order to have a
multi-threaded process. Yet we do not use it for managing
software or hardware interrupts. Unfortunately, integrating
the RTOS on the multicomponent target must have a cost.
Indeed the use of a resident RTOS necessarily increase the
overheads of the executives.

4. RELATED WORKS

4.1 RTOS overview

A great deal of RTOS exists for processors. Their primi-
tives are often specific to particular kind of processors. This
is why more generic RTOS primitives may be well-suited for
a faster implementation on different processor types. The
embedded Linux seems to become the RTOS more used in
embedded systems. Indeed, embedded Linux has the advan-
tage of being modelled with POSIX standard so different em-
bedded Linux are generic to program contrary to the RTOS
developped by processor manufacturers. Moreover embedded
Linux may be embedded in most of existing processors. For
TI DSP, some embedded Linux RTOS exists such as Media-
Linux OS [6], Lightweight OS [6]. For the moment, the Texas
Instrument RTOS called DSP-BIOS is used for embedded
applications we develop. DSP-BIOS manages each process
(one process per DSP). It has been configured by the compi-
lable executives only for managing synchronizations between
different threads and for scheduling them. Notice, DSP-BIOS
is usable only with TI DSP and so its primitives are not ge-
neric.
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4.2 Platform targets
Several hardware providers such as Pentek, Sundance or

Vitec MultiMedia develop multicomponent hardware archi-
tectures and some of them have been validated in our lab
to support the AAA methodology [5]. A Sundance hardware
platform is used until now to implement executives genera-
ted with a RTOS. This platform is made up of a host PC
with motherboard which supports several TIMs (Texas Ins-
trument Module) interconnected by different kinds of me-
dia. Our platform is constituted by a SMT361 TIM and a
SMT319 TIM. The first one is a module with a TI C6416
DSP which is well-suited for image processing and the second
one is a framegrabber, which is an image digital-analogic
converter. The TIM includes a C6414 connected via two
FIFO to non programmable devices (the BT829 encode PAL
stream to YUV stream and the BT864 decode YUV stream
to PAL stream). The architecture platform is shown in the
figure 6 with two SMT361 TIMs and a SMT319 TIM.

4.3 Preliminary results
In order to know the difference between on-line and off-

line sheduling, we made tests on a simple application (sen-
dings and receptions of datas) implemented onto two DSPs in
order to have many communications. The results are shown
in figures 4 and 5. The first graph shows the time necessary
to carry out totally the execution compared to the data size.
A comparison is done of the result between the “classical” ap-
proaches and the one which manage the RTOS in the figure
5. Processes with the RTOS are always slower than without
it. However, the larger the data size is, the more the diffe-
rence is reduced. So, the execution time do not seem to be
excessively modified by the use of a RTOS especially with
large data like in image processing. In addition to that com-
pilable executives are definitely shorter and understandable
compared to the other method. Synchronizations are made
easier by using the RTOS. Thus the debugging during the
algorithm functional checking is facilitated.
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4.4 LAR codec implementation
LAR3 is a compression and a decompression image pro-

cessing algorithm developed in our laboratory [7]. It is an ef-
ficient technique well-suited for image transmission. Its prin-
ciple is to adapt the local resolution (pixel size) according to
the luminance uniformity i.e typically a low resolution (block
8× 8) when the luminance is uniform and a high resolution
(block 2× 2) when the activity is high. It is a scalable image

3Locally Adaptive Resolution
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algorithm no RTOS RTOS
1 18.03 ms 18.05 ms
2 25.35 ms 25.45 ms
3 31.84 ms 32.07 ms

Tab. 1 – Execution times of LAR algorithms

and video codec from grayscale image compression to lossless
colored video compression. Following the AAA methodology,
an implementation is done of the LAR codec algorithm onto
the architecture. Coder and decoder are respectively imple-
mented on DSP1 and DSP2 of the architecture. The DFG
of the LAR codec is described figure 7. Three different LAR
scalable algorithms are implemented in order to compare the
result when the complexity of the graph description increases
[8].
Algorithm 1 : spatial (featured by block 2 × 2, 4 × 4 and

8× 8) video codec for luminance.
Algorithm 2 : spatial video codec for chrominance adding

to algorithm 1.
Algorithm 3 : spectral (featured by adding residual error)

video codec only for block 2 × 2 luminance adding to
algorithm 2.
The LAR codec results support those obtained pre-

viously subsection 4.3. Execution time is slightly slower with
a RTOS process management. The coder is the slowest part
of the algorithm (typically 4 times slower than the decoder).
The real-time behaviour of LAR codec is thus given by the
coder execution time since the total execution is pipelined
by processors. Time obtained are shown in figure 1. The im-
pact on the memory of DSP-BIOS is represented in figure 2.
As envisaged, DSP-BIOS increase the memory used by pro-
cessors (55 kBytes). However, the more the memory used is
large, the more the impact is proportionally small. In algo-
rithm 3, DSP-BIOS increases the memory used in coder and
decoder DSPs respectively of 7% and 5%.

5. CONCLUSION AND PERSPECTIVE

This paper has presented the integration of a Real-Time
Operating System in the AAA methodology executive gene-

algorithm Coder DSP Decoder DSP
no RTOS RTOS no RTOS RTOS

1 874 kB 928 kB 899 kB 953 kB
2 747 kB 802 kB 658 kB 713 kB
3 642 kB 697 kB 528 kB 583 kB

Tab. 2 – Codec memory used
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ration. The AAA methodology has been introduced in order
to present the automatic generation of dedicated real-time
distributed executives. The development of libraries during
the execution specification has enabled to manage RTOS and
to implement it in the PC-multi-DSP target. These libraries
have been integrated in existing projects developed in our
lab. These projects are free to download.

Though the RTOS has an impact on processor target
such as execution time or allocated memory, we noted that
the overcost is more slight when data size grown. So, using
a RTOS seems to be almost as efficient as the “classical” ap-
proach for image processing algorithms where data are often
large. Moreover, executives automatically generated inclu-
ding RTOS primitives are really simple leading to a bet-
ter comprehension for users. One of the main objectives for
RTOS developpers is to keep primitives compatible with new
components. This point is important to keep our automatic
code generation available in the future. The LAR codec im-
plementation allowed us to verify the real-time behaviour of
the codec in the case of the RTOS approach.

We are working on the integration of a more generic
RTOS such as an embedded Linux in the AAA methodology
executive generation. Embedded Linux will allow to develop
faster multithreaded processes on different kind of processors
and platform targets with the same RTOS executive specifi-
cation. This work on embedded Linux according to the AAA
methodology will allow the implemention of new image pro-
cessing algorithms in development in our image-lab such as
MPEG-4 AVC and MPEG-21 SVC standards.
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