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ABSTRACT Each atonyp, is associated with a particular co-ordinate in the
An alternative mechanism for audio masking is postulatediime-frequency plane, i.e(ti, @) and the representation may
This mechanism is derived as a solution to the classic prolbe overcomplete in that > M. The choice of a particular
lem of representing a signal as a linear combination of bafamily of atoms defines the form of analysis e.g. short-term
sis functions which are only approximately orthogonal androurier transform (SDFT), Gabor, Gabor wavelets etc. and
hence are prone to Ieakage. This mechanism involves aughese may be either frames or bases as appropriate_
menting each basis function or filter with an auxiliary filter. For practica| reasons, atoms are not p|aced at every pos-
In this combined detection/estimation process the instantasible point in the time-frequency plane but rather are placed
neous amplitude output of the auxiliary filter sets the maskaccording to some sampling or tiling strategy of which the
ing threshold for the basis filter. No interconnection betweersimplest is a uniform rectangular grid. The spacing of atoms
basis functions is required to compute this masking threshcan be used to control the theoretical properties of the rep-
old. Fora gammatone filter bank the auxiliary filter is formedresentation e.g. to ensure orthogonality of the vectors or to
from the cascade of the gammatone itself and a single zefgrovide well conditioned frames. The orthogonality property
notch filter. The single zero (in theplane) has the same fre- s particularly attractive since it would lead to sparse repre-
quency as the centre frequency as the gammatone filter ag@ntations if the signal was indeed a linear combination of

is at a radius dependent on its bandwidth. atoms placed exactly at grid points. However, real signals
are unlikely to be composed of atoms which conveniently
1. INTRODUCTION fall onto grid points. In this case, the representation will not

Perceptual audio masking phenomena are well characteriz&§ SParse even if the atoms on the grid points form an orthog-
and have been very successfully applied to the coding nal set. The most common manifestation of this problem is
speech and music signals [1]. The field continues to advandg€ 'eakage or spectral smearing associated with the DFT of
with recent interest in perceptually based sinusoidal coding Sinéwave that does not have an integer number of cycles
[2]. However the question that does not appear to have bedHthin the analysis window. .

addressed is what, in a signal processing context, is the pur- N this paper we consider approximately orthogonal
pose of these masking phenomena. From a coding perspé@mplex—phasor—based expansions such as the DFT and a
tive there is no need to answer the question. The objectigammatone filter bank. We show that each atom (basis func-
is to mimic the operation of the ear in as accurate and glon or filter) can be used to derive an auxiliary filter whose

computationally efficient manner as possible. However if wePUtPUt provides an approximate upper-bound on these leak-
e or co-channel interference terms and can thus be used to

Several computational auditory models are available (e.g. [ ) )

and [5]) but they tend to include nonlinear elements that renESSentially we demonstrate that masking phenomena are an

der any further analysis of their effect on the signal difficult®PServable characteristic of an approximately orthogonal ex-

or even intractable.” In particular if a masking processes i§2nsion that has been designed to combine the functions of

used as a preprocessor to independent component analySfiection and estimation as in [7] but without the added com-

(ICA) techniques, a linearized interpretation of the masking;‘;tat'onal expense of estimating signal statistics associated

process has clear advantages both with respect to succes h[7]. _ . . . .

operation of the ICA (which usually assumes a linear mixing . In section Il the generic method is outlined and illustrated

model) and any analysis of the effects of masking on ICA. With a simple application in spectral analysis. In section Ill
Itis clear from many studies that the primary function of the same technique is applied to a gammatone-filter-based

the ear is to perform some form of time-frequency analysisime-frequency analysis system and the straightforward form

The latter is often formulated as a linear combination of vec®f the auxilary filter is highlighted.

