
GRAIN NOISE REDUCTION USING THE HUMAN VISUAL SYSTEM
CHARACTERISTICS
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ABSTRACT
This paper deals with grain noise artifact reduction on

archived films. Concretely, our research has been focused
on finding a technique that let us not only reduce the grain
noise but also preserve the original image quality as accurate
as possible. The paper investigates the influence of differ-
ent types of noise reduction filters in order to introduce the
problem. Moreover, for each technique some conclusions
are exposed. Finally, a linear spatial-temporal technique is
proposed and described. This technique adapts a spatial-
temporal response according to the human visual system be-
havior. Taking advantage of it, we get great results reducing
the grain noise of several image sequences and preserving
their original quality as much as possible. Moreover, the fil-
ter does not need motion estimation and it is implemented
using separable filters, resulting a computational efficient im-
plementation.

1. GENERAL INFORMATION

50% of the films recorded before 1950 have been lost for-
ever. That is why image digitization and restoration turn
out to be such important activities nowadays. All of these
films suffer from at least one of the following degradations:
flicker and local brightness variations, full damaged frames,
scratches, dust and dirt spots, vibration and grain noise. In
this paper, we will focus on the grain noise problem, which
is inherent to the photographic material where the film was
originally recorded. To get rid of this noise, many filtering
techniques have been proposed based on the computation of
a mean intensity value on a local neighbourhood at each im-
age pixel. This neighbourhood, in the particular case of video
sequences, includes both spatial and temporal pixels close to
the original one. However, these techniques tend to displace
structures and blur their boundaries. These collateral effects
should be minimized as much as possible. For these reasons,
our main research has been centered not only on finding a
technique that let us reduce the grain noise but also preserve
the original subjective image quality, reducing as much as
possible the blurring effect.

A review of the existing techniques is presented in sec-
tion 2. In section 3 the proposed filter is presented and de-
scribed. Some important results are shown in section 4. We
conclude this paper in section 5.

2. STATE OF THE ART

The noise sequence model to be used can be defined as:
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g(x,y, t) = f (x,y, t)+n(x,y, t) (1)

where g(x,y,t) and f(x,y,t) represent the pixel intensity levels
of the original and processed images, respectively, for the t-th
frame in the spatial position (x,y), and n(x,y,t) represents the
stationary noise component. The main aim will be to recover
f(x,y,t) from g(x,y,t) as accurate as possible.

For that, temporal or spatial-temporal filters are com-
monly used. Spatial-temporal techniques reduce more noise
than temporal filters, taking advantage of spatial and tem-
poral correlation, but suffer from a high computational cost.
Both of them, could cause blurred border, in temporal direc-
tion, in the presence of motion. Several alternatives (linear
and non-linear) to solve this problem have been proposed
such us to use filters with adaptive coefficients or motion
compensation filters.

A review of these techniques is discussed in next points.

2.1 Average Filters

Several spatial-temporal filters proposed in the literature
have been implemented generalizing 2D filter techniques,
adding the temporal dimension as follows:

f̂ (x,y, t) = ∑
p,q,t

w(p,q, t)g(x− p,y−q, t− l) (2)

The most accurate implementation of this filter is to use
coefficients with the same weight,w(x,y, t) = 1

MNL, where
M, N and L are the size for each direction. However, this
technique suffers from the blurring problem in those image
areas with high motion or spatial borders. There are several
techniques proposed in the literature with the aim of solv-
ing this problem, which can be classified as: finite response
filters (FIR) and infinite response filters (IIR).

2.1.1 FIR Filters

The coefficients w(p,q,t) can be stationary or adaptive and are
chosen to get a concrete objective. The most common option
is to reduce the quadratic mean errorminw(p,q,t)E[( f (x,y, t)−
f̂ (x,y, t))2]. In this case, the equation 2 becomes a Wiener
Filter. Ökan et al. [1] present an efficient algorithm to imple-
ment it, Chan et al. [2] propose a different solution modelling
the non-stationarity of the sequence. Compensated motion
versions of the above comment filters can be found too, such
as the one proposed by Boyce [3]. In order to solve the blur-
ring problem, causes for reasons other than motion, for ex-
ample spatial filtering, the coefficients are adapted according
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to spatial correlation. All these techniques provide best re-
sults in comparison with the temporal filter without motion
compensation or the motion compensated filter without non-
adaptive coefficients, but, anyway, the blurring effect contin-
ues being so appreciable.

