CHANNEL ESTIMATION IN THE PRESENCE OF MULTIPATH DOPPLER BY
MEANS OF PSEUDO-NOISE SEQUENCES

Olivier Rabaste and Thierry Chonavel

ENST Bretagne, Signal & Communications Department
BP832, 29285 Brest Cedex, FRANCE
email: {olivier.rabaste,thierry.chonavel } @enst-bretagne.fr

ABSTRACT

This paper addresses the problem of multipath channel esti-
mation when channel paths are subject to Doppler shifts. The
proposed method builds a rough approximation of the signal
ambiguity function by means of a filter bank. Each output
of the filter bank is deconvolved by means of an MCMC ap-
proach, that provides estimates of the path delays. The es-
timation of amplitudes and Doppler frequencies is then car-
ried out at each detected path delay. The method is able to
cope with simultaneous paths subject to distinct Doppler off-
sets and with interferences occuring among paths. Cramer-
Rao Lower Bounds are derived and presented with simula-
tion results.

1. INTRODUCTION

For most applications involving multipath channel propa-
gation, the channel impulse response A(¢) is of the form
h(t) = Zlf::] 0,0(t — 7p), where P is the number of paths
and @, and 7, respectively denote the complex attenuation
and the time delay of path p. However, this model is suitable
only when the ratios f;, = V”Tf” (p =1,...,P) are negligi-
ble, where v, is the relative celerity between the transmitter
and the receiver along path p, f. the carrier frequency and
¢ the wave speed in the propagation medium. When these
conditions are not fulfilled, Doppler effects occur, that is, the
carrier frequency is shifted by f;,. Doppler compression ef-
fect [1] on the transmitted signal e(r) can be neglected in
many situations where the ratio v, /c is negligible. Then the
received signal r(¢) can be written as

e i) ot — 1) 4 mo (1), (M
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where f;, denotes the Doppler shift of path p, and no(t) rep-
resents some additive Gaussian noise with autocorrelation
function ', (7). This situation may arise in applications such
as underwater acoustics [2] or satellite communications [3].
Finally, channel estimation amounts to detect the number P
of paths and estimate of the parameters (@, Tp, fa, ) p=1.p-

In this paper, we will assume that the transmitted signal
is known by the receiver, so that a matched filtering step can
be performed for helping the estimation process. The out-
put signal resulting from the application of a matched filter
to a Doppler shifted signal can be expressed by means of
a well-known time-frequency transformation: the ambiguity
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function [4, 5], defined as

Ay(t,f) = /_J:Qs(t)s* (t—1)e 72 1 4.

This ambiguity function can roughly be built by demo-
dulating the received signal at different frequencies span-
ning a certain frequency interval [— fiuax, finax], Where fuax
accounts for the frequency support of As(7,f) and for the
Doppler range, and by applying a matched filter to each out-
put. Processing the received signal (1) in such a way results
in an output signal expressed in the time-frequency domain
as

—ﬂrf fap) PA(t—Tp, f— fa,)+n(t, f), 2)
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where f is the demodulating frequency and n(z, f) is a com-
plex circular gaussian noise.

In applications where severe Doppler effects arise so
that the carrier frequency shift cannot be neglected, such as
radar applications, chirp signals are often chosen because of
their robustness against this kind of distorsions [4]. How-
ever they bring some ambiguity between the time delay and
the Doppler shift: a Doppler-shifted signal will appear at a
shifted time delay at the output of the matched filter. Thus,
for such signals, time delay and Doppler shift parameters
cannot be estimated separately. Other widely used signals in
the context of multipath channel estimation are the pseudo-
noise (PN) sequences because of their quasi-dirac-shape pe-
riodic autocorrelation function. For such signals no ambi-
guity occurs: the maximum of the ambiguity function at a
specific frequency shift will appear at the true time delay.
Thus time delay estimation can be carried out independently
from the Doppler shift estimation.

In this paper, we propose to estimate the multipath chan-
nel in two steps by exploiting the properties of the PN se-
quence ambiguity function. First, delayed paths are detected
at the matched-filtered output corresponding to each demo-
dulating frequency. This is achieved by means of a method
we proposed in [6] for recovering Doppler free multipath
channels parameters. In this precedent paper, the channel is
modeled as a Bernoulli-Gaussian process and the deconvo-
lution is performed via an MPM algorithm [7]. In a second
step, we propose to estimate the amplitude and Doppler shift
parameters corresponding to each estimated time delay by
means of a descent algorithm.

