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ABSTRACT
This paper addresses the problem of determining the number of
wideband sources in a reverberant environment. In [1] an Expo-
nential Fitting Test (EFT) is proposed based on the exponential
profile of the noise only eigenvalues. We consider the performance
of this test for the problem in question, and compare it with the
results achieved by the well known Akaike Information Criterion
(AIC) and Minimum Description Length (MDL). Once reverbera-
tion is present in the received signals the EFT is seen to perform
much better than the AIC and MDL.

1. INTRODUCTION

For any acoustical source localization scheme the initial step is to
determine the number of signals received by the microphone array,
based on a finite number of observed data samples. This process,
which can be called detection or model order selection, is crucial
to allow for good performance of high-resolution directionfinding
techniques.

Traditionally the number of sources is determined by firstlyes-
timating the covariance matrix of the observed data samples, and
then evaluating the multiplicity of the smallest eigenvalue of this
matrix. One of the most widely-used approaches is that of In-
formation Theoretic Criteria (ITC) [2]. The best known of this
test family are the Akaike Information Criterion (AIC) [3] and the
Minimum Description Length (MDL) [4].

However, these approaches are known to exhibit poor perfor-
mance when there is only a small number of data samples avail-
able. In order to obtain accurate estimates of the number of sources
in this difficult situation an Exponential Fitting Test (EFT) was
proposed in [1], which exploits the ordered noise eigenvalue pro-
file first introduced in [5]. In this paper we examine the perfor-
mance of the EFT in the situation of determining the number of
acoustical sources detected by an array of microphones, andcom-
pare the results obtained to those of the AIC and MDL tests.The
EFT has previously been shown to outperform the AIC and MDL
for the simulated case of a narrowband signal received in the
presence of zero mean Complex White Gaussian Noise (CWGN)
[5, 6]. In this paper we are concerned with determining the num-
ber of speakers in a moderately reverberant meeting room environ-
ment.

2. PROBLEM FORMULATION

We consider the model of an array ofM microphones located in
the sound field generated byd sources. Leta(θ) be the steering
vector representing the complex gains from a signal impinging on
the M microphones with Direction of Arrival (DOA)θ . Then, if
x(t) is the observation vector of sizeM×1, s(t) the emitted vector
signal of sized×1 andn(t) the additive noise vector of sizeM×1,
we obtain the following conventional model:

x(t) = As(t)+n(t) = y(t)+n(t), (1)

whereA is the matrix of thed steering vectors, andM > d. The
source covariance matrixRs = E

{
s(t)sH(t)

}
is assumed to be

non-singular, which is equivalent to assuming that the sources are
non-coherent.

The vector n(t) denotes zero-mean, spatially and tem-
porally uncorrelated circular Gaussian complex noise, i.e.
E

{
n(t)nH (t)

}
= σ 2I, E

{
n(t)nT (t)

}
= 0. This corresponds to

the noise being zero-mean and having a common varianceσ2 at all
the sensors, and also being uncorrelated among all sensors.Such
noise is termed spatially white, and is commonly assumed in DOA
estimation schemes [7].

Thus, from equation (1), the observation covariance matrixRx
can be expressed as:

Rx = E
[
x(t)xH(t)

]
= ARsA

H +σ 2I (2)

3. MODEL ORDER SELECTION

In the field of high resolution array signal processing a lot of work
has been published concerning the model order selection problem.

3.1. Principle of statistical tests based on eigenvalue profile

According to (1), the noiseless observationsy(t) are a linear com-
bination ofa(θ1), ...,a(θd). Assuming independent source am-
plitudess(t), the random vectory(t) spans the whole subspace
generated by the steering vectors. This is the ”signal subspace”.
Assumingd < M and no array ambiguity, the signal subspace di-
mension isd. As a consequence, the number of non-zero eigen-
values ofRy is equal to the number of sourcesd, with (M − d)
eigenvalues being zero.

Now, assumingn(t) meets the assumptions stated in the previ-
ous section, then according to (2),Rx has the same eigenvectors as
Ry, with eigenvaluesλ x = λ y +σ2; for Rx in the white noise case,
σ 2 is a degenerate order(M−d) eigenvalue. Then, arranging the
eigenvalues in decreasing order, it becomes easy to discriminate
between signal and noise eigenvalues.

In practice,Rx is unknown and an estimate is made using
R̂x = 1

N ∑N
t=1x(t)x(t)H . The ”signal eigenvalues” are still identi-

fied as thed largest ones. But, with the statistical fluctuations in
R̂x, the noise eigenvalues are no longer equal to each other, and
the separation between them is only clear in the case of high Signal
to Noise Ratio (SNR), when a gap can be observed between signal
and noise eigenvalues.

