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ABSTRACT
An alternative mechanism for audio masking is postulated.
This mechanism is derived as a solution to the classic prob-
lem of representing a signal as a linear combination of ba-
sis functions which are only approximately orthogonal and
hence are prone to leakage. This mechanism involves aug-
menting each basis function or filter with an auxiliary filter.
In this combined detection/estimation process the instanta-
neous amplitude output of the auxiliary filter sets the mask-
ing threshold for the basis filter. No interconnection between
basis functions is required to compute this masking thresh-
old. For a gammatone filter bank the auxiliary filter is formed
from the cascade of the gammatone itself and a single zero
notch filter. The single zero (in thez-plane) has the same fre-
quency as the centre frequency as the gammatone filter and
is at a radius dependent on its bandwidth.

1. INTRODUCTION

Perceptual audio masking phenomena are well characterized
and have been very successfully applied to the coding of
speech and music signals [1]. The field continues to advance
with recent interest in perceptually based sinusoidal coding
[2]. However the question that does not appear to have been
addressed is what, in a signal processing context, is the pur-
pose of these masking phenomena. From a coding perspec-
tive there is no need to answer the question. The objective
is to mimic the operation of the ear in as accurate and as
computationally efficient manner as possible. However if we
are to exploit these masking phenomena in signal estimation
tasks such a blind source separation [3] we need to under-
stand the phenomena at a more fundamental theoretical level.
Several computational auditory models are available (e.g. [4]
and [5]) but they tend to include nonlinear elements that ren-
der any further analysis of their effect on the signal difficult
or even intractable. In particular if a masking processes is
used as a preprocessor to independent component analysis
(ICA) techniques, a linearized interpretation of the masking
process has clear advantages both with respect to successful
operation of the ICA (which usually assumes a linear mixing
model) and any analysis of the effects of masking on ICA.

It is clear from many studies that the primary function of
the ear is to perform some form of time-frequency analysis.
The latter is often formulated as a linear combination of vec-
tors from a fixed dictionary. In the language of [6], a signal
M-vectory is described as a linear combination ofN vectors
or atoms{φ

i
}N

i=1 and a white noise vectorn:

y =
N

∑
i=1

αiφ i
+n (1)

Each atomφ
i
is associated with a particular co-ordinate in the

time-frequency plane, i.e.:(ti ,ωi) and the representation may
be overcomplete in thatN > M. The choice of a particular
family of atoms defines the form of analysis e.g. short-term
Fourier transform (SDFT), Gabor, Gabor wavelets etc. and
these may be either frames or bases as appropriate.

For practical reasons, atoms are not placed at every pos-
sible point in the time-frequency plane but rather are placed
according to some sampling or tiling strategy of which the
simplest is a uniform rectangular grid. The spacing of atoms
can be used to control the theoretical properties of the rep-
resentation e.g. to ensure orthogonality of the vectors or to
provide well conditioned frames. The orthogonality property
is particularly attractive since it would lead to sparse repre-
sentations if the signal was indeed a linear combination of
atoms placed exactly at grid points. However, real signals
are unlikely to be composed of atoms which conveniently
fall onto grid points. In this case, the representation will not
be sparse even if the atoms on the grid points form an orthog-
onal set. The most common manifestation of this problem is
the leakage or spectral smearing associated with the DFT of
a sinewave that does not have an integer number of cycles
within the analysis window.

In this paper we consider approximately orthogonal
complex-phasor-based expansions such as the DFT and a
gammatone filter bank. We show that each atom (basis func-
tion or filter) can be used to derive an auxiliary filter whose
output provides an approximate upper-bound on these leak-
age or co-channel interference terms and can thus be used to
set a detection threshold at the output of the atom of inter-
est. The output of this detector controls a gate with which
to sample the response of the atom of interest to the signal.
Essentially we demonstrate that masking phenomena are an
observable characteristic of an approximately orthogonal ex-
pansion that has been designed to combine the functions of
detection and estimation as in [7] but without the added com-
putational expense of estimating signal statistics associated
with [7].

In section II the generic method is outlined and illustrated
with a simple application in spectral analysis. In section III
the same technique is applied to a gammatone-filter-based
time-frequency analysis system and the straightforward form
of the auxilary filter is highlighted.

2. MASKING OF NON-ORTHOGONAL
COMPONENTS

A variety of solutions to identifying the weights,{αi}N
i=1, as-

sociated with the expansion of (1) have been suggested in the
literature from matching pursuit [6] to orthogonalized match-
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ing pursuit to Wiener filtering to projection filters [8]. The
simplest solution is provided by the matched filter which is
optimal when the basis vectors are orthogonal. The matched
filter estimates,{α̂i}, of the weights{αi} are given by:

α̂i = wH
i y

wherewi = φ
i
/(φH

i
φ

i
).

