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ABSTRACT The parallel aspect of multicomponent architectures raise

|mage and video processing app]ications represent a greﬁEOblemS in terms of ap_plic_ation d|Str|bUt|0n handmade data
challenge in terms of real-time embedded systems. Prdtansfers and synchronizations quickly become very complex
grammable multicomponent architectures can provide sui@nd result in lost time and potential deadlocks. A suitable
able target solutions combining flexibility and computationdesign process solution consists of using a rapid prototyping
power. On-chip memory size limitation forces the use of ex/nethodology. The aim is then to go from a high level de-
ternal memory. Its relatively small bandwidth induces per-Scription of the application to its real-time implementation
formance loss which can be limited by the use of an efficienfh a target architecture as automatically as possible.

data access scheme. Cache mechanism offers a good trade- This paper presents an improvement of a rapid prototyp-
off between efficiency and programming complexity. How-ing methodology([?] suitable for signal processing systems
ever in a multicomponent context data consistency has to b&nd heterogeneous multicomponent architectures. Video ap-
ensured. The aim of our work is to develop a fast and auplications are characterized by large data amount compared
tomatic prototyping methodology dedicated to deterministido on-chip capacities requiring the use of external memory.
signal processing applications and their multicomponent imks access has therefore to be enhanced. A solution for DSP
plementations. This methodology directly generates distribdevices is to use cache which involves dealing with memory
uted executives for various platforms from a high level ap-conflicts known as cache coherence in multicomponent de-
plication description. This paper presents the improvemergigns. The contribution of this paper is to automatically use
provided by cache memory in the design process. Cache @ache to enhance external memory access and ensure data
automatically managed in multicomponent implementationsgonsistency for multicomponent applications in a fast proto-
thus reducing development time. The improvement is illustyping process. The distributed executive containing cache

trated by image processing applications. management primitives is generated automatically. This au-
tomation saves development time and prevents from con-
1. INTRODUCTION flicts. It ensures processing safety and hence reduces valida-

Today’s image processing applications such as video or stipcessing applications over a multicomponent architecture
image codecs require not only a lot of processing power b omposed of a computer and C64x DSPs

also a large amount of memory. Specific circuits overcome Thi isation i follows: i 2 th
these constraints; nevertheless it is not compatible with short 1S Paper organisation is as follows: in sectjgn 2 the
time to market and the need for early and evolutive demonPrototyping methodology is introduced, then cache memory

stration prototypes. An alternative can be provided by pro@nd inherent issues is presented in sedfion 3. Sefcfion 4 ex-
grammable software (DSP: Digital Signal Processor, RISCplams how to integrate cache in the design process. Results

Reduced Instruction Set Computer, CISC: Complex Instrucr€ given sectiof]5, finally sectiph 6 concludes.
tion Set Computer) or programmable hardware (FPGA: Field
Programmable Gate Arrays) components since they are more 2. RAPID PROTOTYPING
flexible. Hard real-time constraints are satisfied by parallel
calculations on multicomponent architectures. 2.1 Context
Embedded memory size limitation in both specific and
programmable components is overcome by external memoryhe IETR Image Group laboratory is studying a rapid proto-
in spite of its relatively small bandwidth compared to on-chiptyping design process based on the AAA methodology (Ad-
memory. Thus to limit the performance loss due to the exequation Algorithm Architecture [3]). The goal is to go from
ternal memory access bottleneck, an appropriate mechaniginhigh level description of the application to its real-time
has to be set up to efficiently move data into on-chip memorglistributed implementation in a multicomponent prototyping
when required. platform. The algorithm is distributed as efficiently as pos-
A hand made data pre-fetch scheme can be used to terdible to match the architecture in order to reduce execution
porarily store data into on-chip memory before it is neededtime.
in a scratchpad way [1]. However this involves complex de-  The prototyping is based on SynDEXx tool usk [4]. Itis an
velopment and is not evolutive. Instead most DSPs embedcademic system level CAD (Computer Aided Design) tool
a cache controller unit which allows internal memory to bedeveloped with INRIA Rocquencourt, France. It supports the
used as cache to enhance external memory access. AAA methodology for distributed real-time processing.

