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ABSTRACT 

We present a novel framework to describe 3D shapes, based 

on modeling the probability density of their shape functions. 

These functions are conceived to reflect the 3D geometrical 

properties of the shape surfaces. The densities are modeled 

as mixtures of Gaussians, each component being the distri-

bution induced by a mesh triangle. A fast algorithm is de-

veloped exploiting both the special geometry of 3D triangles 

with numerical approximations as well as a transform tech-

nique. We test and compare the proposed descriptors to 

other histogram-based methods on two different 3D model 

databases. It is shown that 3D shape descriptors outperform 

all of its competitors except one in retrieval applications. 

Furthermore our methodology provides a fertile ground to 

introduce and test new descriptors. 

1. INTRODUCTION 

The use of 3D models is becoming increasingly more com-

monplace in many fields of computer graphics, such as com-

puter-aided design, medical imaging, molecular analysis or 

presentation of cultural heritage in a virtual environment. 

The organization and access to 3D shape databases demands 

effective tools for indexing, retrieval, categorization, classi-

fication and representation of shapes. These operations ne-

cessitate shape matching, that is, determining the distance 

between two shapes or the extent to which two shapes re-

semble each other [8]. Representations used for shape 

matching are often referred to as 3D shape descriptors en-

coding geometrical and topological properties of an object 

in a discriminative and compact manner. Reference [8] re-

flects the diversity of 3D shape descriptors proposed in the 

literature.  

In this work, we focus exclusively on histogram-based 3D 

shape descriptors [2-5, 11]. Our interest in histogram-based 

3D shape descriptors stems from the fact that they are global 

descriptors by nature and they are instrumental in classify-

ing shapes into broad categories [8]. Previous approaches in 

the literature have computed a generic histogram-based de-

scriptor by first computing geometrical quantities, called 

shape functions, using the surface points of a 3D triangular 

mesh, and then by accumulating the scores into histogram 

bins. In contrast to their empirical approach, we follow a 

more analytical method. Our framework, in fact, relies on 

imposing a density model for each triangle in the mesh. That 

is, we estimate the density of the shape function for each 

triangle individually and calculate the overall density as a 

mixture of mesh face induced densities. 

In histogram-based 3D shape descriptors, the surface points 

are either chosen as the centers of gravity of the triangles or 

are obtained by randomly and profusely sampling points 

from the surface. The former approach suffers from the fact 

the triangles making up the mesh may have arbitrary forms 

and sizes; hence the triangle centers may not be sufficiently 

representative. The random sampling of the surface may 

compensate for the non-uniformity of the form and size of 

the triangles, provided that a sufficiently large number of 

surface points is taken. For multivariate shape functions, 

however, the accurate estimation of joint histograms can 

suffer from the curse of dimensionality [1]. Our modeling 

framework takes care of the non-uniform distribution of 

triangles without resorting to random sampling. We model 

the density of shape functions in terms of simpler distribu-

tions. We have chosen the Gaussian density, not only due to 

its maximum entropy interpretation in terms of moments, 

but also because we can make use of the fast algorithm to 

compute mixture density. Since the Gaussian density is 

completely determined by its first two moments, we need 

only to estimate the mean and the variance of the shape 

function for each triangle. For certain cases, these moments 

can be approximated very accurately by making use of the 

geometry of the 3D triangles. Thus the shape descriptors are 

obtained as large mixtures of Gaussians. Despite the reduc-

tion of the shape function density to the estimation of its 

Gaussian moments, the computation can still be heavy. This 

computational burden is alleviated by the use of an efficient 

algorithm: the Fast Gauss Transform (FGT) [10] to calcu-

late expressions involving large sums of Gaussians.  

The main contribution of our work is an analytical frame-

work for 3D descriptors extracted from shape functions that 

characterize object geometry. Our approach has the advan-

tage of being computationally efficient and more accurate 

compared to other histogram methods. As a byproduct, we 

also introduce some novel shape functions.  