2.1.2 IIR Filters

Both temporal and spatial-temporal IIR filters, have the trade
off between the quantity of noise reduction and the memory
needed for their implementation. The recursive IIR filters,
solve this problem as follows:

f̂ (x,y, t) = [1−α(x,y, t)] f̂b(x,y, t)+α(x,y, t)g(x,y, t) (3)

where f̂b(i, j, t) is the prediction of the original sequence be-
fore being actualized by the filter, andα(x,y, t) is the filter
gain. Depending on the way we use to predictf̂b(x,y, t) or
actualize the gain, we can found a great deals of different
techniques, e.g the proposed by Kleihorst et al. [4].

2.2 Ordered-Statistic Filters

The intensity levels of pixels are ordered inside to the anal-
ysis window, before operating with them. The most com-
monly used are the median filters. The main problem is that
narrow objects with fast motion are eliminated. Multilevel or
multistage filters are proposed in order to reduce this prob-
lem, e.g we can cite Alp and Neuvo [5].

2.3 Bayesian Filters

The technique consists of maximizing a likelihood function,
f̂ (x,y, t) ← maxf ′(x,y,t)p{g(x,y, t)| f ′(x,y, t)}. The compen-
sated motion filter has an important problem: the final result
depends on the precision of the motion estimator. If the level
of noise is high, the motion estimator could not be very pre-
cise. In the literature we can found several Bayesian filters
which could combine the noise reduction and motion estima-
tion in an only step, eg. we can cite Brailean and Katsaggelos
[6] who propose a pel-recursive motion estimator.

2.4 Multi-resolution Filters

These techniques become the most popular applied to image
sequences, in several application such us video compression.
The principal idea is to decompose the 2D signal in different
bands with different resolution in order to sparse the noise
in every band, whereas the signal energy remains centered in
a few bands. Different techniques have been proposed, the
most popular is the one called Coring, which uses de advan-
tages of the DWT, e.g Roosmalen et al. [7].

3. THE SPATIAL-TEMPORAL LINEAR FILTER

Our main research has been centered not only on finding a
filter which let us reduce the grain noise but also preserve the
original subjective image quality, reducing as much as pos-
sible the blurring effect. The implemented filter consists of
a linear FIR filter which uses de human visual system prop-
erties in order to introduce degradations, unavoidable in the
filtering process, only when the human system is not able
to appreciate them. Moreover, it is very important to stress
the importance of its separability in order to achieve a high
efficient implementation.

3.1 Basic Idea

The spatial-temporal filter proposed in this paper, is based on
the spatial-temporal response of the Visual Human System
[8] (SVH), see figure 1.
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Figure 1: Spatial-temporal response of visual human system
(- - -) and implemented filter response (—–).

By seeing this response (- - -), we can emphasize the next
points:
• The human eye is not able to detect simultaneously high

spatial and temporal frequencies. We are not able to see
in detail objects whose motion is very fast. On the other
hand, objects with slower motion can be better appreci-
ated.

• Our spatial-temporal filter will take advantage of the
above comment, and it will reduce strongly the noise
when the blurring artifact, introduced for noise reduction,
is not appreciable by the audience.
The implementation of a visual human system based fil-

ter, has a high computational cost. A modification, in order
to reduce this cost, is done over the original response. In
figure 1 we can see the human system response and the ap-
proximated filter response implemented.

3.2 Filter Work

In order to understand the filter performance, as follows, we
will see an analysis of the filter behavior with regard to the
object motions and its repercussion in the resulting quality.
Seeing the spatial-temporal filter response depicted in figure
2, we are able to establish the following comments:
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Figure 2: fy− ft section of the spatial-temporal ideal filter
response.

• Static Objects: ft = 0. All of them will be inside the
filter pass band. These objets remain unchanged before
filtering. This performance benefits the final quality of
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these objects because for static objects the eye is able to
detect the best detail and for these reasons the filter must
not degrade them.

• Objects whose velocity isv < ft0
0.5 (pixel/frame), neither

suffer the blurring effect, independently of their size.ft0
is the filter temporal cutoff frequency.

• Objects whose velocity isft00.5 < v< ft0
fy0

(pixel/frame). fy0

is the filter vertical cutoff frequency. With this veloc-
ity value, the filter begins to blur the object because the
spatial bandwidth decreases when the velocity increases.
However, although the object results blurred by the filter,
this effect, in a motion object, can not be appreciated by
the human eye.

