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ABSTRACT

A survey of hypercomplex algebras suitable for DSP is presented.
Generally applicable properties are obtained, including a parauni-
tarity condition for hypercomplex lossless systems. Algebras of di-
mension n = 2N , N ∈ Z, are classified by generation methods, con-
stituting families. Two algebra families, which hold commutative
and associative properties for arbitrary N, are examined in more
detail: The 2N -dimensional hyperbolic numbers and tessarines.
Since these non-division algebras possess zero divisors, orthogonal
decomposition of hypercomplex numbers is investigated in general.

1. INTRODUCTION

DSP algorithms are generally based on the real number system.
Nevertheless, applying complex numbers for signal and system rep-
resentations often allows for compact and convenient system de-
scriptions. Further, they double the degree of an accordingly struc-
tured real-valued system [1]. Hence, it has been investigated in
how far higher dimensional hypercomplex number systems, espe-
cially 4-dimensional ones (e. g. quaternions [2, 3]), are applicable
for DSP. It has turned out that the use of certain hypercomplex al-
gebras, moreover, increases the degree of a digital system over a
complex-valued system [4]. Several applications of hypercomplex
numbers are related to (colour) image processing [5, 6], while only
few publications cover classic (multirate) DSP applications, such as
IIR filters [4] (filter banks [7]).

However, the higher the dimension, the more varieties of hy-
percomplex algebras exist. As a result, we try to preselect subsets
of algebras that allow for efficient DSP. In doing so, the objective
is to translate well-known algebra properties from mathematics to
the engineering community in a systematic manner by constituting
families of 2N -dimensional algebras. However, computational ef-
ficiency on the implementation level (i. e. the number of required
real multipliers and adders.) is beyond the scope of this paper, un-
less providing deeper insight into system analysis.

In this contribution, i) (general) properties of hypercomplex al-
gebras are presented and compared with each other (Sec. 2), ii) two
families favourable for DSP are proposed (Sec. 3) and iii) some con-
clusions are drawn (Sec. 4). The following notation is employed:
real number (a), complex number (a), any hypercomplex number
(a), matrix with any type of elements (A). Both the set of numbers
of an algebra and the algebra itself are denoted by A.

2. HYPERCOMPLEX ALGEBRAS

Define an n-dimensional hypercomplex algebra A, expanded on the
real vector space

a = a1i1 +a2i2 + . . .+anin =
n

∑
ν=1

aν iν ∈ A, a1, . . . ,an ∈ R, (1)

based on imaginary vector units i1, . . . , in, where i1 = 1 represents
the vector identity element, and a multiplication table which defines
the products of any imaginary unit with each other or with itself.
In the following, the notation of the identity vector is abbreviated:
i1iν = iν i1 = i ν1 = iν , ν = 1, . . . ,n. Moreover, we restrict every
multiplication table entry to iλ iµ = ±iν , λ ,µ,ν = 1, . . . ,n.

Alternatively, any hypercomplex algebra A can be represented
by a matrix algebra, where the entries of the matrix belong to a
subalgebra B ⊂ A. As an example,

FC,R : C 7→ M(R,2), a = a1 +a2i 7→ AC,R =

(

a1 −a2
a2 a1

)

(2)
maps a complex number a to a real matrix AC,R. Many properties
of an algebra can be observed by analysing the elements of (and
the operations with) isomorphism matrices A of a number a. Obvi-
ously, the matrix representation is redundant.

Two hypercomplex algebras are called isomorphic to each other
iff their multiplication tables can be made identical by interchanging
or linear combination of their base units (imaginaries).

2.1 Properties and operations

Beside addition, which is always performed componentwise, mul-
tiplication is an operation commonly requiring n2 real multiplica-
tions according to the algebra’s multiplication table. Multiplica-
tion is generally distributive with respect to addition, but it has to
be distinguished between left and right multiplication u(v + w) =
uv+uw, (v+w)u = vu+wu, u,v,w ∈ A. The most character-
istic property of a hypercomplex algebra is whether or not its multi-
plication is commutative uv = vu and/or associative (uv)w = u(vw).