The next section describes our computational framework. In 

Section 3, we illustrate the performance of our method in 

comparison to other equivalent or similar histogram-based 

descriptors [2-5, 11] in a retrieval application on two differ-

ent 3D model databases. In Section 4, we draw conclusions 

and discuss further directions in histogram-based 3D shape 

descriptors.  

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



2. METHOD 

We assume that each 3D shape is represented with a triangu-

lar mesh and that its center of mass coincides with the origin 

of the coordinate system. Hence all descriptors are transla-

tion invariant.  In what follows, capital italic letter P stands 

for a point in 3D, a small case boldface letter ( ), ,
x y z
p p p=p  for 

its vector representation, ( )
, , ,
, ,

P P x P y P z
n n n=n  for the unit sur-

face normal vector at P when P belongs to a surface 
3

M ⊂ �  and ⋅  for the usual dot product. 
 

2.1 Shape functions 

A multidimensional shape function S of a surface 
3⊂ �M  

is a mapping from the points of this surface into a d-

dimensional space, generally 
d
� . Each dimension of this 

space corresponds to a specific geometric measure, which 

can be calculated at each point of the surface. For example, 

the distance of a surface point to the barycenter of the 3D 

shape is a one-dimensional (d = 1) shape function. We con-

sider three classes of shape functions:  

� The radial shape function rS  is defined as 

( )rS = ⋅p p p , P∈M . This rotation-invariant shape 

function corresponds to the distance of a surface point to 

the center of mass of the shape, and is equivalent to Pac-

quet et al.’s “cord” length [5] and Osada et al.’s D1-

shape function [4]. The distribution of the radial shape 

function indicates the extent to which the surface of the 

shape deviates from a perfect sphere, the distribution of a 

sphere being a delta-Dirac distribution. 

� The surface angles, which can be written in generic form 

as 
,
( )

a
S = ⋅ ⋅

v
p p v p p  where v is some unit norm vec-

tor. One instance of this function is obtained by letting v 

be the surface normal vector Pn  at P. In this case, the 

shape function is scale and rotation invariant. If the local 

surface approximates a spherical cap then the vectors p 

and Pn  align, and ,aS v  approaches unity.  An alternative 

,aS v -shape function reflecting also some global property 

of the surface is given by associating v with one or more 

of the eigen-directions { }1 2 3, ,q q q  of the mesh, based 

on the eigen-decompositon of the covariance matrix [8]. 

Pacquet et al. consider the largest two of these directions 

{ }1 2,q q  [5]. 

� The tangent plane shape function tS  of a surface point is 

a parameterization of the local tangent plane at point P in 

terms of spherical coordinates. Specifically, tS  is a 

three-dimensional shape function ( ), ,tS s θ ϕ=  where 

Ps = ⋅p n , ( )1

, ,tan P y P xn nθ −= , ( )1

,cos P znϕ −=  with 

[0, 2 ],  [0, ]θ π ϕ π∈ ∈ . The density of this shape func-

tion is akin to the 3D Hough transform descriptor [11].  

Except for tS , all of the shape functions presented so far are 

one-dimensional. However, it is possible to combine these 

single-valued functions to obtain multi-valued functions that 

capture the shape information in a better way. 

 

2.2 Probability density evaluation 
We first calculate analytically the shape function density of 

an arbitrary surface triangle kT , and then obtain the density 

for the whole mesh M  as a mixture of individual densities, 

since the mesh itself is the union of K triangles. The prob-

ability density function ( )f S  of a shape function S (where S 

is a random variable or a random vector) is defined over 

M . Consider a general d-dimensional shape function, i.e., 

( )1( ) ( ),..., ( )dS S S=p p p . Since the mesh triangles are dis-

joint except for neighboring edges, we may write  

 ( ) ( )
1

,  .