• For velocitiesv > ft0
fy0

, the blurring effect does not in-

crease more and now, the temporal bandwidth lets start
to increase. This filter parameter is imposed because ob-
jects with velocity higher than this threshold let the hu-
man eye to appreciate the temporal smoothness.

This behavior, above commented, can be also explained
observing the differences between the bandwidth of a tem-
poral filter, vs. the velocity, (depicted in figure 3) and the
bandwidth of the proposed spatial-temporal filter (shown in
figure 4). For low velocities, both do not filter the object.
When the object motions increase (fromv < ft0

0.5), the spatial
bandwidth decreases in both cases, reducing the noise and
so, blurring the object in an inappreciable manner. However,
this decrease finishes atv < ft0

fy0
for the spatial-temporal filter

and not for the temporal one, which continues reducing the
noise but also blurring the object. From this analysis we can
establish that, in situations of high motion, the temporal fil-
ter reduces more noise than the spatial-temporal but, on the
other hand, it also blurs more the image. The excessive blur-
ring, is more unpleasant for the viewer than the presence of
noise.
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Figure 3: Spatial bandwidth vs. velocity, for the temporal
filter.
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Figure 4: Spatial bandwidth vs. velocity, for the spatial-
temporal filter.

3.3 Efficient Implementation

Once the filter performance has been seen, we will explain
the filter implementation in order to reduce the computational
cost. This reduction is based on separating the filter response
with the aim of obtaining a set of separable filters.

The frequency response of the spatial-temporal filter is
depicted in figure 5, whereWt , Wx andWy represent the fil-
ter cutoff frequencies for each dimension, temporal and both
spatial frequencies, respectively.

This response can also be expressed as the sum of the
followings terms:

H(ejωx,ejωy,ejωt ) =

H1(ejωx,ejωy,ejωt )+H2(ejωx,ejωy,ejωt )−H3(ejωx,ejωy,ejωt )
(4)

whereH1(ejωx,ejωy,ejωt ) is the frequency response of
the spatial filter shown in figure 6-(a),H2(ejωx,ejωy,ejωt ) is
a temporal filter whose frequency response can be observed
in figure 6-(b) and, finally, the frequency response of the
spatial-temporal filterH3(ejωx,ejωy,ejωt ) is depicted in fig-
ure 6-(c).
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Figure 5: Frequency response of the spatial-temporal filter
H(ejωx,ejωy,ejωt ).

In order to implement the filtering process in the spatial-
temporal domain, we have to obtain the impulse response of
our spatial-temporal filter. Taking the Inverse Fourier Trans-
form of the expression 4, the impulse response will be also
obtained as sum of three terms:

h[x,y, t] = h1[x,y, t]+h2[x,y, t]−h3[x,y, t], (5)

where
h1[x,y, t] = he[x,y]δ [t]

h2[x,y, t] = ht [t]δ [x,y]

h3[x,y, t] = h1[x,y, t]∗h2[x,y, t]

being

he[x,y] =
{

1
MN , if |x|< M−1

2 and|y|< N−1
2 ;

0, other case.

and

ht [t] =
{

1
L , if |t|< L−1

2 ;
0, other case.
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Figure 6: Frequency responses. (a)H1. (b) H2. (c) H3.

As can be deduced from the previous expressions, all the
different filters involved in the filtering process are separa-
ble. Attending to this property, the implementation of the
proposed filter is very efficient computationally. It would be
desirable to choose odd values for M, N and L in order to
get zero phase filters, which do not produce image displace-
ments.

In figure 7 we can see the real frequency response (the
sectionfy− ft), for the implemented filter.

3.4 Filter Design Parameters

The parameters used in order to control the filter performance
are the spatial sizeM ×N and the temporal filter sizeL.
These parameters have an influence on the filter frequency
response in the following way:
• Higher values ofL produce smallerft0 values. For this

reason, an object can have a velocity to be blurred which
decreases if L arises.
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Figure 7: fy− ft section of the real response ofFT{h[x,y, t]}

• The maximum blurring effect is related with( fx0, fy0),
and so with(M,N). If (M,N) increases( fx0, fy0) de-
creases, increasing, therefore, the maximum blurring
produced.
Summarizing the points described above we can say that:

changingL we are able to control the maximum object ve-
locity to be filter without being blurred due to the temporal
smoothing; andM×N let us control the maximum blurring
we will have after applying the spatial-temporal filter, inde-
pendently of the object velocity.

