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_ ABSTRACT o whereA is the matrix of thed steering vectors, ankll > d. The
This paper addresses the problem of determining the nunfber o source covariance matriRs = E{s(t)sH (t)} is assumed to be

wideband sources in a reverberant environment. In [1] amEXp non-singular, which is equivalent to assuming that the cesiare
nential Fitting Test (EFT) is proposed based on the expdéent non-coherent.

profile of the noise only eigenvalues. We consider the peréoice The vector n(t) denotes zero-mean, spatially and tem-
of this test for the problem in question, and compare it with t  porally uncorrelated circular Gaussian complex noise,. i.e
results achieved by the well known Akaike Information Giie E {n(t)nH ®}) = o2l E {n(t)nT (t)} = 0. This corresponds to

(AIC) and Minimum Description Length (MDL). Once reverbera

tion is present in the received signals the EFT is seen toparf the noise being zero-mean and having a common varia all

much better than the AIC and MDL. thg sensors, and also being uncorrelated among all ser&ach.
noise is termed spatially white, and is commonly assumeddAD
1. INTRODUCTION estimation schemes _[7]. _ _ _
Thus, from equation (1), the observation covariance m&jgix
For any acoustical source localization scheme the initég & to can be expressed as:

determine the number of signals received by the microphmag,a

based on a finite number of observed data samples. This groces
which can be called detection or model order selection,usiat Rx=E [X(t)xH (t)] = ARsA" + 071 @
to allow for good performance of high-resolution directfording
techniques. ) ) i 3. MODEL ORDER SELECTION

Traditionally the number of sources is determined by firstly
timating the covariance matrix of the observed data samples In the field of high resolution array signal processing a fatvork
then evaluating the multiplicity of the smallest eigeneabf this has been published concerning the model order selectidrepno

matrix. One of the most widely-used approaches is that of In-
formation Theoretic Criteria (ITC) [2]. The best known oish 3.1. Principle of statistical tests based on eigenvalue pfite
test family are the Akaike Information Criterion (AIC) [3hd the
Minimum Description Length (MDL) [4].

However, these approaches are known to exhibit poor perfor-
mance when there is only a small number of data samples avail-
able. In order to obtain accurate estimates of the numbenwéss
in this difficult situation an Exponential Fitting Test (EfWas
proposed in [1], which exploits the ordered noise eigere/gito-
file first introduced in [5]. In this paper we examine the perfo ; | bei
mance of the EFT in the situation of determining the number of eigenvalues being zero. . . .
acoustical sources detected by an array of microphones;anel Now, assuming(t) meets the assumptions stated in the previ-
pare the results obtained to those of the AIC and MDL tests.Th ©US Section, then according to (?X has the same eigenvectors as
EFT has previously been shown to outperform the AIC and MDL Ry, with eigenvalued x = Ay+0<; for Rx in the white noise case,
for the simulated case of a narrowband signal received in the 02 is a degenerate ordéM — d) eigenvalue. Then, arranging the
presence of zero mean Complex White Gaussian Noise (CWGN)eigenvalues in decreasing order, it becomes easy to disetien
[5, 6]. In this paper we are concerned with determining th@nu  between signal and noise eigenvalues.
ber of speakers in a moderately reverberant meeting rooiroenv In practice,Ry is unknown and an estimate is made using
ment. Rx = 4 YN 1 x(t)x(t)". The "signal eigenvalues” are still identi-

fied as thed largest ones. But, with the statistical fluctuations in

2. PROBLEM FORMULATION Ry, the noise eigenvalues are no longer equal to each other, and
We consider the model of an array & microphones located in  the separation between them is only clear in the case of higgtab
the sound field generated lysources. Let(6) be the steering  to Noise Ratio (SNR), when a gap can be observed betweerl signa
vector representing the complex gains from a signal impiggin and noise eigenvalues.
the M microphones with Direction of Arrival (DOAP. Then, if
x(t) is the observation vector of sidé x 1, s(t) the emitted vector ~ 3.2. Classical Tests
signal of sized x 1 andn(t) the additive noise vector of siid x 1,
we obtain the following conventional model:

According to (1), the noiseless observatigrs) are a linear com-
bination ofa(61),...,a(68q). Assuming independent source am-
plitudess(t), the random vectoy (t) spans the whole subspace
generated by the steering vectors. This is the "signal sadesp
Assumingd < M and no array ambiguity, the signal subspace di-
mension isd. As a consequence, the number of non-zero eigen-

values ofRy is equal to the number of sourcdswith (M —d)

For many years Information Theoretic Criteria (ITC) haverbthe
most commonly used approach for the problem of detecting mul
x(t) =As(t)+n(t) =y(t)+n(t), 1) tiple sources. The best known of this test family are the Réai
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Information Criterion (AIC) [3] and the Minimum Descriptio
Length (MDL) [4].