3.2. Classical Tests

For many years Information Theoretic Criteria (ITC) have been the
most commonly used approach for the problem of detecting mul-
tiple sources. The best known of this test family are the Akaike
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Information Criterion (AIC) [3] and the Minimum Description
Length (MDL) [4].

The aim of the Akaike Information Criterion (AIC) is to deter-
mine the order of a model using information theory. The number
of sources is the integer̂d which, for m ∈ {0,1, ...,M−1}, mini-
mizes the following quantity:

AIC(m) = −N(M−m) log

(
g(m)

a(m)

)
+m(2M−m) (3)

whereg(m) anda(m) are respectively the geometric and arithmetic
means of the(M−m) smallest eigenvalues of the covariance ma-
trix of the observation. The first term in equation 3 stands for
the log-likelihood residual error, while the second is a penalty for
overfitting. The Minimum Description Length (MDL) criterion [4]
differs only in the penalty term (the last term in equation 4).

MDL(m) = −N(M−m) log

(
g(m)

a(m)

)
+

1
2

m(2M−m) logN (4)

It appears that at low SNR and/or small number of snapshots,
the results of ITC based tests degrade rapidly [8] and also per-
form very poorly with non-stationary signals in even moderately
reverberant environments [9]. These approaches are therefore not
applicable in the difficult scenario of determining the number of
non-stationary sources in a reverberant environment.

4. EXPONENTIAL FITTING TEST

Few works have been concerned with model order selection under
the constraint of a limited number of samples. Recently, however
an Exponential Fitting Test (EFT) was proposed in [1], whichcon-
tinues to accurately determine the model order when the number of
samples is limited, as is the case when dealing with non-stationary
sources. This method is based on the profile of the ordered noise
eigenvalues originally demonstrated in [5], and recalled here.

4.1. Eigenvalue Profile Under Noise Only Assumption

The sample covariance matrix of noise iŝRn =
1
N ∑N

t=1n(t) .n(t)H . The distribution of the matrixR̂n is a
Wishart distribution [10]. Finding the decreasing eigenvalue
profile of R̂n is extremely difficult, if not impossible, and so
instead the first and second order moments of the eigenvaluescan
be used to approximate the decreasing eigenvalue profile.

The error of the covariance matrix is denoted byΨ, where
Ψ = R̂n −Rn = R̂n − E

{
R̂n

}
= R̂n − σ2I. The noise eigen-

value profile can then be found by considering the first and second
moments oftr [Ψ]. FromE {tr [Ψ]} = 0, it can be seen that

Mσ 2 =
M

∑
i=1

λ i (5)

Note that

Ψi j =
1
N

N

∑
t=1

ni(t).n
∗
j(t)−σ 2δ i j.,

and thereforeE
{∥∥Ψi j

∥∥2
}

= σ4

N in the case of white Gaussian

complex circular noise. Since the trace of a matrix remains un-
changed when the base changes, it follows that

E
{

tr
(
R̂n −Rn

)2
}

= ∑
i, j

E
{∥∥Ψi j

∥∥2
}

(6)

= M2 σ4

N
=

M

∑
i=1

(
λ i −σ2

)2
(7)

The simple exponential decay model will be used to approximate
the eigenvalue distribution:

λ i = λ 1ri−1
M,N , (8)

with 0< rM,N < 1. In order to simplify the notationrM,N is denoted
by r from now on. From equation (5) we get

λ 1 = M
1− r

1− rM σ 2 = MJMσ 2
,

where:

JM =
1− r

1− rM . (9)

Considering that
(
λ i −σ 2

)
=

(
MJMri−1−1

)
σ2, the relation (6)

gives:
M +N

MN
=

(1− r)
(
1+ rM

)

(1− rM) (1+ r)
.

Settingr = e−2a (a > 0), this becomes:

M. tanh(a)− tanh(Ma)

M. tanh(Ma)
=

1
N

,

where tanh is the hyperbolic tangent function. An order-4 expan-
sion gives the following biquadratic equation ina.

a4−
15

M2 +2
a2 +

45M

N
(
M2 +1

)(
M2 +2

) = 0 (10)

for which the positive solution is given by

a(M,N) =

√√√√1
2

{ 15
M2+2−√

225
(M2+2)2 −

180M
N(M2−1)(M2+2)

}

.

