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ABSTRACT An extension of this approach was proposed in [4], where a

In this paper we describe a Bayesian approach for SeparHBquenCY'dependent (lnstead of |.|.d) model of the sources
tion of linear instantaneous mixtures of audio sources. Oupas considered. The method was successfully applied to de-
method exploits the sparsity of the source expansion coeffférmined and underdetermined noisy audio mixtures, decom-
cients on a time-frequency basis, chosen here to be a MDCP0s€d on a MDCT basis (a local cosine basis).
Conditionally upon an indicator variable which is 0 or 1,  This paper presents further developments of the above
one source coefficient is either set to zero or given a Stynentioned Bayesian approach. —The coefficients of the
dentt prior. Structured priors can be considered for the in-SOUrces are now given a “strict” sparse prior: conditionally
dicator variables, such as horizontal structures in the time4POn an indicator variable which is 0 or 1, one source co-
frequency plane, in order to model temporal persistency. gfficient is either set to zero or given a Studertistribu-
Gibbs sampler (a standard Markov chain Monte Carlo techtion (which does not need to have a low degree of freedom
nique) is used to sample from the posterior distribution of thénymore). The indicator variable can be given an indepen-
indicator variables, the source coefficients (corresponding t§ent Bernoulli prior or, more interestinglgtructured pri-
nonzero indicator variables), the hyperparameters of the St@'S. For example, when using a time-frequency basis such
dentt priors, the mixing matrix and the variance of the noise 2 @ MDCT, horizontal structures can be favored in the time-
We give results for separation of a musical stereo mixture off€quency plane to model tonals of musical sources. This
3 sources. model was successfully applied to audio denoising in[5].
Temporal Markov chain source models have also been used
1. INTRODUCTION for BSS purposes in [6, 7]. The scope of these papers is how-
] ) S o ever slightly different than ours. Reference [6] deals with
Blind Source Separation (BSS) consists in estimafisig-  convolutive mixtures, but assumes the mixing filters known,
nals (the sources) from the sole observatiommofnixtures  and relies on prior training of the Markov transition prob-
of them (the observations). In this paper we consider lineagpilities. Reference [7] addresses more specifically musical
|nStantaneOU'S mixtures 'Of time Serl'eS:. at each time |nde)(n0n-percussive) source Separation, exp|0iting prior informa-
the observations are a linear combination of the sources @bn about the microphones spatial configuration and relying
the same time index. If many efficient approaches exist fopn thorough note models training. Our approach, though lim-
(over)determinedr > n) non-noisy linear instantaneous, in jted at the moment to instantaneous mixtures, is in contrast
particular within the field of Independent Component Analy-completely adaptive: we are able to estimate both the mix-
sis, the general linear instantaneous case, with mixtures pofry matrix and the sources, and do not need any prior model
sibly noisy and/or underdetermineth n) is still a very  training.
challenging problem. _ This paper is organized as follows. Section 2 introduces
A now common approach to the latter problem is the useotations and presents the source models. Section 3 gives the
of source sparsity assumptions, as introduced in the semingpdate equations of the Gibbs sampler. Separation results of
papers [1, 2]. The assumption of sparsity means that only |inear instantaneous stereo mixture of 3 audio sources are
a few coefficients of the sources are significantly non-zerogiven in Section 4, with comparison to our previous work.
If the sources are not sparse In their orlglnal domain (e.%ondusions and perspectives are given in Section 5.
the time domain for audio signals), they might be sparse in a
transformed domain (e.g, the Fourier domain, wavelet trans- 2. MODEL
form). Within a Bayesian framework, we modeled in [3] ) . )
the expansion coefficients of the sources on a chosen bagsl Linear instantaneous mixture model
by identically and independently distributed (i.i.d) Studentwe consider the following standard linear instantaneous
t processes with low degrees of freedom; a Gibbs samplenodel,vt < [1,N]:
was proposed to sample from the posterior distribution of
the mixing matrix, the input noise variance, the source co- X = As+ng (1)

efficients and hyperparameters of the Studetstributions.  wherex; = [X1g, ... 7Xm,t]T is a vector of sizencontaining the
. _ T - - .
Most of this work was done while the author was a Research Asso:ObservauonSSt =[Sty Snt]' IS aveqtor of sizen ConFaln'
ciate with University of Cambridge (Signal Processing Lab, Engineeringing the sources angk = [Ny, ..., nm,t]T is a vector of sizen
Dept). The author acknowledges the European Commission funded Re-
search Training Network HASSIP (HPRN-CT-2002-00285) for financial — Reference [5] even considers overcomplete dictionaries; however in this
support. paper we limit ourselves to an orthonormal basis.
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containing additive noise. Variables without time indede- 2. “Horizontal” Markov models in order to model tempo-

note whole sequences of samplegy x = [x1,...,xn] and ral persistency of the t-f coefficients, we give a prior hori-