The aim of the Akaike Information Criterion (AIC) is to deter
mine the order of a model using information theory. The numbe
of sources is the integer which, forme {0,1,...,M — 1}, mini-
mizes the following quantity:

AIC(m) = —N(M —m)log (%) +m(2M —m) (3)

whereg(m) anda(m) are respectively the geometric and arithmetic
means of théM — m) smallest eigenvalues of the covariance ma-
trix of the observation. The first term in equation 3 stands fo
the log-likelihood residual error, while the second is agignfor
overfitting. The Minimum Description Length (MDL) criternd4]
differs only in the penalty term (the last term in equation 4)

+ 1m(2M —mylogN (4)

MDL(m) = —N(M —m)log (@) 5

a(m)

The simple exponential decay model will be used to approtéma
the eigenvalue distribution:

i—1
Ai = )\1!’;\4_’,\‘,

8)

with 0 <ry n < 1. In order to simplify the notationy  is denoted
by r from now on. From equation (5) we get

1-r
)\1 == Mmazz 'VlJMO-Z7

where: 1
—r
1—rM” ©)

Considering tha{A; — 02) = (MIur'~1 — 1) 02, the relation (6)
gives:

Iv =

M+N  (1-1)(14+rM)
MN — (1—rM)(1+r)’

It appears that at low SNR and/or small number of snapshots, Settingr = e=22 (a > 0), this becomes:

the results of ITC based tests degrade rapidly [8] and alse pe
form very poorly with non-stationary signals in even modelsa
reverberant environments [9]. These approaches are tienabt
applicable in the difficult scenario of determining the nmbf
non-stationary sources in a reverberant environment.

4. EXPONENTIAL FITTING TEST

Few works have been concerned with model order selectioarund
the constraint of a limited number of samples. Recently,dwvar
an Exponential Fitting Test (EFT) was proposed in [1], whioh-
tinues to accurately determine the model order when the ruofb
samples is limited, as is the case when dealing with noims&aty
sources. This method is based on the profile of the orderes noi
eigenvalues originally demonstrated in [5], and recalleceh

4.1. Eigenvalue Profile Under Noise Only Assumption
covariance

The sample matrix of noise IRy, =
%z{\':ln(t).n(t)"'. The distribution of the matrixR, is a
Wishart distribution [10]. Finding the decreasing eigduga
profile of Ry is extremely difficult, if not impossible, and so
instead the first and second order moments of the eigenvedures
be used to approximate the decreasing eigenvalue profile.

The error of the covariance matrix is denoted By where
=R,—-Rp=Rn—E iRn} = Ry — 02I. The noise eigen-
value profile can then be found by considering the first andrsec
moments oftr [¥]. FromE {tr [¥']} = 0, it can be seen that

Mg? = _%\Ai
i=

1 N
Wij = Ntzni(t)-n}‘(t) - %5,

®)

Note that

and thereforeE{HlPij Hz} — 9 in the case of white Gaussian

complex circular noise. Since the trace of a matrix remaims u
changed when the base changes, it follows that

E{tr(Rn-Rn)*} = ;E{HWUHZ}

4

_ MZC’W - Z (Ai —02)2 )

(6)

M.tanh(a) —tanh(Ma) _ 1
M.tanh(Ma) N

where tanh is the hyperbolic tangent function. An order-dagx
sion gives the following biquadratic equationan

4 15 o 45M
M2+27 ° N(M2+1) (M2+2)

-0 (10)

for which the positive solution is given by

1 15
M2+2
a(M,N) = 2{ 5 s }
\/(M2+2)Z N(M?2-1)(M?+2)
4.2, Test principle

The relations in the previous section can be extended todbe ¢
where the observations consistdsources corrupted by additive
noise. Under these conditions, eigenvalues associatédheitco-
variance matrix can be broken down into two complementaloy su
spaces: the source subspagé¢of dimensiond) and the noise sub-
spaces, (of dimensionQ = M —d for non coherent sourcesjon-
sequently the eigenvalue profile established in the prevdeation
still holds if we replaceM with Q. This will now be used to select
the model order.

The basis of the EFT is to detect the eigenvalue index at which
a break point appears between the observed eigenvaluesganél
the theoretical one provided by the exponential model dvaitily
for noise eigenvalues.