LEon tests. This is illustrated by the implementation of image
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2.2 Automatic prototyping an off-line static operating system that is suitable for setting
The aim of automatic prototyping is to directly achieve andata-drlven scheduling, such as signal processing applica-

optimized implementation from a description of an algo-t'ons'h d i th f : fth
rithm and of an architecture. The process involves two steps: | € Sécond stepis the transformation of the macro-

matching the algorithm and the multiprocessor platform angCd€ into specific compilable code (i.e. C code for PC and
generating the programming code. SP, VHDL for FPGA) (fig. [1). This is done through
the M4 macro processor and code generation kernels. It

replaces macro-calls by their definition given in the corre-
sponding executive kernel, which is dependent on a proces-

sor target and/or a communication medium. Previous works
were about SynDEx kernels for several processors such

[ Architecture graph ] [ Constraints ] [ Algorithm graph ]

g as GPP (General Purpose Processors), Texas Intruments
* heuritic SynDEx TMS320C6x (C62x, C64x) and Virtex FPGA families [2].
L GENERIC W _ The executives are thus automatically generated. The
Synchronized Disirbuted Exceutive h user concentrates only on application related code as com-
L',= plex multiprocessor programming is handled by the tools.
m}m v ngl'em Appl}cm = m{“ v _Effectively, memory alloqatio_ns, operation scheduli_ng and
[ Kerne . Kemél  Kemel  Kemel ] M4 inter-processor communications and synchronisations are

[ DEch}@?xech‘es ‘fmsp‘eciﬁ‘jmgm X ] automatically inserted. The automation of the code gen-
specific Compilers / Loaders) eration includes formal verifications during the adequa-
tion which avoids deadlocks in the communication scheme.
, ) . Moreover it ensures processing safety thanks to semaphores.
Figure 1: Automatic prototyping global graph Part of the tests are consequently eliminated, decreasing the
development lifecycle.

The first step requires the use of SynDEXx (Fif] 1): the
application is described with an algorithm graph (operation ;
that the application has to execute) defined as a Data Flog\%i3 Des-lgn Procesjs o _
Graph (DFG - Fig.[R-a), which specifies the potential parAutomatic prototyping enable full rapid implementation of
allelism, and an architecture graph (multicomponent targethe application DFG on a multiprocessor platform. It allows
i.e. a set of interconnected processors and specific integraté@sy architectural exploration from formal verification of the
circuits) (Fig[2-b), which specifies the available parallelism algorithm on a single PC, to the final multiprocessor imple-
The tool achieves the "Adequation”: it maps as efficiently agnentation. Adding (or removing) a processor to the archi-
possible the different parts of the algorithm onto the availabléecture is simple because most of the tasks performed by the
processing units thanks to optimization heuristics [3]. Thes#iser concern the description of an application and a compil-
heuristics aim to minimize the total execution time of the al-ing environment.
gorithm running on the multicomponent architecture taking  In the same way a modification of the algorithm (involv-
into account execution times, communication bandwidth anéng additionnal operations, new data dependance or simply
user constraints. an execution time evolution) can lead to a new distribution
and scheduling. Here again this is handled by the tools.

The approach is evolutive as complex tasks (adequation,
synchronization, data transfers and chronometric reports) are
executed automatically.

| Generate | Gen_data
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(a) Algorithm graph
3. CACHE MEMORY OVERVIEW

PC1 (pentium) (main)| inkd (PCI)| | DSP1 (C64x) |link1 (PCI)] | DSP2 (C64x)

ToP 1 S P B In this section we present cache memory mechanism and
TCP_2 SDBb SDBb . . .
Po 0 P e faced issues in a multi-DSP context.