K

k

k

f S f S P T

=

= ∈∑  (1) 

The summand in (1) can be expressed as the joint density of 

S and a binary indicator variable, which is one if kP T∈ , 

and zero otherwise. Conditional to this variable, the joint 

density can be written as ( ) ( ) ( ), Prk k kf S P T f S P T P T∈ = ∈ ∈ , 

where ( )Pr kP T∈  is the probability of a surface point P to 

belong to the triangle kT . This is simply the ratio kw  of the 

area of kT  to the total surface area. Eq. (1) becomes 

 ( )
1 1

( ) ( )

K K

k k k k

k k

f S w f S P T w f S

= =

= ∈ =∑ ∑ , (2)  

where ( )kf S  is the density of S when P is restricted to lie 

inside the triangle kT . Thus, the remaining task reduces to 

evaluating the density of a shape function for individual 

triangles in 3D space. To evaluate the conditional density 

( )kf S , we assume Gaussian density models for all shape 

functions. For a d-dimensional shape function S over the 

triangle kT , we then rewrite ( )kf S  as 

( ) ( ) ( )1/ 2/ 2 11
( ) 2 exp

2

d t

k k k k kf S S Sπ µ µ
−− − = Σ − − Σ − 

 
, (3)  

where kµ  is the d-dimensional mean vector and kΣ  is the 

covariance matrix. Thus, in the general case, we only need 

kµ  and kΣ  to fully specify the density.  

 

Case 1: One-dimensional shape function 

Let T be an arbitrary triangle in 3D space with vertices A, B, 

and C represented by , ,  and 
A B C

p p p  respectively. By not-

ing 
1 2

 and 
B A C A

= − = −e p p e p p , we have the following 

parametric representation of an arbitrary point P inside the 

triangle T as 1 2A x y= + +p p e e , where the two parameters x 

and y satisfy the constraints: , 0 and 1x y x y≥ + ≤ . We also 

assume that points {P} are uniformly distributed inside the 

triangle T. Thus, the estimation of ( )kf S  reduces to the 
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estimation of the first and second order moments of 

( , )S x y . The n
th
 order moment of ( , )S x y  can be evaluated 

as 

 { }
, 0

1

( , ) ( , )  ,n n

x y
x y

E S S x y f x y dxdy
≥

+ ≤

= ∫∫  (4) 

where ( , )f x y  is the uniform density of the pair ( , )x y  

within the domain , 0 and 1x y x y≥ + ≤ . For the second 

order moment of the radial shape function rS , we have an 

analytical expression: { } ( ) ( ) ( )( )2
1 6 2 3

r
E S a b c d e h= + + + + + , 

where 
1 1

a = ⋅e e , 
2 2

b= ⋅e e , 
1 2

c= ⋅e e , 
1A

d = ⋅p e , 
2A

e = ⋅p e , 

and A Ah = ⋅p p . However, for other functions and/or mo-

ment orders we have to resort to numerical integration. A 

double application of Simpson’s 1/3 rule [6] at the midpoints 

of the integration intervals in (4) gives 

{ } {

}

1
(0,0) 4 (0,1 2) (0,1)

18

                            2 (1 2,0) 8 (1 2,1 4) 2 (1 2,1 2)  .

n n n n

n n n

E S S S S

S S S

≈ + + +

+ +

(5) 

Notice that this estimate boils down to a weighted sum 

( , )nS x y  evaluated at 6 points on the borders of the trian-

gles. To illustrate the viability of this approximation, we 

have generated 1000 triangles in 3D space with arbitrary 

sizes and shapes by uniform random vectors 1 2, , and Ap e e  

and analyzed the error of our approximation scheme for the 

first-order moment of the rS -shape function. The first esti-

mate 
MCˆ
r

S  was obtained by a Monte Carlo (MC) approach, 

with one million samples per triangle. 
MCˆ
r

S  being a very 

accurate estimate of the true mean of the rS -shape function, 

we considered it as the ground truth. The second and third 

estimates 
Centerˆ
r

S  and 
Simpsonˆ
r

S  were calculated respectively, 

by sampling each triangle at its center of gravity and by us-

ing Equation (5). The ratio (averaged over 1000 triangles) 

between the absolute error 
Center MCˆ ˆ
r r

S S−  of the centroidal 

approximation and that of our estimate 
Simpson MCˆ ˆ
r r

S S−  was 

82, indicating the superior accuracy of the approximation 

using (5) over the centroidal approximation. Therefore, we 

use the numerical scheme given in (5) to evaluate the mean 

{ }E Sµ =  and the variance { } { }( )22 2E S E Sσ = −  of any 

given shape function S for any given triangle T.  