4.2. Test principle

The relations in the previous section can be extended to the case
where the observations consist ofd sources corrupted by additive
noise. Under these conditions, eigenvalues associated with the co-
variance matrix can be broken down into two complementary sub-
spaces: the source subspaceEs (of dimensiond) and the noise sub-
spaceEn (of dimensionQ = M−d for non coherent sources). Con-
sequently the eigenvalue profile established in the previous section
still holds if we replaceM with Q. This will now be used to select
the model order.

The basis of the EFT is to detect the eigenvalue index at which
a break point appears between the observed eigenvalue profile and
the theoretical one provided by the exponential model, valid only
for noise eigenvalues.

For this purpose, a recursive test is performed on the noise
subspace dimension,P, beginning withP = 1. Assuming that the
lastP eigenvalues are noise eigenvalues, we test to see if the previ-
ous eigenvalue (λ M−P) is that of noise (assumptionHP+1) or of a
signal (assumption̄HP+1). This is done by extending the previous
relations to a noise subspace of dimensionP+1:

λ̂ M−P = (P+1)JP+1σ̂2
, (11)

with : JP+1 =
1− rP+1,N

1−
(
rP+1,N

)P+1 (12)

and : σ̂ 2 =
1

P+1

P

∑
i=0

λ M−i (13)
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Let us define the following two hypotheses:

HP+1 : λ M−P is a noise eigenvalue.

H̄P+1 : λ M−P is a signal eigenvalue.

In order to choose between the above hypotheses, we predict
the value ofλ M−P as explained before and compare the real value
to the predicted one. The decision is made by comparing the rel-
ative error between the predicted and observed eigenvaluesto a
threshold:

HP+1 :

∣∣∣∣∣
λ M−P − λ̂ M−P

λ̂ M−P

∣∣∣∣∣ ≤ ηP (14)

HP+1 :

∣∣∣∣∣
λ M−P − λ̂ M−P

λ̂ M−P

∣∣∣∣∣ > ηP (15)

If this error is less than the corresponding threshold, the eigen-
value is determined to be a noise eigenvalue. Otherwise, it is a
signal eigenvalue. The estimated dimension of the noise subspace
is the first value ofP for which HP+1 is chosen againstHP+1.
Consequently, the estimated dimension of the signal subspace is
d̂ = M− P̂.

4.3. Threshold Selection

The threshold is selected by considering the profile of the ordered
eigenvalues in the noise only case [6]. Experimental recordings are
taken of the background noise when there are no sources present.
The threshold is then established as follows:
• The recordings are split into framesn(t) , t = 1, . . .N.

• The sample covariance matrix̂Rn = 1
N ∑N

t=1n(t)n(t)H is
estimated for each frame, and the ordered eigenvalues,
(λ 1, . . .λ M) are computed.

• Using equation (11) the predicted eigenvalues,
(

λ̂ 1, . . . λ̂ M

)

are then found for everŷRn.

• The relative difference
∣∣∣ λ m−λ̂ m

λ̂ m

∣∣∣ is then found for each step

m = 1, . . .M, and the distribution of the relative differences is
considered.
As these are the relative differences in the noise-only case, we

would ideally like to set the threshold for each step greaterthan
the maximum value found for this step. However, while reducing
the probability of false alarm, such a threshold will increase the
probability of non-detection. We therefore select a threshold value
at each step that allows for a false alarm probability of 0.25%,
with the overall false alarm probability across the four steps equal
to 1%.

The use of experimental recordings for determination of the
threshold allows the EFT to learn the statistics of the noiseand re-
verberation levels in the room, resulting in the EFT being much
greater robustness to the effects of non-gaussian noise than the
AIC and MDL methods.

The ability to restrict the false alarm probability for the EFT is
also an advantage, as both the AIC and MDL tend to over-estimate
the correct model order, particularly in the presence of reverbera-
tion, resulting in a false alarm probability that is too highfor many
operational purposes and will lead to serious degradation of any
subsequent localization steps.