CP4 CP4

PCIO PCI_0

(b) Architecture graph 3.1 Processor memory architecture

A simplified architecture of a common DSP is given figure 3.
The CPU (Central Processing Unit) is the core. It accesses
Figure 2: SynDEX application description internal memory through a fast bus. A DMA (Direct Mem-
ory Access) controller manages memory transfers. Next to
SynDEXx provides with both an optimized distribution (al- the processor is the external memory connected through an
locating parts of the algorithm on components) and schedukxternal interface with a slow bus. Additional peripherals
ing (giving a total order for the operations distributed onto asuch as communication links are connected to the external
component) of the algorithm on the architecture. The resulinterface.
is a generic SYNchronized Distributed EXecutive, which is  External memory is needed in most image processing ap-
independent of the processor target, into several source filgdications caracterized by large data manipulations. Its main
(Fig. [1), one for each processor. A generic executive is @rawback is its relatively small bandwidth. In order to avoid
macro-code including memory allocations, a calculation anéh memory access bottleneck data must be efficiently fetched
communication schedulers, and interprocessor synchronizarior to be used. This can be done with the DMA, allowing
tions. In this way, the generated executives can be seen asncurrent CPU processings and memory transfers. Such
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Figure 3: DSP Memory architecture

r_nechanism i_nvolves complex programing and is not evo_lu- Data modified by an external peripheral
tive. Indeed its scheme depends on the type of calculation, N Outdated data present in L2 cache
memory size and data. Instead, development time can be (b) data modified by a peripheral

saved using cache memory. It offers an automatic way to en-
hance data access and is more suitable to be integrated in a Figure 4: Cache coherence management
fast prototyping process. '

3.2 Cache mechanism issues that have to be resolved. We identified two cache in-

Most DSPs embed a cache controller improving drasticallyoherence configurations:

performances for external memory data processing. The iny When cached data is modified by the CPU and is ac-
te”rnal memory IIS then set afs_cache.l Some DSP (S'g‘ Tl g64x cessed by an other processoiThe output data is located
allow to set only a part of internal memory to be used as j, cachaple external memory (fig] 4-a). Cache is used to

cache. Remaining memory can be used to store the program t
. .. temporary store results and source data. At the end of
and small data. When the cache is enabled the CPU doesn't processing, not all the output data has been writen to ex-

directly access external memory. Instead data requests are t :

) ernal memory. Consequently it has to be updated before
sent to the cache controller which uses the DMA to move it is accessedyby a peri?)hera?/ P
data from external memory into the cache. The main advan: When cachable data is modi.fied by a peripheral A

tage is that cache mechanism is automatic i.e. there is n peripheral updated an external memory location {fig. 4-

need to modify the programming code. X X
_b). Corresponding outdated data must be evicted from
The cache controller manages all external memory ac cache to prevent the CPU to use it,

cesses from the CPU. It maps data requests to corresponding ] ; )
cache locations, fetch data from external memory whenevérache memory configuration and management is usually
it is not already in cache. When data is removed from cachdlone through libraries provided by the DSP manufacturer.
it is either just deleted (invalidated) or written back to exter-1he most common way to apply cache management on a
nal memory depending on its modification. DSPis the use dfnriteback” an_d“lnvalldate" functions for

This mechanism accelerates external memory proces§onfigurations 1 and 2 respectively. Before cachable memory
ings. Considering an optimal case, a piece of data is fetchdf accessed by a peripheral cache coherence must be ensured
only once from external memory and it is reused from cachel© prevent from data conflicts.
Computation time is then drastically reduced compared to In multiprocessor applications designed with AAA most
full external accesses. of the development concerning system-level operations are

performed automatically. Our goal is to automatically man-

3.3 Cache coherence and multiprocessor applications ~ age cache coherence as well in order to provide cache capa-

With the cache memory mechanism, two copies of the datg'“t'es'
coexist (one in external memory and one in cache). When it
is modified in either one of the locations, cache and external4- AUTOMATIC CACHE MEMORY COHERENCE

memory differ, they are said to be incoherent. A protocol MANAGEMENT WITH AAA

must be followed to ensure no outdated data is accessed [Stne prototyping tool realizes static memory allocations and
Data involving a dependance on the Data Flow Graphyeration scheduling. It also handles intérprocessor trans-

are taken into account by the prototyping tool. Remainingers and synchronizations. The knowledge off this context

data is considered as program or contained in the stack. dhapjes the cache coherence management to be handled au-