Case 2: Multidimensional shape function 

In contrast to the one-dimensional case, the computation of 

large sums of Gaussians might be prohibitive in higher di-

mensions [10]. For multidimensional shape functions, in 

order to keep the complexity of the method at a tractable 

level, we have used the FGT algorithm, which provides sig-

nificant speedups compared to direct evaluation [10]. How-

ever, the FGT implementation that we have does not allow 

us to specify a distinct full covariance matrix for each trian-

gle. In order to make use of FGT, we set a fixed covariance 

matrix for all triangles, 1 .... KΣ = Σ = = Σ , where Σ  is a 

diagonal matrix, i.e., ( )2 2

1
, ...,

d
diag σ σΣ = . The discarded 

off-diagonal terms have been experimentally observed to be 

insignificant. Notice that the d shape function components 

will still be assigned different variances, but these variances 

are assumed to be identical in all the triangles. After these 

simplifications, in the multidimensional case, ( )f S  be-

comes 

 ( ) ( )
2

1/ 2 ,
1

1 1

1
( ) 2 ... exp

2

K d
d i k i

d k
i

k i

S
f S w

µ
π σ σ

σ
−−

= =

 −  = −       
∑ ∑ . (6)  (8)

This suggests that, for multidimensional shape functions, the 

choice of the global covariance, much like in a Parzen-

window approach [1], can be done in application and/or 

database-dependent manner. In other words, we have opti-

mized these parameters by a search technique for the best 

discriminative performance for specific goals such as cate-

gorization or content-based retrieval. This global approach 

becomes, in fact, a necessity in the case of the multidimen-

sional shape function tS . Recall that this shape function 

involves the spherical parameterization of the tangent plane 

of a surface point. For a triangular mesh, the tangent plane 

of a surface point P is identical with the plane carrying the 

triangle to which P belongs. Therefore for all surface sam-

ples in that triangle tS  would be identical, leading to zero 

variance for all components. However, we can still use 

Gaussian modeling but with global variance as explained in 

the previous paragraph. 

3. EXPERIMENTS 

In this section, we illustrate the performance of the frame-

work described above in a 3D model retrieval application. In 

a typical retrieval system, descriptors of all objects in the 

database are stored. When a query model is presented to the 

system, its descriptor is calculated and then compared to all 

of the stored descriptors using a distance function. Finally, 

database models are sorted in terms of increasing distance 

values. The models on the top of the resulting list are ex-

pected to resemble the queried model more than those on the 

bottom of the list. We have experimented on two 3D model 

databases: the Princeton Shape Benchmark (PSB) [7] and 

the Sculpteur Database (SCUdb) [9]. Both databases consist 

of objects described as triangular meshes, though they differ 

substantially in terms of content and mesh quality. PSB is a 

publicly available database containing a total of 1814 mod-

els, categorized into general classes such as animals, hu-

mans, plants, tools, vehicles, buildings, etc. An important 

feature of the database is the availability of two equally 

sized sets: Training (90 classes) and Test (92 classes). On the 

other hand, SCUdb is a private database containing over 800 

models corresponding to mostly archeological objects resid-

ing in museums [9]. Presently, 513 of the models are classi-
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fied into 53 categories including utensils of ancient times, 

pavements, and various artistic objects. The meshes in 

SCUdb are highly detailed and reliable in terms of connec-

tivity and orientation of triangles.  

Next, we present the retrieval results in terms of precision-

recall curves, nearest neighbor (NN) and discounted cumu-

lative gain (DCG) values [7]. Precision and recall are gener-

ally presented together as a precision-recall curve, which 

should be ideally a horizontal line at unit precision. NN 

stands for the percentage of the closest matches that belong 

to the same class as the query. DCG is a statistic that 

weights correct results near the front of the list more than 

correct results later in the ranked list. Normalized dis-

counted cumulative gain (NDCG) is based on averaging 

DCG values of a set of algorithms on a database. A negative 

NDCG value means that the performance of the algorithm is 

below the average; similarly a positive value indicates an 

above average performance [7].  