5. COMPARISON WITH CLASSICAL TESTS

Denoting the true number of sources asd, andd̂ as the estimated
number of sources the following criteria are used to evaluate the
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Fig. 1. Probability of detection for the EFT, the MDL and the
AIC for simulated case of complex Gaussian White Noise and no
reverberation.

performance of the tests:

d̂ = d : correct detection, Pd = Prob
[
d̂ = d

]

d̂ > d : over-estimation, Poe = Prob
[
d̂ > d

]

d̂ < d : under-estimation, Pue = Prob
[
d̂ < d

]

5.1. Simulation Results in the Presence of White Noise

We begin by considering the performance of the three tests for sim-
ulations of the case of the two male speakers. The speech signals
are received by an array of 5 microphones in the presence of Com-
plex White Gaussian Noise, the sampling frequencyfs = 16kHz,
and a frame length of 10 samples(0.625ms) with a 50% over-
lap between frames is used for the covariance estimation. Inor-
der to establish the threshold for the EFT, the relative difference
between the noise-only eigenvalue distribution and the predicted
distribution is considered for 10000 trials. In fig 1 it can beseen
that for this situation that the EFT outperforms the AIC and MDL
methods, and as the SNR increases detects the correct numberof
sources with a probability of 1. It should also be noted that the
probability of over-estimating the number of sourcesPoe is much
lower than that of the AIC and MDL tests.

5.2. Room Response Simulation

The previous simulation does not take into the consideration the
presence of reverberation, and therefore does not give an accurate
indication of the performance that can be expected in a practical
situation. We therefore consider the performance of tests in the
presence of reverberation using room Enhanced Acoustic Simula-
tor for Engineers (EASETM) simulation software. This software
models the transmission of the signals from the specified sources
to the microphone array, taking into account the dimensionsand
other acoustical characteristics of the room.

The responses are modelled for two sources located at an-
gles of 70o and 110o from a Uniform Linear Array (ULA) of
5 omni-directional microphones with an inter-microphone spac-
ing of 3.4cm. The horizontal distance between the array and
the sources is 1.5m, allowing for the far-field assumption to be
made, and the height of the microphone array and the sources
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Fig. 2. Microphone and sound source positions.

are equal. The dimensions of the modelled room were 5.38m×
6.9m × 2.44m, and the time required for the level of the mean-
square sound pressure to decrease by 60dB after the source has
been stopped,T60 ≈ 0.5s. For thex− and y−coordinates of the
sound source positions see fig. (2).

Once again the sampling frequencyfs = 16kHz, and for this
case the frame length is 100 samples(6.25ms) . The impulse re-
sponses produced by this software give a good indication of the
effect of reverberation on the test, although they usually simulate
higher reverberation levels than those encountered experimentally.
The source signals used are two male speakers, and the additive
background noise is simulated complex White Gaussian Noise, as
in the previous case.

For this case the thresholds are established as described insec-
tion 4.3, however instead of using simulated white noise record-
ings taken in the experimental environment being modelled,when
there were no sources present. A hilbert transform is then pe-
formed on the recorded noise signals, and these recordings are then
used to find the eigenvalue distribution in the noise-only case.

We consider the performance of the tests as the Useful-to-
detrimental ratio is increased. The Useful-to-detrimental ratio is
a measure of the strength of the beneficial early-arriving reflec-
tions, to the later arriving sounds and the background noise[11].
The cut-off time between the beneficial and detrimental reflections
depends on the room impulse response, and for rooms such as of-
fices or meeting rooms has been shown to lie between 25−30ms
[12]. In this paper, we consider the energy of the first 25ms of the
impulse response as the early arrivals energyE, and the energy of
the impulse response from 25ms to 500ms (T60) as the energy of
the late arrivalsL. The power of the background noise present is
N, and the Useful-to-detrimental ratio,U25 is defined as:

U25 = 10log

{
E

L +N

}
dB.

From the results, shown in fig. (3) it can be seen that the intro-
duction of the reverberation causes a deterioration in the accuracy
of all three model order selection tests. However, the EFT can be
clearly seen to outperform the AIC and MDL tests, both of which
perform very poorly. The results of the AIC and MDL vary only
slightly with increasingU25, and it is clear that both these tests are
highly unsuitable in the presence of reverberation.
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Fig. 3. Probability of detection for the EFT, the MDL and the AIC
using room simulator EASE, as the Useful-to-Detrimental Ratio,
U25, is increased.

Pd (%) Poe (%) Pue (%)

EFT 74.04 0 25.96

AIC 0.88 99.12 0

MDL 2.36 97.64 0

Table 1. Results found by EFT, AIC and MDL tests using experi-
mental recordings of two different male speakers.

6. EXPERIMENTAL RESULTS

In this section the performance of the EFT, MDL and the AIC
methods are compared for the experimental situation described in
the previous section. Firstly we consider the case of two male
speakers, then the case of the two female speakers and finallythe
case of one male and one female speaker. The thresholds are once
again established using recordings of the noise taken when there
are no sources present, as described in section (5.2). Tables 1- 3
respectively, show the results for the cases of: two male speakers,
two female speakers, and one male and one female speaker.

