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ABSTRACT estimate the pdf, the other based on multivariate gaussians
A multimodal probabilistic framework is proposed for the For the second measure, they assume that the audio-visual
problem of finding the active speaker in a video sequencélata is gaussian locally, on short temporal windows.
We localize the current speaker’s mouth in the image by us- Fisher et al. [7] use a nonparametric statistical approach
ing the video and the audio channels together. We propod@ learn maximally informative joint subspaces for multi-
a novel visual feature that is well-suited for the analydis o modal signals. Their method uses no prior model and no
the movement of the mouth. After estimating the joint prob-training data. In [8], the method is further developed, show
ability density of the audio and visual features, we can findng how the audio-visual association problem, formulated a
the most probable location of the current speaker’s moutf hypothesis test, can be related to mutual informatioedas
in a sequence of images. The proposed method is testégethods.
on the CUAVE audio-visual database, yielding improved re-  Butz and Thiran [9, 10] propose an information theoretic
sults, compared to other approaches from the literature.  framework for the analysis of multimodal signals. They ex-
tract an optimized audio feature as the maximum entropy
1. INTRODUCTION linear combination of power spectrum coefficients. They
I . . show that the image region where the intensity change has
Speech production is multimodal in nature and, when Conggﬁe highest mutual information with the audio feature is the
municating through speech, humans can augment the audi@3eaker's mouth. Besson et al. [11] use the same frame-
with visual information. The McGurk effect [1] is @ good ex- \yqrk to detect the active speaker among several candidates.

ample: seeing a mouth that utters something different frotfpe measure that they maximize is the efficiency coefficient,

what is heard can change the perception of the sound itself; o ~ {he ratio between the audio-visual mutual information
This multimodality can be exploited in different ways.

: and the joint entropy. They use optical flow components as
Yisual features, extracting them from candidate regioes-d
tified using a face tracker.

The disadvantage of methods that attempt to maximize an
ormation theoretic measugt test timeis that they need to

of speech recognition, leading to audio-visual speechgeco
nition [2]. Our purpose in this paper is to determine who
is speaking, based on the audio-visual sequences of groups
of speakers. To this end, we introduce a novel idea on ho . : ot
to extract visual features that are better suited to reptese‘ﬁse some time-consuming optimization procedure, such as

: ; radient descent or a genetic algorithm. This means that,
speech and, at the same time, more n0|$e-tolerant. In ﬂ%though these methods do not require a training procedure,
end, we will be able to draw some conclusions about the ng

ture of the correlation between audio and video in the case e amount of computation that is needed during testing is
speech 9 portant, making a real-time implementation unfeasible.

Knowing who is speaking is important for example in By contrast, our multimodal approach does use a training

the case of a smart conference room. An automatic systepocedure. The joint pdf of the audio energy and a visual
ature based on optical flow is learned. This ensures that

with several cameras could switch views or change the foc ﬁ . . >~
depending on the speaker. the number of operations performed while testing is reduced

Several approaches to audio-visual speaker localizatiofi"d thus a real-time implementation would be possible.
have been presented in the literature. Hershey and Movellan Another advantage of our approach is that, in contrast to
[3] use an estimate of the mutual information between the ay"ethods that consider the audio and video of speech to have
erage acoustic energy and the pixel value, whose joint prolft gaussian joint pdf, we can model any kind of probability
ability density function (pdf) they assume to be gaussiandensity. The gaussian mixture model that we use is an uni-
Slaney and Covell [4] use Canonical Correlation Analysisversal approximator of densities, even when using only-diag
to find a linear mapping which maximizes the audio-visualonal covariance matrices, provided that enough gaussians a
correlation on training data. They apply the same mapconsidered.
ping on test data and measure the audio-visual correlation Moreover, in our case, no face tracker needs to be used,
in the transformed space, obtaining a quantitative measu&s testing is done on the entire image, not only the face or
of audio-visual synchrony. This approach implicitly makesmouth region. An extracted mouth region is required, but
the same assumption that the joint pdf of audio and visuapnly in the training step, when the joint pdf is estimated.
information is gaussian. Finally, although the optical flow has been used before
Audio-visual synchrony is also analyzed by Nock et al [5,for speaker localization, our visual feature, which is tife d
6]. The mutual information between the audio and the videderence between vertical components of the optical flow, is
is computed using two methods, one based on histograms tmvel. We argue that this feature is better at representiag t
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Figure 1: A frame from the training sequences, with the corFigure 3: The distribution of audio-visual samples andrthei
responding optical flow. estimated pdf.
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movement of the mouth, and, at the same time, more tolerant

to the motion of the head, compared to simple optical flowgigure 4: The distribution of audio-visual samples andrthei
pixels or pixel differences (deltas). estimated pdf, after removing the parts where there is reithe
silence, or very little motion.