X1=[X1,1,-.,X1,N]- zontal structure to the indicator variable. More precisely,
The aim of the following work is to estimate the sources  when a MDCT basis is used ake- (g, p), for a fixed fre-

s and the mixing matrixA up to the standard BSS indetermi-  quency indexq the sequenceéy q.p}p-1....ngame IS MOd-

nacies on gain and order, that is, compsind A such that eled by a 2-state first order Markov chain with transition

ideally A = ADP ands=PT D~ !s, whereD is a diagonal probabilitiesk 0.0 andR 1.1

matrix andP is a permutation matrix. . . .
P 2.3.3 Noise variance prior

2.2 Time domain / Transform domain The noise variance? is given an inverted-Gamma (conju-

Let x € RN _ g ¢ RI*N denote a bijective linear trans- 9ate) priorp(c?|de, Bs) = 1G(6?| s, Bo)-
form, preferably orthonormal. Denoting fere [1,N], Xk =
[Kik;---,%mk]" andriy, S similarly, by linearity of the t-f
transform we have The scale constanfs of each source are given independent
~ ~ ~ Gamma (ConjUQate) priomki |ali ) Bli ) = G(ll ‘aﬂ.i 7ﬁﬂ,i )’ al-
X = A+ 1 2) lowing an automatic adaptation to the scaling of the coeffi-
Furthermore, the transform being bijective, solving the prob—Clents in each basis. The degrees of freeanman be fixed

lem defined by Eq. (1) in the time domain is equivalent toto a certain value or estimated like in [3]. In our simulations

solving Eq. (2) in the transform domain. In the rest of thisthe value of; happened to have little influence on the results

paper we will more specifically use a MDCT with time res- and in practice we fixed it to 1. The probabilitiBsin the

. . Bernoulli models and, o—.o, P 1—1 in the Markov models
olution lirame/ s and frequency resolutior /lrame, Where e given uniform priors of®, 1], which may be routinely ex-

fs is the sampling frequency. When required, the indexXended to Beta priors if required to favor certain values over
k € [1,N] will be more conveniently rewrittek = (g,p) €  ipers.

[1, ltrame] x [[L Nirame] With Nirame = N/lframe @and whereg is
a frequency index andis a frame index. 3. METHOD

2.3.4 Hyperparameters priors

2.3 Priors We propose to sample from the pozsterior distribution of the
- . parameter® = {§,Vi, &, A }i=1.n U 0%, using a Gibbs sam-

2.3.1 Co.efnmenfs Pnors _ pler. The Gibbs sampler is a standard Markov Chain Monte
The coefficientsk, i € [1,n], k € [1,N] are given the fol-  Carlo technique which simply requires to sample from the
lowing hierarchical prior: conditional distributions of each parameter upon the others

~ _n 5(& N(& .10 3 [8]. Point estimates can then be computed from the obtained

P&k ViK) = (1= Yk) So(Sk) +HKkN(SKIOVikI3)  samples of the posterior distributiguié|%). In contrast with
p(Viklai, i) = 1G(viklei,Ai()) (4)  EM-like methods which aim directly at point estimates (ML
MAP), MCM h h

whereN(u|u,v) andIG(u|a, B) are the normal and inverted- or ), MCMC approaches are very robust because they
Gamma distributions as defined in Appendds(u) is the

scan the full posterior distribution and are thus unlikely to
; . . L : fall into local minima. This is however at the cost of a higher

Dirac delta function angk \ € {0, 1} is an indicator variable. g

Wheny =0, S is set to zero; wheryx =1, S has a

computational burden. We now give the expression for the
L~ 4, ; i ; update steps of the parameters. In the following most of the
normal distribution with zero mean and variangg, which  yerivations have been skipped, further details can be found in
is in turn assigned a conjugate inverted-Gamma pAdiq)
(whereqis the frequency index ik = (q, p)) is a frequency

[3, 9, 5]. Note that all the conditional posterior distributions
! f all th il led from.