Frequently, not only a general hypercomplex conjugation [2]

ā = a1 −
n

∑
ν=2

aν iν = a1 −a2i1 − . . .−anin (3)

is defined, but also modifications of (3), as required for DSP (e. g. in
[4]). In order to reduce the variety of different types of conjugations
we introduce the poly-conjugation

a‡ =
n

∑
ν=1

aν i3ν = a1 +
n

∑
ν=2

aν i3ν . (4)

Note that common complex conjugation {·}∗ of a complex number
z ∈ C is consistent with both conjugations (3) and (4), and will be
treated as a special case thereof: z∗ = z = z‡. In contrast to the
hypercomplex norm

‖a‖ = n
√

detAA,R ∈ R, where ‖ab‖ = ‖a‖‖b‖ , (5)

the quadratic identity is not generally valid for the modulus |a| =
√

a2
1 +a2

2 + . . .+a2
n ∈R of a hypercomplex number: |ab| 6= |a| · |b|.

If (5) is valid for ‖a‖ := |a| (as for real and complex numbers),
then A is a division algebra, for which an inverse element a−1 ∈
A exists for all elements a ∈ A except a = 0. However, in some
hypercomplex algebras the product u = vx, u,v,x ∈ A, may be zero
even if v 6= 0 and x 6= 0. In these cases, v and x are called zero
divisors (in matrix representation, detVA,R = detXA,R = 0 holds).
Since the implementation of a division is hardware-consuming, it
is generally circumvented in DSP. Nevertheless, for non-division
algebras the interpretation of signal energy becomes involved, since
their norm is non-Euclidean: ‖a‖ 6= |a|.
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Type i2c (Anti-)Commutativity Isomorphism

A −1 in+ν = iν ic = −iciν

(
A1 −A2

A2 A1

)

B 1 in+ν = iν ic = −iciν

(
A1 A2

A2 A1

)

C −1 in+ν = iν ic = iciν

(

A1 −A2
A2 A1

)

D 1 in+ν = iν ic = iciν

(
A1 A2
A2 A1

)

Table 1: Four types of doubling procedures, ν = 2, . . . ,n

2.2 Generation of 2N -dimensional hypercomplex algebras

We apply the doubling procedure introduced by CAYLEY and
DICKSON [2, 3]:

u = w1 +w2ic = w1 +w2in+1 ∈ B, w1,w2 ∈ A, (6)

where ic = ici1 = in+1 is the additional imaginary unit for doubling
the dimension of A⊂B from n to 2n. For instance, in case of A = R,
we obtain B = C with i2c = i22 = i2 = −1.

It is generally assumed for common CAYLEY-DICKSON dou-
bling procedure [2] that ic anticommutes with the existing imaginar-
ies except of the identity element i1 = 1 and its square is negative:

in+ν = iν ic = −iciν , i2c = −1, ν = 2 . . .n. (7)

In this contribution, four modification cases of the basic properties
(7) are distinguished by four types A, B, C, D and presented in Tab.
1. For the complex extensions A/C (hyperbolic extensions B/D)
we have i2c = −1 (i2c = 1), whereas the additional imaginary unit
ic either commutes for types C/D or anticommutes for types A/B
with the imaginary units iν , ν = 2, . . . ,n of A. Also the matrix
representations of B are given in Tab. 1, which show the consistency
of isomorphisms with doubling procedure. Type A conforms with
the original method by CAYLEY and DICKSON.

2.3 Transfer functions and matrices, paraunitarity condition

In order to generally define hypercomplex transfer functions, the
z-Transform is employed componentwise to a signal x(k)

X(z) = Z {x(k)} = Z

{
n

∑
ν=1

xν (k)iν

}

=
n

∑
ν=1

∞

∑
κ=−∞

xν (κ)z−κ iν ,

(utilising the linearity property of Z {·}). This is not always the
best choice, yet sufficient for the requirements of this section. The
common form of the convolution theorem

Y(z) = H(z)X(z) ↔ y(k) = h(k)∗x(k) (8)

is only valid if the hypercomplex algebra is commutative [5, 6].
Note that a hypercomplex convolution consists of several real con-
volutions interconnected according to the multiplication table. Of-
ten it is useful to display a hypercomplex transfer function H(z)
by its real matrix (MIMO) representation H(z). If the first column
of an algebra’s isomorphism matrix AA,R has positive entries only
(which is always true for doubling procedure type C/D), this matrix
directly corresponds to the transfer matrix H(z). For instance, the
transfer matrix for systems consisting of complex numbers reads

according to (2): H(z) =

(

H1(z) −H2(z)
H2(z) H1(z)

)

.