2. ESTIMATING THE JOINT PROBABILITY
DENSITY OF THE AUDIO AND VISUAL FEATURES 25 Theprobability distribution

2.1 Featureextraction In order to estimate the joint pdf of features extracted from
the training sequences, we need an appropriate model. If
As we want to model the dependency between the audio ar}an(t) is the visual feature for the training frante and
the video signals in the case of speech, we need to extragtrain(t) the corresponding audio feature, we want to esti-
temporally synchronized features from both streams. Thg,ate the probability density functiop(FLran, Firain) - As-
audio feature that we use is the logarithm of the energy (1095 ming thatp(F., F) is gaussian is too restrictive. Instead,
energy) of the audio signal. From the \{ldeo, in the traininge yse a gauséian mixture model (GMM), trained with an
phase, we only use the rectangular region of the mouth. W xpectation-Maximization (EM) procedure [12]. As men-
extract visual features as follows. We compute the Opti.cafoned before, the GMM is a universal approximator, i.e.
flow from the luminance component of the images. A Sinyi can pe used to represent any type of pdf, provided that
gle vertical column of points is selected at the center of theynoygh components are included. Our trained model consists
mouth region, and only the vertical components of the MOyt foyr gaussians with diagonal covariance matrices, which
tion field are retained, as shown in figure 1. Our visual feay qyed to be a good representation for our data without over-
ture is the difference between the average optical flow on th ting it.
top and bottom halves of this column. The distribution of the audio-visual samples taken from

What we observe is that the optical flow difference isthe training sequence, as shown in figure 3, has a high con-
closely related to the movement of the mouth. When theentration of points around zero audio energy. This is chuse
mouth is opening, the result is a large positive number,evhil by pauses between words. As can be seen, the estimated pdf
whenitis closing, the resultis negative. However, whembot has a high peak in the same area, while the distribution of the
vectors point in the same direction, they cancel each oth@emaining points is poorly modelled.
out, as shown in figure 2. The advantage of this approach is  when searching the correspondence between the sound
that small movements of the head are neutralized. When thgnd the movement of the mouth, the silent samples (low au-
head is moving, the upper and lower components of the heaglo energy) do not convey any useful information. Therefore
motion cancel out, yielding only the mouth movement. we removed these samples through thresholding.

Our visual feature should also be tolerant to some amount In general, image points with low relative movement
of horizontal movement, as optical flow values are very sim{low value of the video feature) are characteristic for ficta
ilar on horizontal lines around the center of the mouth. Thidackground, even when associated with a high audio energy.
can be seen in figure 1. This tolerance to both verticaHowever, such points are also present in the training set con
and horizontal displacement means that the extractioneof thsisting of mouth regions only. They appear either as a result
mouth region, required for training, does not need to be verpf errors in the optical flow, or during the pronunciation of
accurate. long vowels, when the mouth does not move much. As these



sponding optical flow

samples can not help determine the location of the speake
we removed them as well.
Figure 4 shows the distribution of the remaining samples.
Their pdf has an interesting property, that is, high audio en
ergy is more often associated to positive values of the Visua
feature, while lower audio energy is associated to negative
values. Since our visual feature is the difference of vattic
optical flow vectors, a positive value in the training sarsple
represents the action of opening the mouth, while a negativg
one represents closing it, as can be seen from figure 2. Thi8
confirms the intuition that opening the mouth should lead to o )
louder sounds than closing it. Figure 6: Isocontours of likelihood maps, superimposed on
We can infer from the discrimination, based on the audioframes from the corresponding temporal windows.
between positive and negative values of the visual feature,
than vide orly. This clearly shows the advantages of mui 1e image are represeted. We used the LTI-Lib computer
timodal analysis. Our method does more than just detectin jsion library it t p: AR b._sourg:ef or ge. net)
compute the optical flow and display it.

regions of high relative motion. By associating this motion From the optical flow, only the vertical components are

with a corresponding audio value, our algorithm can find th . . .
combination that most likely represents a speaking mouth.eretamed' We compute the value of the visual feature in all
oints on a grid (with a 10-pixel spacing), using the same

However, the speed of the mouth’s movement, as meeﬁmethod as in training. After selecting columns having the

sured with the optical flow, can vary depending on the dIS'same height as the mouth regions from training, we compute

tance from the speaker to the camera. We normalized ﬂ}'ﬁe difference of average vertical optical flow betweenrthei

values of the visual feature by scaling them with a factor,[Op and bottom halves. The reason for using a grid is that

proportional to the distance between the speaker’s eyes. T}}he value of the visual feature does not differ much between

ot o <aacrsa Eigborng pont, and we considred e 10-piel acarac
a ‘as sufficient for speaker localization.

