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Abstract. Some aspects of tracking of ballistic targets 
(BT) are analysed in this paper. In particular, the 
uncertainty in the kinematic model of the ballistic target 
is introduced and the impact on the tracking accuracies 
and robustness is detailed. Two architectures have been 
selected for comparison purposes: (i) an Interacting 
Multiple Model (IMM) constituted by a number of 
Extended Kalman Filters (EKFs) matched to the BT 
dynamics, each filter having the capability of on-line 
estimation of the BT characteristics (for instance the 
ballistic coefficient) and  (ii) an IMM constituted by a 
number of Unscented Kalman Filters (UKFs). The 
performance evaluations of the designed IMM tracking 
algorithms are obtained via Monte Carlo simulation.  
 
Keywords: Target tracking, estimation, Unscented 
Kalman filter, Extended Kalman filter, Ballistic Target 
Model 
 

1. Summary 
 
This paper presents mathematical procedures and 
simulation results for estimating the accuracy of a target 
track obtained by fusing two sequences of radar plots  
provided by two sensors in presence of a ballistic target 
(BT). It is assumed that the two sensors could have a 
detection probabilities Pd less than 1.   
 
The novelty of the paper consists in the evaluation of 
performance of two different tracking architectures based 
on: (i) multiple model approach, and (ii) design of filters 
matched to the BT kinematics; the comparison is 
performed including in the trajectory generator the effect 
of uncertainty in the knowledge of the BT model by 
adding process noise in the BT motion equations.    
 
 
 

2. Introduction  
 
The problem of BT tracking has been described in the 
specialized technical literature, see for instance [1-4]. One 
of the fundamental information required for designing a 
successful tracking architecture is the development of a 
BT kinematics model: it has to be noted that the BT 
motion equations are highly non linear so that an optimum 
tracking filter cannot be found in principle; thus sub-
optimum filters are the usual current practice. In addition 
to this, it has also to be considered that in the real world 
the behavior of the BT could be different with respect to 
the model prediction; to counteract this problem, process 
noise has to be added to the BT model during the 
trajectories generation[1-4] and the tracker has to be tested 
against these trajectories to acquire the necessary 
confidence on the achievable tracking accuracies. 
 
This paper deals with the problems of designing an 
effective tracking architecture in presence of BT. Two 
architectures have been selected for comparison purposes: 
(i) an Interacting Multiple Model (IMM) constituted by a 
number of Extended Kalman Filters (EKFs) matched to 
the BT dynamics (see sections 3 and 4) each filter having 
the capability of on-line estimation of the BT 
characteristics (for instance the drag coefficient β) and  (ii) 
an IMM constituted by a number of Unscented Kalman 
Filters (UKFs). For a complete description of the two 
trackers, see [3],[10]. The IMM-EKF and IMM-UKF are 
tested against BT trajectories generated with a BT model 
with a proper level of process noise (see section 5).  
 
The paper is organized as follows: next section 3 contains 
a brief description of the BT kinematics and radar 
measures. Section 4 recalls the motivation for the choice 
of the IMM-based tracking architectures and the technique 
used for fusing the plots received  from two radars.  
Section 5 presents the achieved results; conclusions and 
references are contained in sections 6 and 7 respectively.  
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3. Models of BT dynamic and radar 
measures 

 
Three main forces affect the BT motion: thrust, drag and 
gravity.  For the sake of this paper, it is assumed that the 
BT is in the cruise phase during the BT state vector 
estimation while drag and gravity are acting on the target 
body during the re-entry phase.   
 
The drag acceleration expression is [1-4]. 
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where β  is the ballistic coefficient (N/m2), )(zρ  is the 
air density function of the height: 
 

6491461.21907 .z/e−⋅=ρ(z)         (2) 
 

zyx &&& ,, are the velocity components of the BT along the 
three axes of a Cartesian reference system.  The gravity 
acceleration is considered constant, g0=9.8m/s2 and 
directed along the z-axis.  Process noise has to be added in 
the modeling of BT dynamic to  account for all forces that 
have not been considered in the model and possible 
deviations of the model from the reality. 
 