The essential DSP losslessness property of complex systems
H(z)H∗(z

−1) = 1 (with paraconjugation {·}∗) can also be stated
for the corresponding real MIMO system matrix H(z)HT

∗ (z−1) =

H(z)H†((z∗)−1) = I (with {·}† = {·}∗T): paraunitarity condition.
Using (4), paraunitarity can likewise be expressed for arbitrary hy-
percomplex algebras by

H(z)HT
‡ (z−1) = H(z)H‡T((z∗)−1) = I, or H(z)H‡(z

−1) = 1,

(9)
respectively (with poly-paraconjugation {·}‡).

Direct computation Orthogonal comp.
A operation R add. R mult. R add. R mult.

addition n 0 n 0

multiplication n(n−1) n2 n
(

n
d
−1

)
n2

d

Table 2: Real-valued operations required for basic hypercomplex
operations utilising an n-dim. algebra (decomposed to level d)

2.4 Orthogonal decomposition of non-division algebras

Any number of an n-dimensional non-division algebra A can be
decomposed into d orthogonal components ã1, . . . , ãd ∈ E ⊂ A

a =
n

∑
ν=1

aν iν =
d

∑
δ=1

ãδ eδ := [ã1, ã2, . . . , ãd ], (10)

scaling the base vectors e1, . . . ,ed . In general, there are options for
both the decomposition level d (the number of orthogonal compo-
nents) and the choice of the orthogonal base, resulting in an associ-
ated subalgebra E of dimension h = n

d
. However, iff d = n ⇒ h = 1,

the only feasible decomposition is E = R⇒ ãδ = ãδ . The reduction
of the computational load depends on d (Tab. 2). Therefore its max-
imum decomposition level dmax ≤ n is a significant characteristic of
an algebra.

2.4.1 Orthogonal base generation and (de-)orthogonalisation

How to establish a favourable base? In order to gain desirable prop-
erties of the decomposition, we call for an idempotent orthogonal
system. In such a system the base vectors e1, . . . ,ed meet the fol-
lowing conditions:

eδ · eε = 0, δ 6= ε, δ ,ε = 1, . . . ,d (11)

(eδ )k = eδ , δ = 1, . . . ,d, k ∈ N (12)

d

∑
δ=1

eδ =
d

∑
δ=1

n

∑
ν=1

eνδ iν = 1 ∈ R. (13)

For any non-division algebra infinitely many, linearly dependent
pairs of zero divisors αeδ · βeε = αβ · eδ · eε = 0, α,β ∈ E ful-
fil (11). However, as it has been observed, (12) is only met by

eνδ =

{
0, i2ν = −1
± 1

d , i2ν = 1.

(14)

Thus, in connection with (11), matched pairs of base vectors can be
chosen.

Although e1, . . . ,ed in (10)-(13) are hypercomplex numbers
(particularly zero divisors), they can alternatively be expressed by

their real vector representation eδ = ( e1δ e2δ · · · enδ )T ∈
Rn, and combined to a (not necessarily quadratic) base matrix

E=( e1 e2 · · · ed )=













e11 e12 · · · e1d

e21 e22 · · · e2d

...
...

. . .
...

en1 en2 · · · end
︸ ︷︷ ︸

base vectors













∈R
n×d

.

(15)
In order to change between representations a and [ã1, ã2, . . . , ãd ] of
a hypercomplex number, orthogonalisation (determination of or-

thogonal components) ã = Fa, ã = ( ã1 ã2 · · · ãd )T ∈

Ed and de-orthogonalisation (restoring common components) a =

Eã, a = ( a1 a2 · · · an )T ∈ Rn procedures are required.
To make the matrices E and F quadratic, a suitable extension of the

orthogonal components to the vector ã=( ã1 ã2 · · · ãn )T ∈
Rn is suggested. Hence, the orthogonalisation matrix F is the in-
verse of the base matrix: F = E−1.
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2.4.2 Calculation in the orthogonal representation

