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ABSTRACT
Image and video processing applications represent a great
challenge in terms of real-time embedded systems. Pro-
grammable multicomponent architectures can provide suit-
able target solutions combining flexibility and computation
power. On-chip memory size limitation forces the use of ex-
ternal memory. Its relatively small bandwidth induces per-
formance loss which can be limited by the use of an efficient
data access scheme. Cache mechanism offers a good trade-
off between efficiency and programming complexity. How-
ever in a multicomponent context data consistency has to be
ensured. The aim of our work is to develop a fast and au-
tomatic prototyping methodology dedicated to deterministic
signal processing applications and their multicomponent im-
plementations. This methodology directly generates distrib-
uted executives for various platforms from a high level ap-
plication description. This paper presents the improvement
provided by cache memory in the design process. Cache is
automatically managed in multicomponent implementations,
thus reducing development time. The improvement is illus-
trated by image processing applications.

1. INTRODUCTION

Today’s image processing applications such as video or still
image codecs require not only a lot of processing power but
also a large amount of memory. Specific circuits overcome
these constraints; nevertheless it is not compatible with short
time to market and the need for early and evolutive demon-
stration prototypes. An alternative can be provided by pro-
grammable software (DSP: Digital Signal Processor, RISC:
Reduced Instruction Set Computer, CISC: Complex Instruc-
tion Set Computer) or programmable hardware (FPGA: Field
Programmable Gate Arrays) components since they are more
flexible. Hard real-time constraints are satisfied by parallel
calculations on multicomponent architectures.

Embedded memory size limitation in both specific and
programmable components is overcome by external memory
in spite of its relatively small bandwidth compared to on-chip
memory. Thus to limit the performance loss due to the ex-
ternal memory access bottleneck, an appropriate mechanism
has to be set up to efficiently move data into on-chip memory
when required.

A hand made data pre-fetch scheme can be used to tem-
porarily store data into on-chip memory before it is needed,
in a scratchpad way [1]. However this involves complex de-
velopment and is not evolutive. Instead most DSPs embed
a cache controller unit which allows internal memory to be
used as cache to enhance external memory access.

The parallel aspect of multicomponent architectures raise
problems in terms of application distribution: handmade data
transfers and synchronizations quickly become very complex
and result in lost time and potential deadlocks. A suitable
design process solution consists of using a rapid prototyping
methodology. The aim is then to go from a high level de-
scription of the application to its real-time implementation
on a target architecture as automatically as possible.

This paper presents an improvement of a rapid prototyp-
ing methodology [2] suitable for signal processing systems
and heterogeneous multicomponent architectures. Video ap-
plications are characterized by large data amount compared
to on-chip capacities requiring the use of external memory.
Its access has therefore to be enhanced. A solution for DSP
devices is to use cache which involves dealing with memory
conflicts known as cache coherence in multicomponent de-
signs. The contribution of this paper is to automatically use
cache to enhance external memory access and ensure data
consistency for multicomponent applications in a fast proto-
typing process. The distributed executive containing cache
management primitives is generated automatically. This au-
tomation saves development time and prevents from con-
flicts. It ensures processing safety and hence reduces valida-
tion tests. This is illustrated by the implementation of image
processing applications over a multicomponent architecture
composed of a computer and C64x DSPs.

This paper organisation is as follows: in section 2 the
prototyping methodology is introduced, then cache memory
and inherent issues is presented in section 3. Section 4 ex-
plains how to integrate cache in the design process. Results
are given section 5, finally section 6 concludes.

2. RAPID PROTOTYPING

2.1 Context

The IETR Image Group laboratory is studying a rapid proto-
typing design process based on the AAA methodology (Ad-
equation Algorithm Architecture [3]). The goal is to go from
a high level description of the application to its real-time
distributed implementation in a multicomponent prototyping
platform. The algorithm is distributed as efficiently as pos-
sible to match the architecture in order to reduce execution
time.