Process noise  is modeled as a zero-mean white Gaussian 
process with non-singular covariance matrix:  
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where q is a parameter related to process noise intensity 
and T is the BT trajectory sampling time.  
 
The measurements, collected by the radar for target 
tracking, are the range r, elevation ε and azimuth ϑ .  
 
The error standard deviations of these measurements are 
denoted as  (for range),  (for elevation) and rσ εσ ϑσ  

(for azimuth). Radar measurements are transformed to the 
Cartesian coordinates so that the measurement equation is 
linear: 

 

kkk vHsz +=      (5) 

where is the noise on the measured Cartesian co-

ordinates; it is zero-mean white Gaussian with covariance 
matrix [1] while the definition of H is  
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The definition of sk is reported in next section  5. 
 
Mathematical details on the EKF and UKF filter 
derivation for the BT tracking application can be found in 
[3] and [10]. 
 
For all practical purposes this is a good approximation, 
which greatly simplifies the tracking algorithm; otherwise 
one would also have to take into consideration the non-
linearity of the measurement equation.  

4. IMM-UKF and IMM-EKF 
architecture 

 
The theory and the application of the IMM have been the 
subject of many publications, see for instance 4. The 
rationale for choosing the IMM approach for the tracking 
of a potential BT is essentially due to the fact that the BT 
characteristics are not generally “a priori” known, thus it 
is required to “on-line” estimate the BT parameters to 
maximize the tracker accuracy. The IMM offers the 
possibility of mixing the output of different filters 
designed for different BTs, each one having the possibility 
of adapting its parameters to the target to be tracked, thus 
permitting the correct tracking of BTs pertaining to 
different “classes”. In addition to this, the probability of 
selecting one of the filters existing in the bank of the IMM 
gives a clear indication of the confidence of the tracker on 
the type of target under analysis; this is an intrinsic 
capability of non co-operative target classification, 
available “for free” by the IMM. 
 
The two tracking architectures compared in this paper 
(IMM-EKF and IMM-UKF) have been already described 
in [3] and [9] and their performance analyzed in absence 
of process noise in the trajectories generation showing 
practically the same performance. In this paper,  we 
extend the results of papers [3 - 9 ]  by including the BT 
model uncertainty and we obtain partially different 
conclusions. In fact, the presence of process noise in the 
trajectory generation enhances the essential difference 
between the two approaches. The prediction of the EKF 
covariance matrix is performed by  first order Taylor 
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expansion of the BT motion equations; instead, for the 
UFK, the same propagation is achieved via propagation of 
properly selected particles [7] thus resulting in an 
improvement of the filter accuracies as already stated in 
[1].  
 
The implemented IMM architectures are the following : 
 
IMM-EKF.  The bank is constituted by  four filters ; the 
first two are Kalman Filter (KF) matched to maneuvering 
and not maneuvering ABT. The remaining filters are two 
EKFs matched to BT cruise and re-entry phases with 
different initial beta values. 
 
IMM-UKF. It has the same IMM-EKF number of filters. 
The KFs are not changed while the BT filters are based on 
the UKF theory. 
 
4.1 Plots fusion approach. 
 
The two sequences of plots provided by the two  non-
colocated radars are interleaved according to their time of 
arrival. Consequently, just one sequence of plots is 
formed. The time interval between the plots might not be 
constant; the measurement accuracy is related to the radar 
which has provided the plot, to the distance of the target 
from the radar and to the scan - off angle with which the 
radar beam has looked at the target. The co-ordinate 
reference system is located on the first radar; thus, also the 
plots of the second radar are referenced to this system co-
ordinate. Next figure 4.1 gives a pictorial view of the plots 
fusion concept. 
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Figure 4.1  Plots fusion approach. 

5. Achieved Results 
 
The study case selected for the IMM-EKF & IMM-UKF 
comparison  concerns a simulated BT with the following 
characteristics: single stage, linear consumption of 
propellant vs. flight time, drag coefficient=50000 N/m2, 
radar detection range=150 km, target radar cross section=1 

m2. Two radars are considered in the simulated scenario at 
a distance of 9 km; the two radars are named “Radar 
Master” (the one performing the plots fusion) and “Radar 
Slave” in the following. The parameters of these two 
notional radars are: range accuracy=25m, azimuth 
accuracy=0.1°, elevation accuracy =0.1°, data rate=6 
seconds, either Pd=1 or Pd=0.9 constant with target range. 
The BT- fused radars geometry is depicted in figure 5.1. 
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Figure 5.1 BT-two radars geometry. 