For each video frame, the corresponding audio energy,
3. FINDING THE ACTIVE SPEAKER together with the visual feature values on the points of the

Our method of speaker localization is based on a maximurflfid. are used to compute log-likelihoods from the learned
likelihood approach. We find the region of a test image wherdPint pdf. If ¥ (t) is the audio feature for the test frame
samples have the highest likelihood to have originated fronk @ndF,= (t,x,y) is the visual feature value at coordinates
our learned pdf. Our tests show that this region correspond:Y) in the same frame, then the obtained log-likelihood is:
quite accurately to the active speaker’s mouth. _ test test

The testing sequences consist of two speakers side by |t x.y) = log [p (R (1), = (t.x.))]
side, taking turns at speaking. They pronounce series of comvherep is the pdf obtained from training.
nected digits. Since we do not model the words themselves, We sum the log-likelihoods resulting from several con-
itis not a requirement for testing to have the same vocapularsecutive frames at each image coordinate on the grid. We use
as the training set, but generally the same set of phonemestemporal windows of lengthV (2 seconds), with a\®/3

Our testing procedure is as follows. We compute the opeverlap, as shown in figure 7. The result of the summa-
tical flow from the luminance of the frames. One such framdion is a 2D map, representing the likelihood that the active
with the corresponding optical flow is shown in figure 5. speaker’s mouth is located at a certain coordinate in the im-
Only vectors larger than 10% of the maximum motion vectorage, during the time intervalV. The algorithm outputs the



4 Step Including Only Nock et al.
Seq. silence speaker [6]
ﬂmm no. | detection (%)| localization (%) (%)
3 1 90 97 -
: 2 84 89 -
evaluation 3 80 36 )
4 82 97 -
2 5 88 88 -
evaluation 6 93 93 -
7 82 89 -
1 W/3 W3 W/3 R 8 77 85 )
W 9 89 92 -
< = Frames 10 76 84 -
11 96 96 63
Figure 7: Overlapping temporal windows and the corre- | 12 83 90 64
sponding evaluation intervals. In our case, the length ef th ii gg fg’o gg
window is W = 2 seconds. 15 90 97 75
16 97 97 85
location of the detected active speaker as (thg) coordi- g gg gg 22
nates of the likelihood maximum: 19 88 88 47
Lix V) = S 1(t.x 20 88 95 93
( 7y) £ ( ’ ’y) 21 91 94 83
22 100 100 95
(Xspeaker Yspeaker ) = argmaxL(x,y)]
SPERKEr Tspeael xy o AVg. 874 921 753

Figure 6 shows the isocontours of such likelihood maps o

L(x,y), superimposed on frames from the correspondingable 1: Speaker localization accuracy on the “groups” se-
temporal windows. For the first image, the maximum like-quences of the CUAVE database, both with and without si-
lihood point is emphasized by a cross, and, in this case, lidgnce detection. Results from Nock et al. [6] are also in-
on the speaker's mouth, as expected. In the second imagduded.

both the left and the right person are simultaneously speak-

ing, and, as can be seen, the two biggest local maxima of the

likelihood function are on the speakers’ mouths. For quantitative results, we use the frame-level ground
truth established by Besson et al. [15] for the “groups” se-
4, RESULTS guences. They assign to each frame one of these three labels:

ilence, left speaker orright speaker. This is the ground truth
gsed to obtain one set of results, for which we also detect si-
nce in the audio.

A second type of ground truth is derived with the pur-
apose of showing the performance of the speaker localization
algorithm itself, without the silence detection. To obttiis
different ground truth, we split every silent period marked

For our experiments, we use sequences from the CUAV
audio-visual database [13]. The video sequences are filmq
at 30 fps, while the audio is sampled at 44kHz. The video
is interlaced, leading to some comb-like artifacts, visilvl

the areas where there is significant motion. However, we ¢
turn interlacing into an advantage. By unfolding the two-sep
arate fields and treating them as individual frames, we obtai

video which has a doubled frame rate, 60fps, and half thi1® 0ld one, labelling each half with the nearest speaker la-
vertical resolution. As we are interested in the movement oP€!- With this second ground truth, we obtain a second set of

the mouth, having a higher frame rate more than comper€Sults-

sates for the loss of vertical resolution, while the inteing ~ Although our method can quite accurately detect the po-
artifacts are eliminated. We compensate for the one-liife sh sition of the mouth, we only distinguish between the left and
between the fields through interpolation. All video seqesnc ght speaker in our quantitative test. We base our choice on
are filtered to remove noise and downsampled to half theithe horizontal position of the likelihood maximum. If it §e
resolution to Speed up the processing_ in the |Eft haIf of the |mage, then we consider that the left
Although the sampling rate of the audio is higher than thespeaker is active, and vice-versa.
video frame rate, we need synchronized features. Tothisend We compare the detected speaker with the frame-level
we compute the audio energy on short temporal windows, sground truth. This evaluation is done on the central part of
as to obtain one audio feature value for every video frame. the temporal window, as shown in figure 7. At the same time,
The training sequence that we use belongs to the “indithe audio energy in the evaluation window is compared to the
viduals” part in the CUAVE database [14]. The speaker utsilence threshold used in training. If the majority of saaspl
ters the English digits from “zero” to “nine” separatelyy fo in the window are silent, we label it as silent. Otherwise,
five times, with pauses between the repetitions. Testing sehe label given is the detected active speaker. The detected
quences are from the “groups” section of the database. Thegbel is compared to the one that forms the majority in the
consist of two speakers taking turns, and finally speaking siground truth, within the temporal window. The first set of
multaneously for a short time at the end. We ignored thigesults presented in table 1 is obtained with this method. Fo
final part of each sequence in testing. the second set of results, the silence detection step ipestip
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