The prototyping is based on SynDEx tool use [4]. It is an
academic system level CAD (Computer Aided Design) tool
developed with INRIA Rocquencourt, France. It supports the
AAA methodology for distributed real-time processing.
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2.2 Automatic prototyping

The aim of automatic prototyping is to directly achieve an
optimized implementation from a description of an algo-
rithm and of an architecture. The process involves two steps:
matching the algorithm and the multiprocessor platform and
generating the programming code.
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Figure 1: Automatic prototyping global graph

The first step requires the use of SynDEx (Fig. 1): the
application is described with an algorithm graph (operations
that the application has to execute) defined as a Data Flow
Graph (DFG - Fig. 2-a), which specifies the potential par-
allelism, and an architecture graph (multicomponent target,
i.e. a set of interconnected processors and specific integrated
circuits) (Fig. 2-b), which specifies the available parallelism.
The tool achieves the ”Adequation”: it maps as efficiently as
possible the different parts of the algorithm onto the available
processing units thanks to optimization heuristics [3]. These
heuristics aim to minimize the total execution time of the al-
gorithm running on the multicomponent architecture taking
into account execution times, communication bandwidth and
user constraints.
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Figure 2: SynDEx application description

SynDEx provides with both an optimized distribution (al-
locating parts of the algorithm on components) and schedul-
ing (giving a total order for the operations distributed onto a
component) of the algorithm on the architecture. The result
is a generic SYNchronized Distributed EXecutive, which is
independent of the processor target, into several source files
(Fig. 1), one for each processor. A generic executive is a
macro-code including memory allocations, a calculation and
communication schedulers, and interprocessor synchroniza-
tions. In this way, the generated executives can be seen as

an off-line static operating system that is suitable for setting
data-driven scheduling, such as signal processing applica-
tions.

The second stepis the transformation of the macro-
code into specific compilable code (i.e. C code for PC and
DSP, VHDL for FPGA) (fig. 1). This is done through
the M4 macro processor and code generation kernels. It
replaces macro-calls by their definition given in the corre-
sponding executive kernel, which is dependent on a proces-
sor target and/or a communication medium. Previous works
were about SynDEx kernels for several processors such
as GPP (General Purpose Processors), Texas Intruments
TMS320C6x (C62x, C64x) and Virtex FPGA families [2].

The executives are thus automatically generated. The
user concentrates only on application related code as com-
plex multiprocessor programming is handled by the tools.
Effectively, memory allocations, operation scheduling and
inter-processor communications and synchronisations are
automatically inserted. The automation of the code gen-
eration includes formal verifications during the adequa-
tion which avoids deadlocks in the communication scheme.
Moreover it ensures processing safety thanks to semaphores.
Part of the tests are consequently eliminated, decreasing the
development lifecycle.

2.3 Design Process

Automatic prototyping enable full rapid implementation of
the application DFG on a multiprocessor platform. It allows
easy architectural exploration from formal verification of the
algorithm on a single PC, to the final multiprocessor imple-
mentation. Adding (or removing) a processor to the archi-
tecture is simple because most of the tasks performed by the
user concern the description of an application and a compil-
ing environment.

In the same way a modification of the algorithm (involv-
ing additionnal operations, new data dependance or simply
an execution time evolution) can lead to a new distribution
and scheduling. Here again this is handled by the tools.

The approach is evolutive as complex tasks (adequation,
synchronization, data transfers and chronometric reports) are
executed automatically.

3. CACHE MEMORY OVERVIEW

In this section we present cache memory mechanism and
faced issues in a multi-DSP context.

3.1 Processor memory architecture

A simplified architecture of a common DSP is given figure 3.
The CPU (Central Processing Unit) is the core. It accesses
internal memory through a fast bus. A DMA (Direct Mem-
ory Access) controller manages memory transfers. Next to
the processor is the external memory connected through an
external interface with a slow bus. Additional peripherals
such as communication links are connected to the external
interface.

External memory is needed in most image processing ap-
plications caracterized by large data manipulations. Its main
drawback is its relatively small bandwidth. In order to avoid
a memory access bottleneck data must be efficiently fetched
prior to be used. This can be done with the DMA, allowing
concurrent CPU processings and memory transfers. Such
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mechanism involves complex programing and is not evolu-
tive. Indeed its scheme depends on the type of calculation,
memory size and data. Instead, development time can be
saved using cache memory. It offers an automatic way to en-
hance data access and is more suitable to be integrated in a
fast prototyping process.