We have implemented and tested the following histogram-

based descriptors proposed in the literature [5, 4, 2, 3, 11, 

respectively] with their specified descriptor size N:  

� [Cord, A1, A2]: Cord and angle histograms, N = 64×3, 

� [D1,D2]: D1 and D2 distributions concatenated, N = 64×2, 

� EGI: Extended Gaussian image, N = 8
2
 = 64, 

� CEGI: Complex extended Gaussian image, N = 8
2
 = 64, 

� 3DHT: 3D Hough Transform Descriptor, N = 8
3
 = 512. 

The descriptors developed in the present work and com-

pared to those given above are:  

� [S1,S2]: ,,
Pr aS S n -densities concatenated, N = 64×2, 

� [S1,S3,S4]:
1 2, ,
,,

r a a
S S S

q q -densities concatenated, N=64×3, 

� [S1,S2,S3,S4]: 
r

S ,
,

P
a

S
n

,
1

,a
S

q
,

2
,a

S
q
-densities concate-

nated, N = 64×4, 

� (S1,S2): 
,

( , )
P

r a
S S

n
-joint density, N = 8

2
 = 64,  

� (S1,S3,S4): 
1 2, ,

( ,, )
r a a

S S S
q q

-joint density, N = 8
3 
= 512, 

� (S1,S2,S3,S4): 
1 2

, , ,
( , ,, )

P
r a a a

S S S S
n q q

-joint density,  

N = 8
4 
= 4096,  

� St: tS -density, N = 8
3 
= 512.  

 

Note that concatenated densities refers to the juxtaposition of 

two or more univariate densities; on the other hand, joint-

density refers to a genuine multivariate density. The binning 

procedure is as follows: we quantize the range of each com-

ponent into 8 uniform bins in both the univariate or multi-

variate cases. This gives a descriptor of size 8d  for a d-

dimensional shape function. For descriptors that are not scale 

invariant, we rescale the models so that the area weighted 

average distance of surface points to the center of mass is 

unity. We have observed that distance components of normal-

ized shapes exceeds 2 with a very low probability, hence we 

have fixed their upper limit to 2. Finally, for descriptors that 

are not rotation-invariant, we realigned the models with their 

principal directions. The retrieval statistics are tabulated in  

Table 1 Retrieval Statistics for Histogram-based Descriptors for 
PSB Training Set (Positive NDCGs are shown in gray) 
Descriptor NN DCG NDCG 