dependent scale parametés(q) should decrease with fre- of all the parameters can be easily sampled from

quency, modeling the non-uniform energy distribution of au- 1 Update ofA and 62

dio signals. In practice we uségl(q) = A; f(q) with

Letry,...,rm be then x 1 vectors denoting the transposed
1 1] 5 rows of A, such thatAT = [ry ... ry]. With uninforma-
1+(9-D/a?)’ 1€ [Llrame] () tive uniform priorp(A) O 1, the rows ofA are a posteriori
mutually independent with

f(g) =

Integrating outv; i, the prior ofsx conditionally upon
Yk =1 is simplyt(§ «|20i,/2i(q)/ ), wheret(u|a, 1) is ri~ N(“rwzr) (7)
the Student distribution defined in the Appendix. The hier- > e AT 1 . o~ 2
archical formulation of the prior (3)-(4) is preferred becauseVhereZ. = 6= (388 )~ andu,, = 2 Zr 3 %Ki kSk.
it allows for easy Gibbs sampling. A can be integrated out in the posterior distributiomof
resulting in
2.3.2 Indicator variable priors 0% ~1G (0, Bs) (8)

We consider two scenarios for the indicator variabjgs . _ (N—-n)m .
. g DR with o = ——— and 2B, =
1. Bernoulli priors no structure is imposed on the indicator _ - T U R
variables, which are assigned the following independent) j—1 (ZkXLk — (3kXikdk) (TkBkdg) (Zka,kSk))-
Bernoulli priors:

2In practice the columns oA are normalized to 1 to solve the BSS
P(Vl,k - 1|P|) =R P(?’i,k = O\P,) =1-R (6) indeterminacy on gain.
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3.2 Update of(y,§)
Two main sampling strategies can be considered#985).

The first option is make block draws from the vectors (S k

% = [Yiks---,¥hi]| andsi. The second option is to up-
date (% k, 5 k) individually, conditionally upon(y_; x, i k),
where—i denoteg1,n] \i. In theory, the first option is better
as sampling as many parameters as possible together is s

The posterior distribution of  is written as

% ko Vi 02, Ki i ) =
(1= %K) 8o(5K) + 1kN(S lus,, 02,) (14)

yyth ¢, = (1/o*+ :I-/th)_1 andug, = (02, /0%) i k-

posed to improve the rate of convergence of the Gibbs sam-
pler [10]. However, in practice, the second option can lead t@.2.1 Update of v

a faster implementation. Indeed, the first option requires 1}he conditional

samplingy, which requires computing the posterior prob-
abilities of its 2 possible values, 2) sampling, whose

posterior distribution is multivariate Gaussian (see [3]) and
1
1= 101G (Vikl i, Ai (@) + %k IG (Vi,k|2 + ai,

thus involves inverting a x n matrix for eachk € [1,N]
and at each iteration of the Gibbs sampler. The second o
tion involves 1) computing the two posterior probabilities
P(¥k = 1r-ik,--.,X) and p(yik = O|r-ik, ..., %), 2) sam-
pling from p(§ x|S5_ik, ..., %), which is simply a univariate

Gaussian distribution. In practice, the two latter steps can b

efficiently vectorized (along), avoiding long loops and sig-

nificantly reducing the computation times (in particular when

using MATLAB). In this paper we only consider the second
option. To do so, note that Eq. (2) can be rewritten

ikzgﬁkai—i—;g]"karf-ﬁk 9)
IEAl
whereA = [ay,...,ap] and thus
Tz T T~
a' Xk a' aj . - a; ng
- L =+ (10)
a; qj | lai aj a; qj

Hence, inferrings’y conditionally upon the other source co-

efficients can be regarded as a simple regression problem,

with unknowns’y and datax_; k., wherex_; x denotes the
left term of Eq. (10).

As pointed out in [11], an implementation of the Gibbs
sampler consisting of sampling alternativedyi | and

posterior distribution &fy is

P(Vi k| ¥k Sk, i, Ai) =

S

> + A (Q)>

(15)

%.2.2 Update of the hyperparameters

e The posterior distribution of the scale parameters is
p(Ailvi) = G(AiIN i+ 0y, 5 F(Q) /Vik+By). How-
ever, because we are looking for sparse representations,
most of the indicator variablegy take the value 0 and
thus most of the variancegy are sampled from their
prior (see Eq. (15)). Thus, the influence of the data in
the full posterior distribution ofd; becomes small, and
the convergence df; can be very slow. A faster scheme,
employed in [13, 9], consists of making one draw from
P({Vik: Yk =1}{Sk: %k = 1},A, ), then one draw
from p(Ai[{Vik : %k = 1}, ) and finally one draw from
P({Vik: %k = O} A, ).