3.2 Cache mechanism

Most DSPs embed a cache controller improving drastically
performances for external memory data processing. The in-
ternal memory is then set as cache. Some DSP (e.g. TI C64x)
allow to set only a part of internal memory to be used as
cache. Remaining memory can be used to store the program
and small data. When the cache is enabled the CPU doesn’t
directly access external memory. Instead data requests are
sent to the cache controller which uses the DMA to move
data from external memory into the cache. The main advan-
tage is that cache mechanism is automatic i.e. there is no
need to modify the programming code.

The cache controller manages all external memory ac-
cesses from the CPU. It maps data requests to corresponding
cache locations, fetch data from external memory whenever
it is not already in cache. When data is removed from cache,
it is either just deleted (invalidated) or written back to exter-
nal memory depending on its modification.

This mechanism accelerates external memory process-
ings. Considering an optimal case, a piece of data is fetched
only once from external memory and it is reused from cache.
Computation time is then drastically reduced compared to
full external accesses.

3.3 Cache coherence and multiprocessor applications

With the cache memory mechanism, two copies of the data
coexist (one in external memory and one in cache). When it
is modified in either one of the locations, cache and external
memory differ, they are said to be incoherent. A protocol
must be followed to ensure no outdated data is accessed [5].

Data involving a dependance on the Data Flow Graph
are taken into account by the prototyping tool. Remaining
data is considered as program or contained in the stack. It
should anyway be only small internal constants or tempo-
rary storage. The prototyping tool handles the allocation of
the first type. These data locations are also protected with
semaphores automatically generated in the executive. As a
consequence, only one DSP has access to a memory loca-
tion at a time. Only data visible on the DFG is considered
relevant for cache use and hence incoherence risk. This is
reliable because remaining data is internal and can’t have a
dependance with the rest of the architecture.

Automatic prototyping had been validated without cache
activation. It generates reliable compilable multiprocessor
executives. Nevertheless cache use brings data consistency

Cache memoryExternal memory

Source data 
Result data to be sent to a peripheral

(a) data modified by the CPU

Cache memoryExternal memory

Data modified by an external peripheral
Outdated data present in L2 cache

(b) data modified by a peripheral

Figure 4: Cache coherence management

issues that have to be resolved. We identified two cache in-
coherence configurations:
1. When cached data is modified by the CPU and is ac-

cessed by an other processor: The output data is located
in cachable external memory (fig. 4-a). Cache is used to
temporary store results and source data. At the end of
processing, not all the output data has been writen to ex-
ternal memory. Consequently it has to be updated before
it is accessed by a peripheral.

2. When cachable data is modified by a peripheral: A
peripheral updated an external memory location (fig. 4-
b). Corresponding outdated data must be evicted from
cache to prevent the CPU to use it.

Cache memory configuration and management is usually
done through libraries provided by the DSP manufacturer.
The most common way to apply cache management on a
DSP is the use of“writeback” and“invalidate” functions for
configurations 1 and 2 respectively. Before cachable memory
is accessed by a peripheral cache coherence must be ensured
to prevent from data conflicts.

In multiprocessor applications designed with AAA most
of the development concerning system-level operations are
performed automatically. Our goal is to automatically man-
age cache coherence as well in order to provide cache capa-
bilities.

4. AUTOMATIC CACHE MEMORY COHERENCE
MANAGEMENT WITH AAA

The prototyping tool realizes static memory allocations and
operation scheduling. It also handles interprocessor trans-
fers and synchronizations. The knowledge off this context
enables the cache coherence management to be handled au-
tomatically to maintain proper execution of the application.

4.1 Synchronized executive generation

The result of an adequation is a synchronised distributed ex-
ecutive. An example concerning one processor of the plat-
form is represented with a Petri graph on figure 5.