For this purpose, a recursive test is performed on the noise
subspace dimensioR, beginning withP = 1. Assuming that the
lastP eigenvalues are noise eigenvalues, we test to see if thi prev
ous eigenvalue  v_p) is that of noise (assumptidfp, 1) or of a
signal (assumptiofip.1). This is done by extending the previous
relations to a noise subspace of dimendton1:

Avp = (P+1)Ip10% (11)
. l1-rpyin
with pa=—" "0 (12)
1—(rps1N)
~2 1 P
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Let us define the following two hypotheses:
Hpi1: Am—p is a noise eigenvalue.

|‘Tp+1 :Am—pis a signal eigenvalue.

In order to choose between the above hypotheses, we predict

the value ofA \y_p as explained before and compare the real value
to the predicted one. The decision is made by comparing the re
ative error between the predicted and observed eigenvatuas
threshold:

AM—p—AM_
R R 14)
Am-_p
_ AM_p—AM_
Hpiq: [PMRZAMEP S (15)
M—P

If this error is less than the corresponding threshold, tgere
value is determined to be a noise eigenvalue. Otherwiss,at i
signal eigenvalue. The estimated dimension of the noisspsue
is the first value ofP for which Hp, 1 is chosen againgtip, ;.
Consequently, the estimated dimension of the signal sehsisa

d=M-P.

4.3. Threshold Selection

The threshold is selected by considering the profile of tiled
eigenvalues in the noise only case [6]. Experimental réngsthre
taken of the background noise when there are no sourcesprese
The threshold is then established as follows:

e The recordings are splitinto framegt), t =1,...N.
e The sample covariance matrRn = &SN n(t)n(t)" is

= - EFT .
— MDL ,
10 AIC ’ 7

0.9

Pd - Probability of determining the correct model order

SNR (dB)

Fig. 1. Probability of detection for the EFT, the MDL and the
AIC for simulated case of complex Gaussian White Noise and no
reverberation.

performance of the tests:

d=d: correct detection, Py = Prob [dA: d]
Poe = Prob d> d]

d<d: under-estimation, P, = Prob d< d}

d>d: over-estimation,

estimated for each frame, and the ordered eigenvalues,5.1. Simulation Results in the Presence of White Noise

(A1,...Am) are computed.
e Using equation (11) the predicted eigenvalué§¢7...XM)
are then found for everﬁn.

An—An

e The relative differenc is then found for each step

m=1...M, and the distribution of the relative differences is
considered.

As these are the relative differences in the noise-only,case
would ideally like to set the threshold for each step gretitan
the maximum value found for this step. However, while redgci
the probability of false alarm, such a threshold will in@eahe
probability of non-detection. We therefore select a thoédhalue
at each step that allows for a false alarm probability @506,
with the overall false alarm probability across the foupstequal
to 1%.

The use of experimental recordings for determination of the
threshold allows the EFT to learn the statistics of the naisire-
verberation levels in the room, resulting in the EFT beingcmu
greater robustness to the effects of non-gaussian noisethiea
AIC and MDL methods.

The ability to restrict the false alarm probability for thEEis
also an advantage, as both the AIC and MDL tend to over-estima
the correct model order, particularly in the presence oénlgsra-
tion, resulting in a false alarm probability that is too highmany
operational purposes and will lead to serious degradaticany
subsequent localization steps.

5. COMPARISON WITH CLASSICAL TESTS

Denoting the true number of sourcesdasanddAas the estimated
number of sources the following criteria are used to eveltia¢

We begin by considering the performance of the three testirfe
ulations of the case of the two male speakers. The speecélsign
are received by an array of 5 microphones in the presenceraf Co
plex White Gaussian Noise, the sampling frequefigy: 16kHz,
and a frame length of 10 samplé8.625ms) with a 50% over-
lap between frames is used for the covariance estimatiomr-In
der to establish the threshold for the EFT, the relativeeddifice
between the noise-only eigenvalue distribution and thelipred
distribution is considered for 10000 trials. In fig 1 it candeen
that for this situation that the EFT outperforms the AIC anDIM
methods, and as the SNR increases detects the correct nofmber
sources with a probability of 1. It should also be noted that t
probability of over-estimating the number of sourégs is much
lower than that of the AIC and MDL tests.

5.2. Room Response Simulation

The previous simulation does not take into the considaratie
presence of reverberation, and therefore does not givecamate
indication of the performance that can be expected in a ipedct
situation. We therefore consider the performance of testhe
presence of reverberation using room Enhanced Acoustial&m
tor for Engineers (EASEV) simulation software. This software
models the transmission of the signals from the specifiedcesu
to the microphone array, taking into account the dimensant
other acoustical characteristics of the room.