should anyway be only small internal constants or tetmpogomatically to maintain proper execution of the application.
rary storage. The prototyping tool handles the allocation o

the first type. These data locations are also protected Wit|4’1
semaphores automatically generated in the executive. As a
consequence, only one DSP has access to a memory locBhe result of an adequation is a synchronised distributed ex-
tion at a time. Only data visible on the DFG is consideredecutive. An example concerning one processor of the plat-
relevant for cache use and hence incoherence risk. This ferm is represented with a Petri graph on figure 5.
reliable because remaining data is internal and can’t have a This graph contains two schedulers (computation and
dependance with the rest of the architecture. communication) synchronized one another with semaphores.
Automatic prototyping had been validated without cacheThey are manipulated with P() and V() operations: P() is a
activation. It generates reliable compilable multiprocessorequest to a semaphore unit that generates a waiting state in
executives. Nevertheless cache use brings data consisteregcheduler and V() is a semaphore token release.

1 Synchronized executive generation
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or internal memory is crutial. With automatic cache manage-
ment the impact of data localisation is reduced because every

Pldata_in. full Fldatain, empy) buffer in external memory can benefit of cache.
eceive (data_in)
P(data_out, empty) V(data_in, full)
Data processing
V(data_out, full) 4.3 TIC64x DSP
vidatan. eme) P(data_out, ful C64x DSP from Tl embed internal memory that can be used
Send (data_out) to cache external memory accesses [6]. The corresponding

Vidata_odt emp) SynDEx code generation kernel had been updated to auto-

. . matically activate and manage cache. Semaphore and mem-
Calculation Communication . epe
scheduler scheduler ory allocation macros had been modified to use cache and
ensure coherence. Results showing cache improvements are
presented in the next section.
Figure 5: Executive’s synchronisation

5. RESULTS

The automatic cache management had been tested and vali-

Memory locations concerned by a potential cache coher- o s .
ence issue are in cachable external memory area. If a Iocgged on a few applications involving a computer and C6416

tion is accessed by both the CPU and the DMA then cacheSPS at 1 GHz (fig.[J2-b). These applications have been
coherence has to be ensured because the DMA bypasses ff¥¢loped using the design process described above. The
cache controller. We consider that all interprocessor trandl€nerated executive for the TI's C64x DSPs includes cache
fers are optimized and hence done via DMA which shoul?ctivation and management operations that have been auto-
always be the case considering the performance loss of gatically inserted during code generation process. Timing
data polling technique. Cache coherence has then to be ef#SultS are presented below for the LAR image compression
sured when switching between the calculation scheduler arm[ethc’d [7]and an MPEG-4 part. 2 video decoder developed
a communication scheduler. Consequently coherence mafit [ETR. and a motion estimation algorithim [8].

agement will be needed when unlocking the communication An image compression application (LAR) had been pro-
scheduler, which happens when issuing a V() operation fro typed onto the m'ultlcomponen't architecture. The C code
the calculation scheduler (Figl 5). To ensure cache coherené® PC was directly implemented into DSPs, thus without any

V() operations must be coupled by proper cache manageme@igorithm optimisation. Compression - decompression tim-
op())ergtion {writeback” or “inF\)/aIida)t/eF’)’ rgquest). 9 Ing results are given tabJg 1 for different data locations and

These suppositions are not restrictive: first if an inter-WO image sizes. For a CIF picture (352x288) all data buffers

: : n be contained in internal memory, giving optimal perfor-
processor transfer uses a polling technique anyway an unned : : ' i
essary cache management operation might be issued with nc?sf'.t _Urg%rjléré?te'ly[ blggler Images l(JSD 720XhS76) dalta
any impact on operation result. The only drawback would© NOt tin S Internal memory. Using cache acce!-
be a slight decrease in performance. Secondly cache mafiates by 10 the compression/decompression process when

agement macros have been developped to ensure cacheeEc()?i-ng external memory; it is only a 16% increase compared
herence around operations using DMA (to enhance furthd, OPtimal case. Cache is used and automatically managed,
memory access) offering a good trade-off between programming complexity

and data access performances.