This graph contains two schedulers (computation and
communication) synchronized one another with semaphores.
They are manipulated with P() and V() operations: P() is a
request to a semaphore unit that generates a waiting state in
a scheduler and V() is a semaphore token release.
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Memory locations concerned by a potential cache coher-
ence issue are in cachable external memory area. If a loca-
tion is accessed by both the CPU and the DMA then cache
coherence has to be ensured because the DMA bypasses the
cache controller. We consider that all interprocessor trans-
fers are optimized and hence done via DMA which should
always be the case considering the performance loss of a
data polling technique. Cache coherence has then to be en-
sured when switching between the calculation scheduler and
a communication scheduler. Consequently coherence man-
agement will be needed when unlocking the communication
scheduler, which happens when issuing a V() operation from
the calculation scheduler (Fig. 5). To ensure cache coherence
V() operations must be coupled by proper cache management
operation (“writeback” or “invalidate” request).

These suppositions are not restrictive: first if an inter-
processor transfer uses a polling technique anyway an unnec-
essary cache management operation might be issued without
any impact on operation result. The only drawback would
be a slight decrease in performance. Secondly cache man-
agement macros have been developped to ensure cache co-
herence around operations using DMA (to enhance further
memory access).

4.2 User’s interaction

As the design process is automatic, only a limited knowledge
of the hardware is required when prototyping an application
onto a DSP. Simple macros have to be called from the ap-
plication specific kernel to activate cache. Then the execu-
tive code generation automatically carries out cache mem-
ory allocation and coherence for inter-processors transfers.
Cache coherence macros might be also used in the applica-
tion specific kernel to automatically insert coherence opera-
tions around a function that uses DMA on a cachable mem-
ory location.

This allows a novice to prototype an application on a
multi-DSP platform. The same programming C code as the
one used on a PC can be compiled and executed on the DSPs.
Indeed on a PC memory size is not an issue; a cache mecha-
nism is implicitly used to efficiently access RAM.

The user can consequently safely use cache to enhance
performances with only a limited knowledge of a DSP ar-
chitecture. Previous work [2] allowed to easily program a
multiprocessor platform. This improvement provides an au-
tomatic perfomance gain. Moreover, when external memory
is used without cache, data localisation has a great impact
on performance. The distribution of data between external

or internal memory is crutial. With automatic cache manage-
ment the impact of data localisation is reduced because every
buffer in external memory can benefit of cache.

4.3 TI C64x DSP

C64x DSP from TI embed internal memory that can be used
to cache external memory accesses [6]. The corresponding
SynDEx code generation kernel had been updated to auto-
matically activate and manage cache. Semaphore and mem-
ory allocation macros had been modified to use cache and
ensure coherence. Results showing cache improvements are
presented in the next section.

5. RESULTS

The automatic cache management had been tested and vali-
dated on a few applications involving a computer and C6416
DSPs at 1 GHz (fig. 2-b). These applications have been
developed using the design process described above. The
generated executive for the TI’s C64x DSPs includes cache
activation and management operations that have been auto-
matically inserted during code generation process. Timing
results are presented below for the LAR image compression
method [7] and an MPEG-4 part. 2 video decoder developed
at IETR, and a motion estimation algorithm [8].

An image compression application (LAR) had been pro-
totyped onto the multicomponent architecture. The C code
for PC was directly implemented into DSPs, thus without any
algorithm optimisation. Compression - decompression tim-
ing results are given table 1 for different data locations and
two image sizes. For a CIF picture (352x288) all data buffers
can be contained in internal memory, giving optimal perfor-
mances. Unfortunately bigger images (SD: 720x576) data
do not fit in C6400’s internal memory. Using cache accel-
erates by 10 the compression/decompression process when
using external memory; it is only a 16% increase compared
to optimal case. Cache is used and automatically managed,
offering a good trade-off between programming complexity
and data access performances.