The results from the experimental recordings confirm those of
the simulated room response. Once again the AIC and MDL meth-
ods perform very poorly in the presence of reverberation, and they
continuously over-estimate the true number of sources. TheEFT
greatly outperforms the other two methods, showing its suitability
for determining the number of speakers in such an environment.

7. CONCLUSIONS

In this paper we have considered the performance of three model
order selection tests, the EFT, the AIC and the MDL, for the prob-
lem of determining the number of speakers in a moderately rever-
berant environment.We have shown that in the absence of rever-
beration all three tests perform well for SNR levels of higher than
5dB. Using EASE (Enhanced Acoustic Simulator for Engineers)
room simulation software, we have then shown that once reverber-
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Pd (%) Poe (%) Pue (%)

EFT 54.74 0 45.26

AIC 0 100 0

MDL 2.46 97.54 0

Table 2. Results found by EFT, AIC and MDL tests using experi-
mental recordings of two different female speakers.

Pd (%) Poe (%) Pue (%)

EFT 62.61 0 37.39

AIC 0.59 99.41 0

MDL 3.56 96.44 0

Table 3. Results found by EFT, AIC and MDL tests using experi-
mental recordings of a male and a female speaker.

ation is introduced the performance of all three tests is reduced,
and the EFT greatly outperforms the AIC and MDL methods, both
of which consistently overestimate the number of sources present.
These results were then confirmed using experimental recordings.

8. ACKNOWLEDGMENTS

Thanks to Dennis Mc Carthy for his helpful discussions on rever-
beration. This work is supported by a post-graduate award from
the Irish Research Council for Science Engineering and Technol-
ogy (IRCSET).

9. REFERENCES

[1] A. Quinlan, J. P. Barbot, and P. Larzabal, “Automatic de-
termination of the number of targets present when using the
time reversal operator (TRO),”Journal Acoustical Society of
America (JASA), Accepted for publication.

[2] S. Valaee and P. Kabal, “An information theoretic approach to
source enumeration in array signal processing,”IEEE Trans.
Signal Processing, vol. 52, pp. 1190–1196, 2004.

[3] H. Akaike, “A new look at the statistical model identifica-
tion,” IEEE Trans. Automat. Contr., vol. 19, no. 6, pp. 1361–
1373, 1974.

[4] J. Rissanen, “Modeling by shortest data description length,”
Automatica, vol. 14, pp. 465–471, 1978.

[5] J. Grouffaud, P. Larzabal, and H. Clergeot, “Some properties
of ordered eigenvalues of a Wishart matrix: Application in
detection test and model order selection,” inProc. ICASSP,
1996, pp. 2463–2466.

[6] A. Quinlan, J. P. Barbot, P. Larzabal, and M. Haardt, “Model
order selection for short data: An exponential fitting test
(EFT),” EURASIP JASP (European Journal Applied Signal
Processing), submitted for publication.

[7] B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai, “Exact
and large sample maximum likelihood techniques for para-
meter estimation and detection in array processing,” inRadar

Array Processing, S. Haykin, J. Litva, and T. J. Shepherd,
Eds. Berlin: Springer-Verlag, 1993, ch. 4, pp. 99–151.

[8] A. P. Liavas and P. A. Regalia, “On the behavior of informa-
tion theoretic criteria for model order selection,”IEEE Trans.
Signal Processing, vol. 49, no. 8, pp. 1689–1695, 2001.

[9] H. Teutsch and W. Kellerman, “Estimation of the number
of wideband sources in an acoustic wave field using eigen-
beam processing for circular apertures,” inProc. Elektronis-
che Sprachsignalverarbeitung (ESSV), Karlsruhe, Germany,
2003.

[10] N. L. Johnson and S. Kotz, inDistributions in Statis-
tics:Continuous Multivariate Distributions. New York:
John Wiley, 1972, ch. 38-39.

[11] J. S. Bradley, R. D. Reich, and S. G. Norcross, “On the com-
bined effects of signal-to-noise ratio and room acoustics on
speech intelligibility,”Journal Acoustical Society of America
(JASA), 1999.

[12] H. Golzer and M. Kleinschmidt, “Importance of early and
late reflections for automatic speech recognition in reverber-
ant environments,” inProc. IEEE Workshop on Application
of Signal Processing to Audio and Acoustics, New Paltz, NY,
2005.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