tors from a fixed dictionary. In the language of [6], a signal

M-vectory is described as a linear combinationbfectors 2. MASKING OF NON-ORTHOGONAL

or atoms{(pi}i’\‘:l and a white noise vectar: COMPONENTS

N A variety of solutions to identifying the weight§g; }N ,, as-
y = aip. +n 1) sociated with the expansion of (1) have been suggested in the
; g literature from matching pursuit [6] to orthogonalized match-
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ing pursuit to Wiener filtering to projection filters [8]. The By equating these two variances, we defq(meexactly as
simplest solution is provided by the matched filter which is

optimal when the basis vectors are orthogonal. The matched " ¢ —kCo.
filter estimates{d;}, of the weights{a;} are given by: L (k[Z—1}|¢ |2
_ Qi ‘
G = wly

and since vdr;) = var(&;) we can use the output of the new
filter to estimate the variance of the noise component present
wherew; = @ /((p cp) in the output of the matched filter. Thus we F<):an aedpe-

We seek a vector (or filterip, that is easily computed o 0tion or masking thresholfbr the presence of the desired
from @, but which is orthogonal t to it. By definition this vec- component; in the matched filter outpud;. If the noise is
tor WI|| not respond to any component qﬂf present in the Gaussian then this test would also have a constant false alarm
observed signay. Formally . is defined as a solution to: rate (CFAR) property.

wH = 0. We note that this is not a bi-orthogonality con-

d|t|0n To ease implementation and incorporate simplifying ) s ]
properties from the outset, we postulate the use dfianN Returnlng to the deterministic component, we seek to satisfy
circulant shift matrixC with which to constructy, from ¢.: the inequality:

2.2 Deterministic Component

Y. 0 ¢—-kCo 2l = |7

where the complex gaig term ensures that the orthogonality

condition is satisfied: as tightly as possible so we can set a threshold at the output

of the matched filter. Invoking the magnitude inequality, this

" QiH [ @) will be satisfied provided:
~ (Co)My 9y o'
Tl > — Vj i 3
Applying the observed signgl to this new filter and exploit- M‘ 91' - qu| |w' 9, YA 3
ing the orthogonality property we have: d a
an
z = Yy I
hd @ 'n|
Wl wi'nl 2 S =Iwinl
= Y aje.+n b
LA | JZ]_ 71
N The use of the magnitude inequality may appear to be over
= ai{gfe }+yn restrictive but it has the advantage of leading to conditions
i=Ga o 0 that are signal independent being only a property of the sets

of vectors{g. } and{y, }. The condition on the stochastic

noting the restriction on the summation. Ideally the réSpPONSomnonent \ WI|| be met on average from the earlier argu-

of this new filter would have the form:

ments.
? = ‘ |2{ Z aJ{(p (p }+(p n} 2.3 Algorithm Summary
@I =13 The algorithm can be summarized in the following man-

and provide a measure of the co-channel interference inducé®"- The complex gain termks and the scaling factor
by the signal itself and the non-orthogonality of the basisy/{|kil? — 1}|¢.|> are pre-computed at eachs they are not
functions. However this would imply a contradiction since signal dependent Then for eaictio the following:

it would requiregi and% to be one and the same. 1. response to basis vector
2.1 Stochastic Component n = QPY
The filter outpuiz| is the sum of a deterministic component 2 matched filter output
(or mean)z] 1j or,{cp 9, } and a zero-mean stochastic A "
componengIHn ConS|derthe latter first. The variancezpf a = ri/|9i|
is: 3. auxiliary filter output

varz) = |w o} D{Ik[* -1}l oy  n-keCty)

Vi[> =1} @[>
Similarly the variance (or noise component) of the matched
filter output is: 4. masked output
. , , o2 B = ail(lal-|al)
var(ai) = [wiloy = e where the indicator functior(X) = 1 whenx > 0 and is zero
|

otherwise.
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Figure 2: Spectral Analysis: four sine waves in white noise