data access SD image CIF image

external 800 ms 310 ms
internal doesn’t fit 26 ms

Automatic cache management 80 ms 31 ms

Table 1: Image codec (LAR) application timings

The technique had also been tested with a hierarchical
motion estimation for HD (1280x720) video encoder. The
video encoder runs on a PC whereas the motion estimation
algorithm runs on a DSP platform. Table 2 gives timing re-
sults for the estimation of one motion field. Different meth-
ods are used: first the code is not manually optimized (only
compilator optimisations) and the algorithm is benchmarked
for full external access and cache memory use. Then several
optimizations for C64x are performed. Using cache mem-
ory accelerates automatically by a factor of 24. A hand-
made optimized scheme to access external memory prevents
from cache misses and flushes. It is 22% faster then cache
in this example considering optimized code for DSP. How-
ever it requires complex specific programming and sufficient
available internal memory.
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data access Timings

(1): full external accesses 5350 ms
(2): Automatic cache management 221 ms
(3): 2 + optimized code for DSP 100 ms

(4): 3 + handmade DMA accesses 78 ms

Table 2: Motion estimation application timings

Thirdly the automatic cache management had been ap-
plied on an MPEG-4 Part. 2 video decoder. It has been
implemented by the IETR laboratory. Decoding times for
I and P frames are given table 3 for a CIF (352x288) image
sequence. This resolution allows all data buffers to be allo-
cated in internal memory, which gives an optimal case for ef-
ficiency comparison purposes. Higher resolutions require the
use of external memory. Here again the cache reduces dras-
tically the execution time when using external memory: an
acceleration factor of 5 for I frames and 7 for P and B frames.
The loss due to the use of external memory and cache versus
internal memory is 23%.

data location I frame P-B frame

internal memory 4.3 ms 5.5 ms
External memory without cache 22 ms 50 ms

External memory with automatic cache4.5 ms 7 ms

Table 3: MPEG-4 decoder timings

The automatic cache management ensures data coher-
ence. The MPEG-4 decoder represents 72 different data
buffers whose consistency has to be checked. Allocating and
ensuring coherence of these buffers implies lots of develop-
ment time. The automatic code generation is achieved in sec-
onds, allowing fast changes in the application.

The use of cache mecanism to enhance external mem-
ory accesses provides an acceleration of 5 to 24 for the given
examples. These results are obtained automatically with the
prototyping methodology. The multicomponent implementa-
tions are straitforward and cache is managed with no user in-
teraction. A modification of either the algorithm or the plat-
form can involve a new distribution and scheduling of the
operations. This is automatically handled by the tools. As a
result interprocessor communications are safe and cache co-
herence is ensured. A handmade access scheme using DMA
enhances further external memory access, however it is not
evolutive as it depends on the target, available space, compu-
tations and data.

These results confirm that cache is a good trade-off
between programming complexity and calculation perfor-
mances. It offers the flexibility needed in a prototyping
process. The use of cache in a multicomponent application
designed with SynDEx is now fully automatic. This saves
development time and guaranties cache coherence.

6. CONCLUSION

We provide a way to easily use cache and automatically en-
sure cache coherence in a multiprocessor architecture. The
design process is based on statically distributed and sched-
uled applications, which is well suited to deterministic signal
processing.

The prototyping methodology includes functional check-
ing, multiprocessor platform simulation and automatic dis-
tribution and scheduling of the operations onto the target ar-
chitecture. Image processing applications imply large data
amouts and the use of external memory. Bandwidth becomes
then a bottleneck that can be reduced by an efficient data ac-
cess scheme. A handmade technique can be very efficient;
nevertheless it doesn’t offer the flexibility needed by a fast
prototyping methodology. Cache mechanism on the con-
trary is a good trade-off between efficiency and programming
complexity. Moreover its management including activation,
allocation and coherence is now automated by the prototyp-
ing tools.

Applications designed and validated with SynDEx can
be directly prototyped onto a multi-DSP architecture, mem-
ory size and bandwidth issues being reduced with cache use
while data coherence is automatically maintained. Thanks to
the automatic cache management a novice can rapidly proto-
type a multiprocessor application and get good performances
with only a limited knowledge of DSPs. Further specific op-
timisations are possible to enhance the implementation. This
work extends the prototyping methodology to HD-TV appli-
cations which require a large memory size.
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