[Cord, A1, A2] 0.280 0.398 -0.175 

[D1, D2] 0.356 0.446 -0.075 

[S1, S2] 0.363 0.462 -0.043 

[S1, S3, S4] 0.395 0.471 -0.023 

[S1, S2, S3, S4] 0.451 0.506 0.049 

(S1, S2) 0.448 0.496 0.029 

(S1, S3, S4) 0.427 0.470 -0.026 

(S1, S2, S3, S4) 0.508 0.508 0.053 

EGI 0.366 0.445 -0.078 

CEGI 0.436 0.477 -0.011 

3DHT 0.592 0.563 0.168 

St 0.556 0.545 0.130 

Table 2 Retrieval Statistics for Histogram-based Descriptors for 

PSB Test Set (Positive NDCGs are shown in gray) 
Descriptor NN DCG NDCG 

[Cord, A1, A2] 0.249 0.394 -0.156 

[D1, D2] 0.323 0.434 -0.071 

[S1, S2] 0.324 0.440 -0.057 

[S1, S3, S4] 0.380 0.456 -0.022 

[S1, S2, S3, S4] 0.440 0.492 0.055 

(S1, S2) 0.412 0.474 0.016 

(S1, S3, S4) 0.397 0.447 -0.044 

(S1, S2, S3, S4) 0.470 0.484 0.037 

EGI 0.315 0.436 -0.066 

CEGI 0.375 0.463 -0.008 

3DHT 0.578 0.556 0.191 

St 0.508 0.526 0.126 

Table 3 Retrieval Statistics for Histogram-based Descriptors for 

SCUdb (Positive NDCGs are shown in gray) 
Descriptor NN DCG NDCG 

[Cord, A1, A2] 0.604 0.623 -0.087 

[D1, D2] 0.665 0.660 -0.032 

[S1, S2] 0.692 0.686 0.006 

[S1, S3, S4] 0.643 0.642 -0.059 

[S1, S2, S3, S4] 0.715 0.693 0.017 

(S1, S2) 0.727 0.729 0.069 

(S1, S3, S4) 0.628 0.619 -0.092 

(S1, S2, S3, S4) 0.715 0.672 -0.015 

EGI 0.630 0.644 -0.056 

CEGI 0.694 0.703 0.031 

3DHT 0.778 0.772 0.132 

St 0.749 0.740 0.086 

 

Tables 1-3. Precision-recall curves are displayed in Figures 

1-3. On these retrieval results, we can provide the following 

comments: 

� In all cases, our combined descriptors proved to be supe-

rior to [Cord, A1, A2] and [D1, D2]. The only exception is 

that for SCUdb, [D1, D2] is better than our [S1, S3, S4] 

descriptor. While the joint density descriptor (S1, S2) has 

significantly improved its concatenated version [S1, S2], 

the other joint density descriptors yield performances simi-

lar to their concatenated versions. The St descriptor has the 

best performance among all our proposed joint descriptors, 

and it is second only to 3DHT. More than half of our de-

scriptors have positive NDCG, beating EGI and CEGI. 

� The two best descriptors, 3DHT and St, are based on tan-

gent plane, indicating that tangent plane can capture the 

shape information better than other geometric measures.  
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Figure 1 Precision-recall curves for histogram-based 3D shape de-

scriptors on PSB Training Set 

 
Figure 2 Precision-recall curves for histogram-based 3D shape de-

scriptors on PSB Test Set 

 
Figure 3 Precision-recall curves for histogram-based 3D shape de-

scriptors on SCUdb 

� NN performances of our descriptors prove to be better than 

other histogram-based descriptors except 3DHT, indicating 

their potential in recognition applications. 

4. DISCUSSION AND CONCLUSION 

We have proposed a framework to compute histogram-based 

3D shape descriptors and evaluated its impact in a retrieval 

scenario. We have shown that shape descriptors, derived as 

Gaussian mixtures, prove more advantageous compared to 

the count-and-accumulate based histogram descriptors. First, 

it is computationally feasible as compared to Monte Carlo 

sampling; second, its performance is superior as to when 

histograms were estimated with a single sample per triangle. 

Third, most importantly, our framework is robust against 

mesh resolution and it can cope with mesh triangles of arbi-

trary shapes and sizes. In fact, our framework can be viewed 

as an application of kernel density estimation [1].  

The use of probability density models other than Gaussians 

is conceivable. The choice of Gaussian model is motivated 

by its maximum entropy interpretation whenever only the 

first two moments (mean and variance estimates) are avail-

able. Especially for multidimensional shape functions, 

Gaussian model provides a more gracious control over finite 

sample-size problems, while the control in multivariate his-

tograms is limited to bin width adjustments [1]. The vari-

ance parameter of Gaussians can be optimized in a database-

dependent manner.  

In summary, a general framework for shape distribution-

based approaches has been developed, that covers under its 

umbrella existing and novel descriptors. Our method enables 

the use of arbitrary (possibly multidimensional) shape func-

tions for retrieval, recognition, and classification of 3D ob-

jects. An immediate problem is to evaluate their perform-

ance in a recognition application, a clue being the favorable 

NN scores of our descriptors. Other future research will 

concentrate on investigating probability models that pre-

serve neighborhood information, exploitation of multi-scale 

information, and information-theoretic limits of our ap-

proach.  
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