The paper is organised as follows: Section 2 highlights
the interesting properties of the PN sequence ambiguity func-
tion. The Bernoulli-Gaussian model and the MPM algorithm



are recalled in Section 3. Then the method proposed for es-
timating amplitudes and Doppler shifts, as well as the num-
ber of possible simultaneous paths, is explained in Section 4,
together with an iterative procedure for improving parame-
ter estimation via paths interference contributions removal.
Cramer-Rao Lower Bounds and simulation results are pro-
vided in Section 5. A conclusion is given in Section 6.

2. PN SEQUENCE AMBIGUITY FUNCTION

The PN sequence s(¢) can be written as

s(t) = IifT kz Ck]l[ T, Tb](t—ka)
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where 1o(7) = 1 if T € Q and 0 otherwise.. Then, the ambi-
guity function of s(¢) is
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From this expression, we can remark that:

e the zero Doppler cut A (7,0) of the ambiguity function
provides the exact autocorrelation function A(r) of s(z),
that has a triangular shape:
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-5 otherwise.

e for f #0, T — Ay(7, f) differs from T — A,(7,0). How-
ever the frequency support of f — Ay(T,f) is about

[— NIT,, , ;) and on this interval
T —
Anf)~ <1 B N—Tb ) Z c2 JznfnTh]l[— h’Tb](T)

that is, the triangular shape of T — A,(7, f) is approxi-

mately preserved when f # 0. This property is interest-

ing because it enables to look for the presence of paths
via the MPM algorithm by considering only one particu-
lar waveform that doesn’t depend on the frequency.

For the path p, the ambiguity function is translated
around (7p, fy,). In order to observe these time-frequency
translated versions of Ay, the received signal is demodulated
at different frequencies (f1,..., fx) spanning [— fiuax, fmax)
and a matched filter is applied to each output, as shown in
Figure 1. From the properties of the ambiguity function of
PN sequences, each output of this filter bank can be consid-
ered as the result of the convolution between A(f) and an
equivalent channel impulse response Ay, (t) (m = 1,...,K)
that may present multiple paths. It is therefore possible to
apply a deconvolution technique for each output in order to
recover Ay, (¢).

3. FILTER BANK OUTPUT DECONVOLUTION VIA
THE MPM ALGORITHM

After sampling, the output signal corresponding to a fixed
frequency f;, can be written

Xfm = S}thm + nfm’
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Demodulation Matched filter

Figure 1: Processing of the received signal by a filter bank.

where S, is the convolution matrix associated with A (¢). For
the sake of simplicity, the subscript f;, will be replaced by m
in the following.

3.1 Bernoulli-Gaussian channel modelling

The channel vector sparseness is accounted for via a
Bayesian prior [6]. More precisely, we consider a Bernoulli-
Gaussian model z,, = (h,,,q,), where q,, is an underly-
ing state vector of independent Bernoulli random variables
gm(k) (k=1,...,L) that defines the presence or the ab-
sence of a path at time index k with probability of presence
W = P(gm(k) = 1). Conditionaly to g,,(k), the entries A, (k)
of h,, are then modeled via a gaussian mixture such that

P(hm(K)|gm(k) = a) ~

where 61 >> 0p. Note that this model presents a good ro-
bustness w1th respect to the lack of knowledge of its parame-
ters (U, oj ,GO) and for many applications, rough values are
available. Alternatively a hierachical Bayesian approach [8]
could be considered that amounts to introduce prior distribu-
tions for these parameters. For the BG model, typical priors
can be found for instance in [9].

With the BG model, the posterior log-likelihood of z,, is
then

N(0,62)+jN(0,62), a=0,1,
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where C is a constant term, D, represents the diagonal ma-
trix with k-th entry equal to g, (k) and A, =T, ! is the
inverse of the covariance matrix of the noise n,,. If the noise
no(t) in Eq.(1) is white, then the correlation function of n,,
has a triangular shape, due to matched filtering.

3.2 The MPM approach

The direct maximization of this log-likelihood to obtain a
MAP estimator of z; is untractable. It is therefore neces-



sary to implement simulation methods. In [6], we have pro-
posed a solution based on the MPM algorithm. It aims at
simulating the pdf of z,, conditional to x,,. Since this pdf
is not computable directly, the algorithm uses a Gibbs sam-
pler to simulate realisations z/,(k) of samples z,,(k) follow-
ing the a posteriori marginals p(zy (k)|Xm,2m(—k)), where
Zun(—K) = (2 (0), -, 2m (k= 1), 2 (k+ 1), zm(L)). Af-
ter a burn-in period corresponding to i < Iy, the Gibbs sam-
pler reaches “thermal equilibrium” [7], that is, the gener-
ated samples are distributed according to the a posteriori pdf
P(Zm|Xm). These samples are used to compute the A Poste-

riori Mean estimators g, and flm of q;; and h,,:

Gm(k) =1 if ﬁ ot gD (k) > s, 0 otherwise,
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The threshold s is usually set to 0.5 since it then minimizes
the Bayes risk when uniform equal costs are chosen. Using
the Neyman-Pearson approach, it is however possible to set
a desired false-alarm probability Pr,; then the threshold that
minimizes the detection probability is given by

el 3(E ) (52)])]
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where Q(x) = \/% / e~ 7 dt is the usual Q-function.
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The MPM approach was compared to other methods for
estimating multipaths channel impulse responses such as the
Matching Pursuit, EM and ICM methods, and proved to yield
better estimation performance than these methods in terms of
the mean-square error of the reconstructed noiseless received
signal.

4. AMPLITUDE AND DOPPLER SHIFT
ESTIMATION

From the properties of the PN sequence ambiguity function
discussed above, the MPM algorithm provides accurate time
delay. However the amplitudes of a given path contribution
decrease away from the true Doppler frequency on the filter
bank outputs. In addition, the frequency step between con-
secutive filters of the matched filter bank is not chosen very
small for computational rapidity purpose. Moreover, paths
with distinct Doppler shifts but similar time delay may be
encountered. For all these reasons further processing is re-
quired for amplitude and Doppler offset estimation.

4.1 Estimation via the Levenberg-Marquardt algorithm

At a given time delay 7,, the K filter bank outputs provide a
vector denoted by x = [x1,...,xk]7, the entries of which cor-
respond to respective demodulation frequencies (f1,.. ., fx).
Assuming that r paths are simultaneously present at this time
delay and denoting by 6, = [ i, fa,]i=1 - the corresponding
parameters, the contribution of all these paths to the received
signal x is given, as a function of f, by

-
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Figure 2: Reconstruction error and penalized reconstruction
error for true number of paths r, = 1,2,3.

Here, estimating 0, according to the Maximum Likelihood
(ML) criterion does not provide a good estimate, because it
requires the inversion of the noise covariance matrix which
is ill-conditioned due to the strong correlation of the noise
samples among Doppler filters outputs. We propose there-
fore to consider the Least Square Error (LSE) criterion. The
LSE estimator is given by

K
6, = argn(lgin Z }gp’,(fk, 0,) —xk}z )
" k=1

This criterion can be minimized by means of a Levenberg-
Marquardt algorithm [10, 11], whose principle is based on
the Newton’s algorithm but takes into account the possible
non invertibility of the Hessian matrices.

However this method requires the knowledge of the num-
ber of simultaneous paths . When r is unknown, running the
algorithm for different values of r is not very helpful since the
application

‘gp,r(fkyér) _xk‘za

M=

r—&(x,r,6,)=

k=1

decreases as r increases. Thus, some penalization of
&(x,r,0,) has to be introduced. If we interpretate &' (x, r, ;)
as the opposite log-likelihood of some gaussian density, such
a penalty factor can be seen as some bayesian prior upon 7.
A convenient and common choice [8] consists then in mod-
elling r as a Poisson random variable with parameter £. This
choice can be briefly justified as follows: from the Poisson
theorem [12], it can be shown that many sequences of dis-
tribution for describing the paths frequency locations lead
asymptotically to a Poisson distribution for the number of
paths falling into a given interval. The corresponding poste-
rior log-likelihood of 7 is then given by

L{rfx) e< L{x|r) + L(r) = —g()z(’Tr;r) +log (%> e

where C is a constant term. Then the corresponding penal-
ized reconstruction error criterion is

é"p”‘"’(x,r, er) — g(Xﬂ’v GV) —lOg <€_) ,
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Figure 3: (a) Filter bank output (b) Number of simultaneous
paths r. o: paths positions.

and the minimization is performed over (7, 8,). For the simu-
lations, we have chosen the parameter £ close to 1 (§ = 1.2)
because simultaneous paths are quite uncommon in practice.
Figure 2 represents the reconstruction error and the penalized
reconstruction error as functions of r when its true value is
r; = 1,2 and 3. Clearly the minimum of &(x,r, 6,) decreases
with r while that of £7°"(x,r,6,) shows a global minimum
atry.