The orthogonal representation (10) both i) simplifies system analy-
sis and ii) increases computational efficiency, since each hypercom-
plex operation f (a) can be performed componentwise [8, 9]

f (a) = f ([ã1, ã2, . . . , ãd ]) ≡ [f (ã1) , f (ã2) , . . . , , f (ãd)] . (16)

This applies e. g. for multiplication, yielding a reduction of compu-
tational load (ii), as given in Tab. 2. Regarding division, (16) states
that a is a zero divisor if at least one orthogonal component ãδ ≡ 0
(i). Considering a complete hypercomplex LTI system, it requires
an orthogonaliser at the input, and a de-orthogonaliser at the output
of a processing chain: H(z) = E ·H̃(z) ·F.

2.5 Classification of hypercomplex algebra families

An overview interrelating the algebra families to be examined in
the following is given in Fig. 1. Obviously, many algebra families
coincide at lower n and then branch into different arms.

The most common algebra family are the CAYLEY-DICKSON

algebras constructed by N-fold doubling procedure type A, notably
the quaternions and octonions [2, 3]. These are the only hypercom-
plex algebras providing normed division systems up to n = 8 [2, 3].
However, they also imply disadvantageous properties: Commuta-
tivity vanishes for n ≥ 4 (quaternions H), associativity for n ≥ 8
(octonions O), while for n ≥ 16 (sedenions S) zero divisors appear.
From the DSP point of view, division algebras are neither required
nor desirable, since they imply dmax = 1 (no computational econ-
omy) and have no useful extension to the n = 2N case.

In contrast, CLIFFORD algebras are associative in any dimen-
sion [3, 6]. These are generated by multiplication table extensions
with imaginary units i2c = ±1, always not commutative to exist-
ing imaginaries (similar to doubling procedure types A/B). Lack
of commutativity is a major drawback for DSP applications, since
rules and processing become involved, e. g. invalidity of (8).

Therefore we decide to look for algebras which are associative
and commutative (constructed with doubling type C/D), regardless
of zero divisors. In order to maximise decomposition level and fol-
lowing (14), algebras could be generated with doubling type D only,
resulting in hyperbolic numbers DN : Sec. 3.1. Furthermore, extend-
ing ordinary complex numbers by complex extensions (type C), or
mixing complex and hyperbolic numbers (types C/D) is outlined in
Sec. 2.5.1, and as suitable specimen, the tessarines CDN in Sec. 3.2.

2.5.1 Multicomplex and mixed complex and hyperbolic algebras

Fig. 1 presents, amongst others, 3 isomorphic algebra families:
1. SCHÜTTE et al. were the first to apply the 4-dim. bicomplex

numbers, or Reduced Biquaternions C2 = C⊗C to DSP (dou-
bling pattern CC) [4]. Their extensions to n = 2N can be called
Multicomplex numbers CN (doubling pattern CC. . .C) [9].

2. FELSBERG extended Hypercomplex Commutative Algebras
(HCA) from DAVENPORT to n = 2N , which are generated by a
procedure similar to CLIFFORD algebras, yet commutative [6].

3. COCKLE proposed the tessarines CD = D⊗C, a 4-dim. algebra
(doubling pattern CD) [10]. In [5] an identical algebra is used
for colour image processing. We propose an extension to n =
2N by applying doubling pattern CDD. . .D since, this way, the
straightforward hyperbolic numbers are available as a backbone.

Next, we compare the squares of the imaginary units for 8-
dimensional instances of these 3 algebra families: Tab. 3. All al-
gebras are mutually isomorphic, since they only differ in the imag-
inary units’ ordering. It can be observed that for any algebra gen-
erated with at least one doubling pattern C and possibly any num-
ber of D, there are always n

2 imaginary units with i2ν = −1, and n
2

imaginary units with i2ν = 1. The latter ones correspond to hyper-
bolic extensions of type D. For instance, the bicomplex numbers
C2 = C⊗C are decomposable to the subalgebras C = C(i) ⊂ C2,
C(j) ⊂ C2, D(k) ⊂ C2, although no hyperbolic extensions partici-
pated! Due to this fact and in conjunction with (14), for these alge-
bras applies dmax = 2N−1 = n

2 .