 
The IMM architectures are constituted by a number of 
EKFs or UKFs matched to the BT dynamics (see section 
3) each filter having the capability of on-line estimation of 
the BT characteristics (for instance the drag coefficient; 
see [1] for more details).  
 
At the k-th time instant the state vector  contains the 
position, the speed components of target with respect to 
the Cartesian axes, and the ballistic coefficient: 

ks

 
[ ]TkkNkkkkkkk tzzyyxx β&&&=s  

 
Given the state  estimated at the k-th time instant it is 
possible to compute the corresponding estimation 
covariance matrix  as reported in [3],[10]. 

kk /ŝ

kk /P
 
The tracker performance are expressed via the volume of 
uncertainty (one sigma) ellipsoid of the target track (see 
[11])computed in two ways: (i) use the estimate of the 
tracking architecture covariance matrix (referred as Pk/k), 
(ii) use the covariance matrix of the estimated state vector 
Pk/k_calc which is defined as the tracking accuracy 
covariance matrix averaged over the Monte Carlo trials. 
 
Note that, in absence of uncertainty in the BT model,  the 
Pkk and the Pkk_calc are coincident for both the IMM-UKF 
and IMM-EKF.  In presence of the model uncertainty, the 
Pkk and the Pkk_calc are still coincident for the IMM-UKF, 
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while the IMM-EKF “under estimates”  the Pkk and the 
two matrices are different.. The real filter capabilities are 
derived from the Pkk_calc  and the achieved results are 
reported in   the following figures showing the superior 
performance of the IMM-UKF approach. 

0.5
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2

2.5 x 106
 

derived from P K | K
derived from PK | k calc

Figure 5.4. Comparison of IMM-UKF, IMM-EKF and 
unfiltered uncertainty volume computed from the Pkk_calc 

in presence of uncertainty in the BT model. 
 
The performance achieved in the estimation of the BT 
ballistic coefficient are reported in figure 5.5 again 
demonstrating the advantages guaranteed by the IMM-
UKF. The upper curve of figure 5.5 presents the mean 
value of the beta estimation error, while lower curve 
concerns the standard deviation of the same error. 
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Figure 5.2. Comparison of IMM-EKF uncertainty volume 

computed from the Pkk and the Pkk_calc in presence of 
uncertainty in the BT model. 
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Figure 5.3. Comparison of IMM-UKF uncertainty volume 
computed from the Pkk and the Pkk_calc in presence of 

uncertainty in the BT model. 
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Figure 5.5. Comparison of IMM-UKF, IMM-EKF Beta 
estimation 

 
The  filter robustness has been also given reporting the 
well or badly conditions for the PK+1|K matrices along all 
Monte Carlo trials. The condition number (CN) gives an 
indication of the accuracy of the results from matrix 
inversion and a well conditioned prediction covariance 
matrix gives good value for the Kalman gain. The CN is 
computed via the MATLAB® function  RCOND(X) 
which is an estimate for the reciprocal of the CN of matrix  
X in the 1-norm obtained by the LAPACK condition 
estimator. If X is well conditioned, RCOND(X) is near 
1.0. If X is badly conditioned, RCOND(X) is near 0.  Next 
figure 5.6 presents the results achieved for the IMM-EKF 
(upper curves) and for the IMM-UKF (lower curves). 
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Figure 5.6. Comparison of Pk+1|k Condition Coefficient 

 

6. Conclusions 
 
As reported in[10], the IMM-UKF approach requires a 
computational load approximately three times higher than 
the IMM-EKF. It has been demonstrated that in presence 
of uncertainty in the target model, a robust and improved  
accuracies are obtained by the IMM-UKF with respect to 
the IMM-EKF. The role of the model uncertainty has been 
detailed in this paper and an application to the tracking of 
BT has been described. 
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