A practical example is presented in Figures 3 and 4 for
an SNR of —10 dB and a PN sequence with a period of 63
symbols: this sequence is transmitted 10 times and then av-
eraged after matched filtering. Figure 3 shows the output of
the matched filter bank together with the true paths positions.
The shape of the PN sequence ambiguity function spread-
ing along the frequency axis can be clearly seen around each
path, with the maxima aligned on the same time delay. Fig-
ure 4 presents the output of the MPM algorithm for each de-
modulation frequency, and the results obtained with the es-
timation procedure that we propose. Clearly the algorithm
recovers the number of simultaneous paths and good param-
eter estimation is achieved.

4.2 Interference cancellation

In the procedure presented above, we look for simultaneous
paths present at a given time delay 7,, but we neglect possible
interference among paths affected by distinct time delays. In
practice, it appears that these interferences may lead to some
degraded results at high SNR. It is therefore necessary to take
into account this effect in the processing. We propose thus
the following processing scheme:

1. For each estimated time delay 7,, apply the above esti-
mation procedure to obtain a first estimate of the number
of simultaneous paths 7, and of the parameters

0, = [0p1:fay, s Oty fa, s, ]
2. While convergence of the parameter estimates has not
been reached, execute for each delay 7):

(a) Computation of other paths contributions:
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Figure 4: (a) MPM output (b) Number of simultaneous paths
r. o: true values, x: estimated values.
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(b) Interference cancellation:

xnew(tvf) :x(t’f) _xfp(tvf)

(c) Estimation update:

(7,6;) = arg (mén) EP? (Xpew, 1, 0r).

At high SNR, where performance is little affected by
noise, the Interference Cancellation (IC) achieves better per-
formance than the estimation procedure without distinct de-
lay interference removal, as shown on Figure 5.

Note also that at high SNR, the initial estimation of r
provides the true value and its re-estimation during the con-
vergence loop is unnecessary.

Let us finally remark that this IC method is close to
the EM (Expectation Maximization) procedure introduced in
[13]. Indeed, the received data x(z, ) can be rewritten as

x(t,f) = X, xp(t, f) with
5t ) =Y @pre "I TAG — 1 = fu, )40, £),
k=1

where r), is the number of simultaneous paths at time 7,,. The
complete data model is then given by (x(z, f),{x,(t,f)}p),
the expectation step corresponds to steps (a) and (b) and the
maximization step to (c).

5. CRAMER-RAO LOWER BOUNDS AND
PERFORMANCE

In this section, we compare parameter estimation procedures
proposed in section 4 for frequency and amplitude estimation
on multipath channels with the corresponding CRLBs. Per-
formance of delay parameters estimation has already been
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Figure 5: CRLB and estimated variances for (a) amplitude
estimation and (b) Doppler shift estimation, with and without
interference cancellation.

presented in [6]. We provide here analytical formulas for am-
plitude and frequency estimators. Since in that case the noise
covariance is ill-conditioned as mentioned above, the exact
CRLB cannot be computed and we resort to assuming that
the noise samples are uncorrelated. Letting 6 = [0, o, fy]
where @, o; and f; represent the amplitude real part and
imaginary part and the Doppler shift respectively, the Fisher
information matrix terms can then be proved to be

1
Jn=Jn= gZSCZ(f),

ff
Ji=J5 =0,
Ji3=J3 = Gi%; <—7rTb(N— Dogse?(f) — %dssz)> ’
=3 = X (WO D) - aaell)),

where sc(f) = sinc (fT,N).

For performance comparison, J = 200 Monte Carlo sim-
ulations were realized for channels with 10 paths, i.e. vari-
ances were computed from 2000 values at each SNR. The
frequency separation between two filters of the filter bank
was set to 0.5Hz. The amplitudes were drawn with uniform
random phase and the CRLBs were averaged over the uni-
form distribution of the phase. Figure 5 presents variance
performance for the amplitude and the Doppler frequency es-
timated with the procedures described in section 4 together
with the corresponding CRLBs. Clearly when interferences
among paths with distinct delays are not taken into account,
performance is sligthly degraded at large SNRs: the variance
curve diverges from a straight line. This effect is removed
with the interference cancellation method.

6. CONCLUSION

In this paper we have proposed a method for multipath chan-
nel estimation in the presence of multipath Doppler shifts.
Based on the properties of the PN sequence ambiguity func-
tion, it consists of estimating first the time delay parameters
by means of a Bernoulli-Gaussian deconvolution procedure
applied at the matched filter bank outputs. Then amplitude
and Doppler shift estimation is carried out for each estimated
time delay by applying a Levenberg-Marquardt algorithm.
The possible presence of simultaneous paths is taken into ac-
count via the introduction of a poisson prior upon the num-
ber of paths. Performance is compared with the Cramer-Rao
Lower Bounds and it is shown that a further interference can-
cellation step is required in order to ensure good results at
high SNR.
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