Figure 1: Response of 10th matched filtego (solid line) at -30dB

and masking vectog, | (dotted line)to other basis vectors
@

- 3. TIME-FREQUENCY ANALYSIS
Recently [9], it was shown that a gammatone filter bank is
all that is needed to compute the audio masking threshold. If
2.4 Examples we use a complex gammatone filter bank to define the basis
vectorg,, its Ith element would be:
Figure 1 illustrates how well these conditions can be met
for a windowed 32-point DFT. The basis vectors are con- @) = eal=liyq_p (4)
structed from a 32-point DFT matrix whose columns have
been weighted with a Hamming window. The solid curvewherey(l) is a gamma distribution of the form:
shows the response of the matched fikery to the other '
basis vector:spj. It is clear that this basis set is only approx- y(l) = 1Vle®

imately orthogonal. The dotted curve shows the response gf,p; s the bandwidth which is a constant fraction of the
the auxiliary or masking vectap, , to the same basis vec- cqnire frequencyg. Thus theith basis vector is associated
tors. The expected null response &t 10is evident. For this  ith a co-ordinate(;, «) in the time-frequency plane. The
example the response of the auxiliary filter is greater thagemporal extent of the gamma distribution is proportional to
the response of the matched filter to all other basis functionshe time constant/B; and is usually much smaller than the
Thus the magnitude of the output of the auxiliary filter formsjength of the data record and hence the basis vectors. Thus,
an upper bound on the non-orthogonal interference present ghart from basis vectors associated with time indices at the
the matched filter output and provides a suitable "pass/rejecheginning and end of the data record, the circulant shift op-
threshold for the matched filter output. eration is identical to a simple shift or time delay operation.
Itis straightforward to configure the algorithm of I1.C for ThusC@, can be replaced b$¢, where ever it appearsS
spectral analysis. Figure 2 illustrates the results for the analy2eing a simple non-circulant shift matrix.
sis of 4 sinewaves in white noise. The basis vectors are con- As is usual practice all the matched filters associated with
structed from the first 16 rows a 82 x 32 discrete Fourier @ particular centre frequenay can be realized by apply-
transform matrixFs;. The columns of the resultant rectan- ing the time domain signaf(l) to a single gammatone filter
gular matrix are weighted with a 16-point Hamming window with impulse responsgi(1) = e/“y(1) and transfer function
to form the 32 candidate basis vectors. The matched filteG;(z) and recording the output signal. The transfer function
output shown is identical to that which we would be obtainedof the associated auxiliary filter is given b§; (z)(1—k*z™?)
using a 16-point Hanning window, zero-padding and a 32which is a cascade of the gammatone filter and a notch filter
point DFT. The masking threshold is the output of the auxwith a single zero at = k*. Combining (2) and (4) we have:
iliary filters at each frequency of interest. The two closely-

spaced sine waves at A are not resolvable by this matched B} ey 2 —1)

filter bank but they are detected as the matched filter output kK = S =ty =1 —1)

is greater than the masking threshold. Of greater interest is

the component at C which is detected despite there being nithus, since the gamma distribution is a positive real function,
evidence of a peak in the matched filter response. Also ahe complex gain term has the foh= |ki|e!“. The notch
note are the lack of detections in the region to the left of Afilter has a notch in the centre of the band at frequesacy
and to the right of B. The white noise components in thesd’he magnitudek;| controls the proximity of the zero to the
regions have been masked by the presence of the sinewavast circle in thez-plane and hence the depth of the notch.
at A, B and C. The resultant “masked output” response i©ne element of the resultant filter bank is illustrated in Figure
considerably sparser than the “matched filter” outputs. 3.
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old. For a gammatone filter bank the auxiliary filter is formed
Figure 4: Response to linear frequency ramps (chirps): ganfrom the cascade of the gammatone itself and a single zero
matone filterbank (upper); gammatone filter bank with masknotch filter. The single zero (in theplane) has the same
ing model of Section II.C (lower) frequency as the centre frequency as the gammatone filter
and is at a radius dependent on its bandwidth. Future work
will involve an attempt to test and calibrate this method with
Initial results have indicated that this linearized modelmeasured data.
exhibits many of the masking phenomena described in the
psychoacoustics literature [10] such @snporal masking, ~Acknowledgment
simultaneous masking and the precedence effattaddi-
tion it also exhibits thepeak-samplingcharacteristics that The author acknowledges the support of the Royal Academy
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of the properties of this linearized model are illustrated in
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similar analysis of a short single-note jazz guitar phrase with[3] R. Guddeti and B. Mulgrew, “Perceptually motivated
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