When the indicator variables are given Bernoulli pri-
ors, the posterior distribution @ is simply p(R|y) =
B(R|#y+1,N—#y+1), whereB(x|a, B) is the Beta dis-
tribution defined in the Appendix andy#is the number

of values ofy; x equal to 1. Similarly, when the indicator
variables are given Markov priors, the posterior distribu-
tions of the transition probabilities can be sampled using
a Metropolis-Hasting step as in [13]. In this work we

7.k|S x cannot be used as it leads to a nonconvergent Markov  simply update them as the number of transitions from 0
chain (the Gibbs sampler gets stuck when it generates a value to 0 and 1 to 1 divided bix.

§k=0). Thus, as in [11], we jointly draw frorfy; k,5 k) by
marginalizings’y from the posterior conditional distribution
of %k, leading to

P(%k = 0l6% Vi, R i) 1/(1+7k) (1D
POk =10 VikK_i) = Tw/(1+7K) (12)
with
02 & Vik =1y _
k= | exp| g p(%,k_ [%.x)
0%+ Vik 20%(0%+Vik) ) P(Yik= 0% k)
(13)

where ¥ _x denotes the set of all indicator variables
{7, }h=1.. N excepty k. The expression of the ratio(y x =
1% —k)/p(%k = O|%.—x) changes according to the chosen
prior for the indicator variables. Whepy has a Bernoulli
prior, this ratio is simplyR /(1—R). Wheny, \ has a Markov
horizontal structure ankl= (g, p), this ratio depends on the
values ofy g p—1 andy g p+1. The exact expressions are stan-
dard results from the Markov chain literature (seg [12]).

4. RESULTS

We present results for blind separation of a stereo mixture
(m = 2) of n = 3 musical sources (voice, acoustic guitar,
bass guitar). The sources were obtained from the BASS-dB
database [14]. They consist of excerpts of original tracks
from the songAnabelle Lee(Alex Q), published under a
Creative Commons Licence. The signals are sampled at
fs = 22.5kHz with lengthN = 131072 & 6s). The mixing
matrix is given in Table 1; it provides a mixture where the
voice s is in the middle, the acoustic guitsg originates at
67.5° on the left and the bass guitsy at 67.5° on the right.
Gaussian noise was added to the observationsavitin.01,
resulting in respectively 288 and 2dB input SNR on each
channel. We applied a MDCT to the observations using a
sine bell and 50% overlap, with time resolution (half the win-
dow length)lame = 512 (22ms). We present the following
results:
a) We apply the method in [3], in which the source coeffi-

cients are given a Studenistribution. This amounts

to sety x = 1 for all k, but the scale parameters and the
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Original malrix Method || SDR Slgll?(VOigi)R SNR
~ [0.7071 09808 01951 L T R S e
A=107071 01951 09808 EAEMNEE:
Method (a) c) 0.1 5.6 2.6 28.4
07077 09810 01949 ) ‘0'75§2?:égusﬁ‘gjjtar)zss
A (350-7%%3;7) (igi%allﬂ (igé%%dé& Method | SDR | SIR | SAR | SNR
- a) 60 | 174 64 | 288
(£0.0037) (+0.0086 (+0.0009 b) 17 | 69 | 41 | 279
B Method (b) = c) 0.7 7.7 24 | 274
T 07070 09811 01946 ] d I 81 ;?BBass :Lftar) 386
A_ (iooi%(%@ (igi%%?) (igé%%dé@ Method | SDR [ SIR | SAR [ SNR
R a) 10.7 | 222 | 11.1 | 39.8
| (£0.0035 (+0.0060 (+0.0009 | b) 57 | 11.4| 7.4 | 389
Vethod (0 o | 58| a7 | &S
 0.7044 09821 01943 ] ) : ' —
- (+0.0039 (+0.0023 (+0.0060) Table 2: Performance criteria.
A= 0.7098 01881 09809
| (+£0.0039 (+0.0118 (+0.0012) ] 1 Rowr, 1 Rowr,
Method (d) L
[ 0.7079 09811 01946 T
A |(£0.0003 (£0.0003) (+0.000§ o8 o8
~ | 0.7064 01933 09809 -
| (+£0.0003 (+0.0007) (-0.0001) 0 0

Transition probabilities POO Transition probabilities P“
1 1

Table 1:Estimates ofA.