2-dim. 4-dim. 16-dim.

HCA3

CAYLEY-
DICKSON

algebras [2, 3]

CLIFFORD

algebras [3, 6]

Hypercomplex
Commutative
Algebras [6]

multicomplex
numbers [4, 9]

tessarines
[10, 5]

hyperbolic
numbers
[11, 8]

C A D A D

C A

C AC AC A

C AC A

C AC AC A

C

A

D

commutative algebra
associative algebra
division algebra

2

d maximum decomposition level dmax/or/

8

2

42

8

16

8

C C

A A A A A

C C C

C D DC D

D D DD DB

8-dim.

HCA3

D

C A

C AC A

C A

C A

4

4

8

4

A A A

C C C

C D D

D D D

A

C

D

D

isomorphic isomorphic

isomorphic isomorphicisomorphic

D

A C/

/

C H O S

HCA3 HCA4

C2 C3 C4

CD CD2 CD3

D D2 D3 D4

Figure 1: Algebra families, properties and doubling procedure
types, if existing (for dimensions n = 2,4,8,16)

Algebra i21 i22 i23 i24 i25 i26 i27 i28
HCA3 +1 −1 −1 −1 +1 +1 +1 −1

C3 +1 −1 −1 +1 −1 +1 +1 −1
CD2 +1 −1 +1 −1 +1 −1 +1 −1

Table 3: Squares of imaginary units of the mutually isomorphic
algebras HCA3, tricomplex numbers and 8-dimensional tessarines

3. SUITABLE HYPERCOMPLEX ALGEBRAS

3.1 Hyberbolic numbers

3.1.1 2-dimensional hyperbolic numbers D

The algebra of hyperbolic numbers (also called double or split-
complex numbers) [11, 8] is derived from real numbers and dou-
bling construction type D (Tab. 1). It features the isomorphism

FD,R : D 7→ M(R,2), a = a1 +a2j 7→AD,R =

(

a1 a2
a2 a1

)

,

(17)
where i22 = j2 = 1 is the unipotent imaginary unit [11, 10]. Since it
does not possess a complex number structure, complex conjugation
a∗ is not defined for a hyperbolic number, and poly-conjugation has
no effect: a‡ = a. The hypercomplex norm of a hyperbolic number
differs from its Euclidean modulus:

‖a‖ =
√

detAD,R =
√

a2
1 −a2

2 6= |a| =
√

a2
1 +a2

2.

The orthogonal representation (10) of a hyperbolic number

a = (a1 +a2)
1+ j

2
+(a1−a2)

1− j

2
= ã1e1 + ã2e2 =: [ã1, ã2], (18)

ã1, ã2 ∈ R, meets conditions (11)-(13), for instance:

e2
1 =

12 +2j+ j2

4
=

1+ j

2
= e1, e1 ·e2 =

1− j2

4
= 0, e1 +e2 = 1.

3.1.2 2N -dimensional hyperbolic numbers DN

The extension of hyperbolic numbers D to n = 2N is straightfor-
ward. Applying doubling generation type D (Tab. 1) to the real
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numbers N times, the commutative and associative 2N-dimensional
hyperbolic algebras [8] emerge:

DN =
{

a1 +a2i2N−1+1 | a1,a2 ∈ DN−1
}

= D⊗D⊗ . . .⊗D
︸ ︷︷ ︸

N times

. (19)

As an example, the 4-dimensional hyperbolic algebra D2 comprises
the following isomorphism to the real matrix algebra M(R,4):

a 7→AD2,R
=






a1 a2 a3 a4
a2 a1 a4 a3
a3 a4 a1 a2
a4 a3 a2 a1




 = AT

D2,R
.