We seek a vector (or filter)ψ
i

that is easily computed
from φ

i
but which is orthogonal to it. By definition this vec-

tor will not respond to any component ofφ
i

present in the
observed signaly. Formallyψ

i
is defined as a solution to:

ψH
i

φ
i
= 0. We note that this is not a bi-orthogonality con-

dition. To ease implementation and incorporate simplifying
properties from the outset, we postulate the use of anN×N
circulant shift matrixC with which to constructψ

i
from φ

i
:

ψ
i

∝ φ
i
−kiCφ

i

where the complex gainki term ensures that the orthogonality
condition is satisfied:

k∗i =
φH

i
φ

i

(Cφ
i
)Hφ

i

(2)

Applying the observed signaly to this new filter and exploit-
ing the orthogonality property we have:

zi = ψH
i
y

= ψH
i

{
N

∑
j=1

α jφ j
+n

}

=
N

∑
j=1, j 6=i

α j{ψH
i

φ
j
}+ψH

i
n

noting the restriction on the summation. Ideally the response
of this new filter would have the form:

zo
i =

1
|φ

i
|2{

N

∑
j=1, j 6=i

α j{φH
i

φ
j
}+φH

i
n}

and provide a measure of the co-channel interference induced
by the signal itself and the non-orthogonality of the basis
functions. However this would imply a contradiction since
it would requireφ

i
andψ

i
to be one and the same.

2.1 Stochastic Component

The filter outputzi is the sum of a deterministic component
(or mean)∑N

j=1, j 6=i α j{ψH
i

φ
j
} and a zero-mean stochastic

componentψH
i
n. Consider the latter first. The variance ofzi

is:

var(zi) = |ψ
i
|2σ2

n ∝ {|ki |2−1}|φ
i
|2σ2

n

Similarly the variance (or noise component) of the matched
filter output is:

var(α̂i) = |wi |2σ2
n =

σ2
n

|φ
i
|2

By equating these two variances, we defineψ
i
exactly as

ψ
i

=
φ

i
−kiCφ

i√
{|ki |2−1}|φ

i
|2

and since var(zi) = var(α̂i) we can use the output of the new
filter to estimate the variance of the noise component present
in the output of the matched filter. Thus we can seta de-
tection or masking thresholdfor the presence of the desired
componentαi in the matched filter output̂αi . If the noise is
Gaussian then this test would also have a constant false alarm
rate (CFAR) property.

2.2 Deterministic Component

Returning to the deterministic component, we seek to satisfy
the inequality:

|zi | ≥ |zo
i |

as tightly as possible so we can set a threshold at the output
of the matched filter. Invoking the magnitude inequality, this
will be satisfied provided:

|ψH
i

φ
j
| ≥

|φH
i

φ
j
|

|φ
i
|2 = |wH

i φ
j
|,∀ j, j 6= i (3)

and

|ψH
i
n| ≥

|φH
i
n|

|φ
i
|2 = |wH

i n|

The use of the magnitude inequality may appear to be over
restrictive but it has the advantage of leading to conditions
that are signal independent being only a property of the sets
of vectors{φ

i
} and{ψ

i
}. The condition on the stochastic

component will be met on average from the earlier argu-
ments.

2.3 Algorithm Summary

The algorithm can be summarized in the following man-
ner. The complex gain termski and the scaling factor√
{|ki |2−1}|φ

i
|2 are pre-computed at eachi as they are not

signal dependent. Then for eachi do the following:
1. response to basis vector

r i = φH
i
y

2. matched filter output

α̂i = r i/|φ i
|2

3. auxiliary filter output

zi =
r i −k∗i φH

i
(CHy)√

{|ki |2−1}|φ
i
|2

4. masked output

βi = α̂i I(|α̂i |− |zi |)
where the indicator function I(x) = 1 whenx > 0 and is zero
otherwise.
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Figure 1: Response of 10th matched filterw10 (solid line)
and masking vectorψ

10
(dotted line)to other basis vectors

φ
j

2.4 Examples

Figure 1 illustrates how well these conditions can be met
for a windowed 32-point DFT. The basis vectors are con-
structed from a 32-point DFT matrix whose columns have
been weighted with a Hamming window. The solid curve
shows the response of the matched filterw10 to the other
basis vectorsφ

j
. It is clear that this basis set is only approx-

imately orthogonal. The dotted curve shows the response of
the auxiliary or masking vectorψ

10
to the same basis vec-

tors. The expected null response ati = 10 is evident. For this
example the response of the auxiliary filter is greater than
the response of the matched filter to all other basis functions.
Thus the magnitude of the output of the auxiliary filter forms
an upper bound on the non-orthogonal interference present in
the matched filter output and provides a suitable ”pass/reject”
threshold for the matched filter output.