0.99 0.99

0.98 0.98

degrees of freedom are both updated. The sources are L, 057
dated with block draws of” Using a MATLAB imple- Scale paramsters A o

mentation running on a 1.25GHz Powerbook G4, 100( ' 02
iterations of the sampler take 6.6 hours. Approximate 015
convergence was usually observed after 1500 iterations o.sL 01

b) We apply the approach of a), but the sources are update 0.05
one by one, conditionally upon the others. 1000 itera: ,
tions of the sampler take 1.1 hours. Approximate conver-
gence was usually observed after 2000 iterations.

c) We apply the method described in this paper, with
Bernoulli prior ony, . 1000 iterations of the sampler take
50min. Approximate convergence was usually observed

after 5000 iterations. . . .
. : . . . h he SAR Artif R
d) We apply the method described in this paper, with horinoroe Of the sensors and the SAR (Source to Artifacts Ratio)

| Mark : Th ional burd measures the level of artifacts in the source estimates. Source
zontal Markov priors ory k. The computational burden ' ggiimates can be listened totatp://www-sigproc.
is unchanged and 1000 iterations of the sampler still tak

50min. Approximate convergence was usually observe ng.cam.ac.uk"cf269/eusipco06/  which is per-
y ) : X aps the best way to assess the quality of the results. Fig. 2
after 5000 iterations. Fig. 1 shows the sampled values P way quaity . '9

; ; resents theignificance mapsf the source coefficients, i.e
the parameters over 10000 iterations of the sampler. {10 Maximum A Posteriori estimates of 1 andys, in the
In the four cases the values af;, s, o, B, were chosen  Bernoulli and Markov cases.

as to yield Jeffreys noninformative prior4, was initialised

to[111;000,5toX;/3,v; toones; to 0.1. The samplers

were run for 2500 iterations in case (a) and for 10000 itera- S CONCLUSIONS

tions in the other cases? was annealed to its true posterior We have described in this paper a Bayesian approach to
distribution during the first 500 iterations in case (a) and dursource separation in which the source coefficients in a trans-
ing the first 1000 iterations in the other cases (see [3]). Miniform domain are given an exact sparse prior: conditionally
mum Mean Square Error estimates of the source coefficientgpon an indicator variable, the coefficients are either set to
were computed in each case by averaging the last 1000 sazero or given a hierarchical prior. The advantage of this
ples. Table 2 presents separation evaluation criteria for thigamework over other sparse priors is the ability to favor
estimated sources in each case. The criteria are describedstiuctures in the time-frequency plane by choosing relevant
[15], but basically, the SDR (Source to Distortion Ratio) pro-priors for the indicator variables. Our method is also com-
vides an overall separation performance criterion, the SiRletely adaptive, none of the model parameters need to be
(Source to Interferences Ratio) measures the level of intetrained.

ferences from the other sources in each source estimate, SNR An interesting issue of this paper is the individual update
(Source to Noise Ratio) measures the error due to the additive each source conditionally upon the others, as compared to

0
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

Figure 1: Gibbs sampler updates of the various model pa-
Fameters; blue = source 1, green = source 2, red = source 3.
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Source 1 - Bernoulli Source 1 - Markov

Source 2 - Bernoulli

Source 3 - Bernoulli
500 500

400 400
300 300

Source 3 - Markov

200 200
100 5 : 100

50 100 150 200 250 50 100 150 200 250

The inverted-Gamma distribution is the distribution gKlwhenX
is Gamma distributed.

(1]

(2]

(3]

(4]

Figure 2: Significance maps of the estimated sources, ob-

tained with Bernoulli priors (left) and horizontal markovian

priors (right).

(5]

block draws. Though the two methods should theoretically
yield similar source estimates after a “large enough” number[ 6]

of iterations, in practice, over an horizon of 10000 iterations,

method (a) still yields better estimates, in particular in terms
of SIRs. We believe this is because the individual update of
each source conditionally upon the others creates some €Ol

relation between the sources.

If the amount of correlation

should theoretically fade away when averaging a large num-
ber of samples, well after the burn-in period, in practice this

seems to be a problem over our limited horizon. We also no-
ticed that, depending on the initializations and the random

(8]

sequence seeds, method (b) could get stuck for long peri-
ods in some irrelevant areas of the posterior distribution of

the mixing matrix, and that full exploration of the posterior [9]
In contrast, method (a) reliably explores
the modal areas 0p(A|x), and convergence is rather fast

10]

could be tedious.

wheno? is annealed.