These non-division algebras are highly decomposable: dmax =
n. In order to retrieve a feasible base for the orthogonal representa-
tion, following construction is applicable:

E=
1

2d

d⊗

δ=1

(
1 1
1 −1

)

=ET =
1

2d
E−1 =

1

2d
F=

1

2d
Kd . (20)

For instance, the base matrix of D2 is given by

E =
1

4






1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




 =

1

4
F. (21)

It follows that the orthogonalisation matrix F = E−1 of decompo-
sition level d coincides with a WALSH-KRONECKER matrix Kd of
order d. Hence the orthogonalisation (de-orthogonalisation) pro-
cedure results in a Hadamard Transform (its inverse), which can
be carried out by an efficient algorithm: Fast Hadamard Transform
(FHT). With such a decomposition, the subalgebra E of the orthog-
onal components ã1, . . . , ãd is an h-dimensional hyperbolic alge-
bra. Furthermore, in the case of maximum decomposition d = n,
the eigenvectors of ADN ,R are proportional to the orthogonal base

vectors eν = 1
nEigν

{
ADN ,R

}
, ν = 1, . . . ,n, while the eigenvalues

of ADN ,R are the components used in the orthogonal representa-
tion. Hence, such a decomposition resembles matrix diagonalisa-
tion. Multiplication complexity is greatly reduced: n2 → n real
multiplications per hypercomplex multiplication (see Tab. 2).

3.2 Tessarines

3.2.1 4-dimensional tessarines CD

In the following, hyperbolic numbers with complex coefficients
(generation type CD, Tab. 1) will be called tessarines according to
the 4-dimensional algebra introduced by J. COCKLE in 1848 [10]:

a = a1 +a2j ∈ CD, j 6= ±1, j2 = 1, a1,a2 ∈ C.

Combining (2), (17) and following instructions from Tab. 1 (types
C and D), its isomorphism to the real matrix algebra M(R,4) yields

a = a1i1 +a2i2 +a3i3 +a4i4 7→ACD,R =







a1 −a2 a3 −a4

a2 a1 a4 a3

a3 −a4 a1 −a2

a4 a3 a2 a1







.

Thus, the tessarine multiplication table is

i2 = i22 = −1, j2 = i23 = 1, k2 = i24 = −1,

ij = ji = k, ik = ki = −j, jk = kj = i.

If complex conjugation of both the complex coefficients a1,a2 is
merged to a∗, it coincides with the poly-conjugation (4): a‡ = a∗.
The orthogonal representation of a 4-dimensional tessarine is based
on the 2-dimensional hyperbolic number’s decomposition (18):

a = (a1 +a2)
1+ j

2
+(a1 −a2)

1−j

2
= ã1e1 + ã2e2 =: [ã1, ã2].

3.2.2 2N -dimensional tessarines CDN

We propose an extension of the tessarines to dimension n =
2N , resulting in hyperbolic numbers (19) of dimension n

2 =

2N−1 with complex coefficients: doubling pattern CDD...D. The
squares of imaginaries follow the simple rule i2ν = (−1)ν−1,
ν = 1, . . . ,n. Due to this fact, poly-conjugation reduces to:
a‡ = ∑n

ν=1(−1)ν−1aν iν = a∗. Hence, the hypercomplex pa-
raunitarity condition (9) also reduces to the common formulae
H(z)HT

∗ (z−1) = I and H(z)H∗(z
−1) = 1, respectively.

The base matrices for orthogonal representation resemble (20),
considering that for a tessarine dmax = n

2 . For instance, (21) can be
employed as a complex base matrix for the 8-dimensional tessarine
algebra CD2. In these cases, the eigenvalues of the real isomor-
phism matrix ACDN−1,R

turn up in complex conjugated pairs.

4. CONCLUSION

In contrast to the widely used quaternions and CLIFFORD alge-
bras, we consider algebra families, accomplishing both the com-
mutativity and associativity property for any dimension 2N , most
favourable for DSP application. However, these algebras gener-
ally exhibit zero divisors for n ≥ 4 (which is also the case for any
noncommutative, but associative algebra with n ≥ 8). This feature
can be a great advantage, since it allows for orthogonal decom-
position, resulting in both improved computational efficiency and
system analysis. As suitable specimen, 2N -dimensional hyperbolic
and tessarine algebras are presented. The major drawback of these
non-division algebras regarding DSP is their non-Euclidean norm
complicating the definition of signal energy, which will be an issue
of further investigation. Nevertheless, a paraunitarity condition for
hypercomplex digital systems ensuring losslessness is provided.

The lacking examples related to DSP applications will be pro-
vided in an extended forthcoming publication. Finally, I greatly
acknowledge the careful review by Prof. H. G. Göckler (DISPO).
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