It is straightforward to configure the algorithm of II.C for
spectral analysis. Figure 2 illustrates the results for the analy-
sis of 4 sinewaves in white noise. The basis vectors are con-
structed from the first 16 rows a of32×32 discrete Fourier
transform matrixF32. The columns of the resultant rectan-
gular matrix are weighted with a 16-point Hamming window
to form the 32 candidate basis vectors. The matched filter
output shown is identical to that which we would be obtained
using a 16-point Hanning window, zero-padding and a 32-
point DFT. The masking threshold is the output of the aux-
iliary filters at each frequency of interest. The two closely-
spaced sine waves at A are not resolvable by this matched
filter bank but they are detected as the matched filter output
is greater than the masking threshold. Of greater interest is
the component at C which is detected despite there being no
evidence of a peak in the matched filter response. Also of
note are the lack of detections in the region to the left of A
and to the right of B. The white noise components in these
regions have been masked by the presence of the sinewaves
at A, B and C. The resultant “masked output” response is
considerably sparser than the “matched filter” outputs.
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Figure 2: Spectral Analysis: four sine waves in white noise
at -30dB

3. TIME-FREQUENCY ANALYSIS

Recently [9], it was shown that a gammatone filter bank is
all that is needed to compute the audio masking threshold. If
we use a complex gammatone filter bank to define the basis
vectorφ

i
, its l th element would be:

φi(l) = ejωi(l−l i)γi(l − l i) (4)

whereγi(l) is a gamma distribution of the form:

γi(l) = l γ−1e−Bi l

andBi is the bandwidth which is a constant fraction of the
centre frequencyωi . Thus theith basis vector is associated
with a co-ordinate(l i ,ωi) in the time-frequency plane. The
temporal extent of the gamma distribution is proportional to
the time constant1/Bi and is usually much smaller than the
length of the data record and hence the basis vectors. Thus,
apart from basis vectors associated with time indices at the
beginning and end of the data record, the circulant shift op-
eration is identical to a simple shift or time delay operation.
ThusCφ

i
can be replaced bySφ

i
where ever it appears -S

being a simple non-circulant shift matrix.
As is usual practice all the matched filters associated with

a particular centre frequencyωi can be realized by apply-
ing the time domain signaly(l) to a single gammatone filter
with impulse response:gi(l) = ejω l γi(l) and transfer function
Gi(z) and recording the output signal. The transfer function
of the associated auxiliary filter is given by:Gi(z)(1−k∗z−1)
which is a cascade of the gammatone filter and a notch filter
with a single zero atz= k∗. Combining (2) and (4) we have:

k∗i =
ejωi ∑l γ2

i (l − l i)
∑l γi(l − l i)γi(l − l i −1)

Thus, since the gamma distribution is a positive real function,
the complex gain term has the formk∗i = |ki |ejωi . The notch
filter has a notch in the centre of the band at frequencyωi .
The magnitude|ki | controls the proximity of the zero to the
unit circle in thez-plane and hence the depth of the notch.
One element of the resultant filter bank is illustrated in Figure
3.
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Figure 4: Response to linear frequency ramps (chirps): gam-
matone filterbank (upper); gammatone filter bank with mask-
ing model of Section II.C (lower)

Initial results have indicated that this linearized model
exhibits many of the masking phenomena described in the
psychoacoustics literature [10] such astemporal masking,
simultaneous masking and the precedence effect. In addi-
tion it also exhibits thepeak-samplingcharacteristics that
are necessary to preserve frequency resolution [4]. Some
of the properties of this linearized model are illustrated in
Figure 4 where the sum of two linear frequency chirps are
applied to a gammatone filter bank that employs 20 filters to
cover a frequency range up to 6kHz. One sine wave ramps
up in frequency from 0 Hz and the other ramps down from
6kHz. White noise is added at a level of 10 dB below the
signal. The upper plots shows the response of a gamma-
tone filter bank alone and the lower lower curve illustrates
the effect of adding the masking model of Section II.C. The
most noticeable effects are: (i) clearer definition of the sig-
nal in the time/frequency plane; (ii) removal of the noise in a
time/frequency band around the signal. Figure 5 illustrates a
similar analysis of a short single-note jazz guitar phrase with
a cymbal crash at the end. Here again the effect of the mask-
ing is to provide a more localized and sparser decomposition
of the signal in the time/frequency plane.

4. CONCLUSIONS

In this paper we have postulated an alternative linear mech-
anism for audio masking. This mechanism involves aug-
menting each basis function or filter with an auxiliary filter.
In this combined detection/estimation process the instanta-
neous amplitude output of the auxiliary filter sets the mask-
ing threshold for the basis filter. No interconnection between
basis functions is required to compute this masking thresh-

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−200

0

200

signal

fil
te

r 
no

.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

fil
te

r 
no

.

time (seconds)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

10

20

Figure 5: Jazz guitar: signal (upper); gammatone filterbank
(middle); gammatone filter bank with masking model of Sec-
tion II.C (lower)

old. For a gammatone filter bank the auxiliary filter is formed
from the cascade of the gammatone itself and a single zero
notch filter. The single zero (in thez-plane) has the same
frequency as the centre frequency as the gammatone filter
and is at a radius dependent on its bandwidth. Future work
will involve an attempt to test and calibrate this method with
measured data.
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