Table 1 shows that the four methods give very good e
timates of the mixing matrix, with best results obtained with

method (d). Table 2 shows that methods (c) and (d), de-
scribed in this paper, do not beat method (a) in terms of SIRs

and SARs, but they yield source estimates with subjectivel
good audio properties. They perform very well in terms of

Y11]

denoising (see the SNRs), in particular for the acoustic and
bass guitars. Poorer results are obtained for the voice with

method (d) rather than (c) because horizontal Markov stru
tures are better suited for the latter instruments rather th

for voice (which is more inharmonic).

Future work will involve building a framework allowing
efficient block draws of, Sk) as well as using audio models (13
involving overcomplete dictionaries, in the fashion of [5].

A. STANDARD DISTRIBUTIONS

Normal (x\u 02) = (2n6?)"1/2 exp— &
Beta B(X|at, B) = fcth x 1(1 x)P-1, xe[O 1]
Gamma G(Xla,B) = r ), x>0
inv-Gamma IG(Xa, B) = a)x (@+1) exp—B) x>0

S

] P. J. Wolfe, S. J. Godsill, and W.-J. Ng. Bayesian variable

(14]

(15]

REFERENCES

M. Zibulevsky, B. A. Pearimutter, P. Bofill, and P. Kisilev.
Blind source separation by sparse decomposition. In S. J.
Roberts and R. M. Everson, editorsydependent Compo-
nent Analysis: Principles and Practic€ambridge University
Press, 2001.

A. Jourjine, S. Rickard, and O. Yilmaz. Blind separation of
disjoint orthogonal signals: Demixing n sources from 2 mix-
tures. InProc. ICASSPvolume 5, pages 2985-2988, Istanbul,
Turkey, Jun. 2000.

C. Fevotte and S. J. Godsill. A Bayesian approach for blind
separation of sparse sourcetEEE Trans. Speech and Au-
dio Processing In press. Preprint available &ttp:/
www-sigproc.eng.cam.ac.uk/"cf269/

C. Fevotte and S. J. Godsill. A bayesian approach to time-
frequency based blind source separationPioc. 2005 IEEE
Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA'05), Mohonk, NY, Oct. 200®honk,
NY, Oct 2005.

C. Fevotte, L. Daudet, S. J. Godsill, and B. Tesani. Sparse
regression with structured priors: Application to audio denois-
ing. InProc. ICASSP’06Toulouse, France, 2006.

R. Balan and J. Rosca. Sparse source separation using discrete
prior models. InProc. Workshop on Signal Processing with
Adaptative Sparse Structured Representations (SPARS’05)
Rennes, France, Nov. 2005.

E. Vincent. Musical source separation using time-frequency
source priors.Trans. on Speech and Audio Processi(&pe-

cial issue on Statistical and Perceptual Audio Processing), In
press.

S. Geman and D. Geman. Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of imagecEE
Trans. Pattern Analysis and Machine IntelligendeAMI-
6(6):721-741, Nov 1984.

C. Fevotte and S. J. Godsill. Sparse linear regression in
unions of bases via Bayesian variable selectidBEE Sig-

nal Processing Letter2005. In press - Preprint available at
http://www-sigproc.eng.cam.ac.uk/"cf269/ .

J. S. Liu, W. H. Wong, and A. Kong. Covariance structure
of the Gibbs sampler with applications to the comparisons of
estimators and augmentation scheni&smetrikg 81(1):27—

40, Mar. 1994,

J. Geweke. Variable selection and model comparison in re-
gression pages 609—620. Oxford Press, 5 edition, 1996.
Edited by J. M. Bernardo, J. O. Berger, A. P. Dawid and
A. F. M. Swith.

L. R. Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognitid®roceedings of the
IEEE, 77(2):257—286, Feb. 1989.

selection and regularisation for time-frequency surface esti-
mation. J. R. Statist. Soc. Series B004.

E. Vincent, R. Gribonval, C. &otte, and al. BASS-dB: the
blind audio source separation evaluation database. Available
on-line. http://www.irisa.fr/metiss/BASS-dB/

E. Vincent, R. Gribonval, and C.&otte. Performance mea-
surement in blind audio source separatiolEEE Trans.
Speech and Audio Processinigy press - Preprint available at
http://www-sigproc.eng.cam.ac.uk/"cf269/