4.2 User's interaction

data access | SDimage| CIF image]|
As the design process is automatic, only a limited knowledge external 800 ms 310 ms
of the hardware is required when prototyping an application internal doesntfit| 26 ms
onto a DSP. Simple macros have to be called from the ap- ~Ayiomatic cache managemeht 80 ms 31 ms

plication specific kernel to activate cache. Then the execu-
tive code generation automatically carries out cache mem-
ory allocation and coherence for inter-processors transfers.  Table 1: Image codec (LAR) application timings
Cache coherence macros might be also used in the applica-
tion specific kernel to automatically insert coherence opera- The technique had also been tested with a hierarchical
tions around a function that uses DMA on a cachable memmotion estimation for HD (1280x720) video encoder. The
ory location. video encoder runs on a PC whereas the motion estimation
This allows a novice to prototype an application on aalgorithm runs on a DSP platform. Talle 2 gives timing re-
multi-DSP platform. The same programming C code as theults for the estimation of one motion field. Different meth-
one used on a PC can be compiled and executed on the DSIB8ls are used: first the code is not manually optimized (only
Indeed on a PC memory size is not an issue; a cache mecheempilator optimisations) and the algorithm is benchmarked
nism is implicitly used to efficiently access RAM. for full external access and cache memory use. Then several
The user can consequently safely use cache to enhanoptimizations for C64x are performed. Using cache mem-
performances with only a limited knowledge of a DSP ar-ory accelerates automatically by a factor of 24. A hand-
chitecture. Previous work [2] allowed to easily program amade optimized scheme to access external memory prevents
multiprocessor platform. This improvement provides an aufrom cache misses and flushes. It is 22% faster then cache
tomatic perfomance gain. Moreover, when external memoryn this example considering optimized code for DSP. How-
is used without cache, data localisation has a great impaeter it requires complex specific programming and sufficient
on performance. The distribution of data between externavailable internal memory.
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| data access | Timings |

(2): full external accesses 5350 ms

(2): Automatic cache management 221 ms
(3): 2 + optimized code for DSP| 100 ms
(4): 3 + handmade DMA accesses 78 ms

The prototyping methodology includes functional check-
ing, multiprocessor platform simulation and automatic dis-
tribution and scheduling of the operations onto the target ar-
chitecture. Image processing applications imply large data
amouts and the use of external memory. Bandwidth becomes
then a bottleneck that can be reduced by an efficient data ac-
cess scheme. A handmade technique can be very efficient;
nevertheless it doesn't offer the flexibility needed by a fast
prototyping methodology. Cache mechanism on the con-
i i trary is a good trade-off between efficiency and programming

_ Thirdly the automatic cache management had been appmplexity. Moreover its management including activation,
plied on an MPEG-4 Part. 2 video decoder. It has beenjigcation and coherence is now automated by the prototyp-
implemented by the IETR laboratory. Decoding times foring tools.

I and P frames are given talfle 3 for a CIF (352x288) image ~ pppjications designed and validated with SynDEx can
sequence. This resolution a!lows. all data bL_Jffers to be allopg directly prototyped onto a multi-DSP architecture, mem-
cated in internal memory, which gives an optimal case for efy,ry size and bandwidth issues being reduced with cache use
ficiency comparison purposes. Higher resolutions require thgile data coherence is automatically maintained. Thanks to
use of external memory. Here again the cache reduces drage aytomatic cache management a novice can rapidly proto-
tically the_ execution time when using external memory: anype a multiprocessor application and get good performances
acceleration factor of 5 for | frames and 7 for P and B framesyitp, only a limited knowledge of DSPs. Further specific op-
The loss due to the use of external memory and cache versyjgisations are possible to enhance the implementation. This
internal memory is 23%. work extends the prototyping methodology to HD-TV appli-
cations which require a large memory size.

Table 2: Motion estimation application timings

| data location | Iframe [ P-B frame]

internal memory 4.3 ms 5.5ms
External memory without cache 22 ms 50 ms
External memory with automatic cache 4.5 ms 7ms
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