4. RESULTS

In order to quantify the improvement with the image noise
level we have introduced uniform noise with several vari-
ance levels in a set of test sequences (Foreman, Carphone,
Bridge,...). To measure the noise reduction we have used an
objective parameter and another one subjective. The objec-
tive parameter used to measure the noise reduction has been
the noise reduction factor (n.r.f.), which is defined as:

n.r. f . =
σ2

o

σ2
i

= ∑
x

∑
y

∑
t
|h[x,y, t]|2, (6)

whereσ2
i is the input noise variance andσ2

o is the variance
of the output noise.

Figure 8 shows the variation of the noise reduction factor,
in dB, depending on the filter parametersL, N andM (M =
N). We can observe how the noise reduction factor decreases
(more noise reduction) when the filter dimensions decrease.

The table 1-(a) presents a n.r.f comparison between the
spatial filter of sizeM×N (he[x,y]) and the proposed spatial-
temporal filter using the same size for the spatial dimensions
and a value ofL = 3 for the temporal dimension. As we
can observe, ifM×N increases the n.r.f. decreases for both
filters. However this decrease is smaller in the case of the
spatial filter, so the quantity of reduced noise is higher. In
the same way, the goal of the table 1-(b) is to compare the
n.r.f of the temporal filter of sizeL (ht [t]) with the spatial-
temporal filter using the same size in the temporal dimen-
sion and (3×3) in the spatial dimensions. The conclusions
are the same as in the case of the spatial comparison: given
a certainL, the temporal filter reduces more noise than the
spatial-temporal, and in both cases the noise reduction in-
creases whenL increases.

The subjective tests have been carried out using a wide
audience in order to watch the set of noisy sequences (in-
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Figure 8: Noise reduction factor depending on the spatial-
temporal filter size.

M×N n.r. fe−t n.r. f .e
3×3 -3,89 -9,54
5×5 -4,44 -13,98
7×7 -4,59 -16,9
9×9 -4,66 -19,08

L n.r. fe−t n.r. f .t
3 -4,44 -4,77
5 -6,34 -6,98
7 -7,51 -8,45
9 -8,33 -9,54

(a) (b)

Table 1: Comparison of the Noise Reduction Factor (dB): (a)
spatial-temporal filterM×N×3 and spatial filterM×N. (b)
spatial-temporal filter5×5×L and temporal filterL.

troducing different noise variances) and the same sequences
after being filtered using different filters (temporal, spatial
and the proposed spatial-temporal) and varying the filter pa-
rameters. The information extracted from this subjective test
is the kind of filter and the set of parameters for which the
most of the audience prefers the sequences filtered using
them. The selected filter has been the spatial-temporal with
M×N = 3× 3 andL = 9. In figure 9 we can observe the
differences between a noise frame (from the sequence Fore-
man) and the results of filtering the frame using the spatial-
temporal filter (3× 3× 9), the temporal filter (L = 9) and
the spatial filter (3× 3). We can see how when there is no
motion (in the side window) the image is not blurred by the
spatial-temporal filter and it gets to reduce the noise, in the
same manner than the temporal filter; however the spatial fil-
ter blurs more the image. In the case of motion (the character
face), the spatial-temporally filtered image suffers the same
blurring than the spatially filtered image, being the temporal
filter which introduces more blurring.

The set of parameters selected as the optimum has been
also used in order to filter sequences from old films, with the
purpose of reducing grain noise, obtaining great results.

5. CONCLUSIONS

In this paper we have presented a filter which achieves the
proposed goals: to reduce noise in sequences, introducing
an unavoidable degradation in the restored sequence not no-
ticeable by a viewer. The proposed filter is a spatial-temporal
FIR filter, based on the properties of the visual human system
and implemented efficiently. This computational efficiency
is as a result of implement the filter response as a sum of sep-
arable filters. Although the quantity of reduced noise is a lit-
tle smaller than the reduction obtained using other FIR filters,

(a) (b)

(c) (d)

Figure 9: Filter Comparison: (a) Original Sequence:Car-
phone + Noise. (b) Spatial-temporal filter (3×3×9). Tem-
poral Filter (L = 9). (d) Spatial Filter (3×3).

only spatial or only temporal, of the same size, the degra-
dation (the blurring) introduced in the sequence is smaller;
therefore, the effect produced in a viewer is much better.
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