The responses are modelled for two sources located at an-
gles of 7@ and 116 from a Uniform Linear Array (ULA) of
5 omni-directional microphones with an inter-microphopac
ing of 34cm. The horizontal distance between the array and
the sources is.bm, allowing for the far-field assumption to be
made, and the height of the microphone array and the sources
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£ Source Positions
S ‘//

*

Microphone Array R

Fig. 2. Microphone and sound source positions.

are equal. The dimensions of the modelled room we8&mb x
6.9m x 2.44m, and the time required for the level of the mean-
square sound pressure to decrease liB6&fter the source has
been stoppedlgo &~ 0.5s. For thex— andy—coordinates of the
sound source positions see fig. (2).

Once again the sampling frequenty= 16kHz, and for this
case the frame length is 100 samp{é25ms). The impulse re-
sponses produced by this software give a good indicatiomef t
effect of reverberation on the test, although they usuathukate
higher reverberation levels than those encountered expatally.
The source signals used are two male speakers, and thevadditi
background noise is simulated complex White Gaussian Nagse
in the previous case.

For this case the thresholds are established as described-in
tion 4.3, however instead of using simulated white noisenec
ings taken in the experimental environment being modelidtin

there were no sources present. A hilbert transform is then pe

formed on the recorded noise signals, and these recordiagisen
used to find the eigenvalue distribution in the noise-onkeca

We consider the performance of the tests as the Useful-to-

detrimental ratio is increased. The Useful-to-detrimlerdto is
a measure of the strength of the beneficial early-arrivirilpee
tions, to the later arriving sounds and the background ridite
The cut-off time between the beneficial and detrimental cafias

- - EFT

0.9 o AIC
08 i
07+ e -
0.6 : Lle - b
05+ , B
04t . i

031 , 1

0.2 ’ B

Pd — Probability of determining the correct model order

0.1 - 4

Fig. 3. Probability of detection for the EFT, the MDL and the AIC
using room simulator EASE, as the Useful-to-Detrimentaidia
Uys, is increased.

Pa (%) | Poe(%) | Rue(%)
EFT | 74.04 0 25.96
AIC 0.88 99.12 0
MDL 2.36 97.64 0

Table 1. Results found by EFT, AIC and MDL tests using experi-
mental recordings of two different male speakers.

6. EXPERIMENTAL RESULTS

In this section the performance of the EFT, MDL and the AIC
methods are compared for the experimental situation destin

the previous section. Firstly we consider the case of twoemal
speakers, then the case of the two female speakers and fimally
case of one male and one female speaker. The thresholdscare on
again established using recordings of the noise taken wieme t

depends on the room impulse response, and for rooms such as of2f€ NO sources present, as described in section (5.2). sTabl

fices or meeting rooms has been shown to lie between 3®ns
[12]. In this paper, we consider the energy of the firan26f the
impulse response as the early arrivals endétggnd the energy of
the impulse response from 25 to 500ms (Tgp) as the energy of
the late arrivald.. The power of the background noise present is
N, and the Useful-to-detrimental ratidps is defined as:

Uzs = 10Iog{|_+iN } dB.

From the results, shown in fig. (3) it can be seen that the-intro
duction of the reverberation causes a deterioration in tharacy
of all three model order selection tests. However, the EFilbea
clearly seen to outperform the AIC and MDL tests, both of whic
perform very poorly. The results of the AIC and MDL vary only
slightly with increasindJ,s, and it is clear that both these tests are
highly unsuitable in the presence of reverberation.

respectively, show the results for the cases of: two malalsps,
two female speakers, and one male and one female speaker.

The results from the experimental recordings confirm thdse o
the simulated room response. Once again the AIC and MDL meth-
ods perform very poorly in the presence of reverberatiod,thay
continuously over-estimate the true number of sources. BFE
greatly outperforms the other two methods, showing itsbility
for determining the number of speakers in such an envirohmen

7. CONCLUSIONS

In this paper we have considered the performance of threemod
order selection tests, the EFT, the AIC and the MDL, for thabpr
lem of determining the number of speakers in a moderatelgrrev
berant environment.We have shown that in the absence of-reve
beration all three tests perform well for SNR levels of higtian
5dB. Using EASE (Enhanced Acoustic Simulator for Engineers)
room simulation software, we have then shown that once bever
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I:)d (%) Poe (%) Pue (%)
EFT | 54.74 0 45.26
AIC 0 100 0
MDL 2.46 97.54 0

Table 2. Results found by EFT, AIC and MDL tests using experi-
mental recordings of two different female speakers.

I:)d (%) Poe (%) Pue (%)
EFT | 62.61 0 37.39
AIC 0.59 99.41 0
MDL 3.56 96.44 0

Table 3. Results found by EFT, AIC and MDL tests using experi-
mental recordings of a male and a female speaker.

ation is introduced the performance of all three tests isiced,
and the EFT greatly outperforms the AIC and MDL methods, both
of which consistently overestimate the number of sourceseont.
These results were then confirmed using experimental riegsd
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