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ABSTRACT

It is believed that neural activity evoked by cognitive tasks
is spatially correlated in certain frequency bands. The elec-
troencephalogram (EEG) is highly affected by noise of large
amplitude which calls for sophisticated time local coherence
estimation methods.

In this paper we investigate different approaches to esti-
mate time local coherence between two real valued signals.
Our results indicate that the method using two dimensional
Gaussian kernels has a slightly better average SNR compared
to the multiple window approach. On the other hand, the
multiple window approach has a more narrow SNR distribu-
tion and seems to perform better in the worst case.

1. INTRODUCTION

The electroencephalogram technique (EEG) visualizes the
brain activity to a low cost and in a simple and non-invasive
way. Despite the last three decades of development of brain
mapping techniques, EEG attracts attention in numerous re-
search disciplines and in clinical practice. One reason for this
is the method’s extraordinary temporal resolution. And since
neural communication occurs through potentials, the EEG is
a low-level, natural mean for monitoring the activity of the
brain.

The spatially synchronized activity of the cortical areas
interacts while performing various cognitive tasks. It is hy-
pothesized that when a particular task is carried out, the
involved cortical areas attain synchronized activity within
specific frequency bands, [1]. Many analyses of synchro-
nized activity and neural cooperation are performed in the
frequency domain by calculating the coherence between the
electrodes. Recent publications indicate that diagnose of cer-
tain disorders and conditions, e.g. Alzheimer’s disease and
mild cognitive impairment, [2, 3], may be aided by studies
of synchronized activity. It has been observed that the pat-
tern of active cortical areas, or the degree of synchronization
between particular areas, differs between healthy individuals
and individuals with disorders. Besides using spatial syn-
chronization in the EEG as a diagnostic aid, it is also used
in the investigation of language, [4, 5], where differences
in brain activity during processing of words from various
classes (e.g. concrete vs. abstract nouns) have been found.
Recent studies has also expanded long-standing assumptions
on brain oscillations and cognitive function, especially mem-
ory processes, [6].

The frequency content is usually estimated by succes-
sively averaged sub-spectra from different time epochs.
Events of short duration will be difficult to detect and the
onset and offset time of those events will be misinterpreted.

Such transient frequency changes are often of great interest.
Event-related changes in the spectrogram are of interest in,
e.g., cognitive studies, [7].

Cross-spectral analysis of non-stationary processes has
been done, e.g. in [8], where it is shown that the estimate
from the smoothed short-time Fourier transform (STFT)
(equivalent to multiple window STFT) is the most appro-
priate. Non-parametric coherence analysis of non-stationary
signals is done, e.g., in [9, 10, 11].

The coherence, pfy(f), between two real valued signals
X(t) and y(t) is a function of frequency that measures the pro-
portion of energy in one signal at one frequency that can be
explained by a linear filter transformation of the other signal.
It is defined:
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where Ry (f) is the cross spectral density and Ry(f) and
Ry(f) are spectral densities. In the case of time discrete
signals, x(t), y(t), t =1, ..., n, it seems natural to take
P2, = [Ry/(f)|/Re(f)Ry(f) as an estimate. However, this es-
timate is identical to 1, if the spectral densities is estimated
with the periodogram and the cross spectral density is es-
timated with the Fourier transform of the estimated cross
covariance function: .7 (f (1)) = .7 (& S xt)y(t+71)) =
%ﬂ(x(t))gé’(y(t))*, where the asterisk denotes complex con-
jugate. This well known result may not come as a surprise
since we have tried to estimate n different estimators (n dif-
ferent values of f in f)fy(f)) out of n different values of x(t)
and y(t). Different ways of smoothing the periodogram, e.g.
averaging nearby frequencies with a kernel, will solve this
problem.

For non-stationary signals, we are interested in time local
coherence. This could be achieved by the use of a two dimen-
sional time frequency kernel, as described in Section 2, or by
the use of multiple time windows as described in Section 3.
The methods are compared on simulated data which share
some important features with real EEG. We evaluate them
using signal to noise ratio. All of this is presented in Section
4. The same methods are applied to real EEG data in Section
5 and finally some conclusions are drawn in Section 6.

2. COHERENCE ESTIMATION USING GAUSSIAN
KERNELS

We are interested in estimating a time local coherence func-
tion, px v (to, fo), at time to and frequency fo of two non-
stationary real valued signals x(t) and y(t). Using the ap-
proach of Gaussian kernels, we first compute local Fourier
transforms, Xy (t, f) and Yy (t, f), using a Hanning window,
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H, as a frame. The length of the Hanning window is of course
crucial, since it determines the balance between time and fre-
quency resolution of Xy (t, f) and Yn (t, f).

We need a whole set of time frequency estimates in a sur-
rounding of (to, fo) to be able to estimate a local coherence.
The selection of this set is made by a kernel, Ky, f,(t, f),
which has its maximum value at (to, fo). A trade-off must
be made between low variance (many time frequency esti-
mates, i.e. a wide kernel) and low bias (few time frequency
estimates to ensure a precise time frequency resolution). In
this paper only Gaussian kernels are considered. They can be
written on the form:

l (HO)Z _ (f-1g)?
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Kto,fo (t,f)=

Using a particular kernel, K, the local coherence, px v (to, fo),
can be estimated:

1Sty (to, fo)|
\/%x (to, fo) Sy (to, fo)

where Sxy(to, fo), Sxx(to, fo) and Syv(to, fo) are double
sums of time frequency estimates weighted with the kernel:

Sy (to, fo) = ZZKtO fo (6, )X (8, )Y (t, )"
Sy (to, fo) = ZZKIO o, F)Xu (t, F) X (¢, F)*
$ (t07 fO ZZKIO fot f)YH(t f)YH(t f) )
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where complex conjugate is denoted with an asterisk.

3. COHERENCE ESTIMATION USING MULTIPLE
WINDOWS

The key to estimate coherence is to have many uncorrelated
time frequency estimates at approximately the same time and
frequency. In this approach we make use of multiple win-
dows (MW), which are windows located close to each other
within a single frame. They are designed to have low covari-
ance even though they overlap.

To estimate the local coherence function, px v (to, fo), be-
tween the real valued signals x(t) and y(t) we first form a
frame centred at to with N (overlapping) multiple windows,
Wit (t), i =1, ..., N, as schematically displayed in Figure
1. We compute the Fourier transforms, X;t,(f) and Y, (f)
of each segment X(t)w; ¢, (t) fori =1, ..., N, and y(t)w;g,(t)
fori =1, ..., N. The local coherence function, px v (to, fo
is then estimated:

S (to, fo)|
\/9le (to, fo) S, (to, fo)

where the superscript indicates that the sums, SX, S
and SY, are depending on a set of multiple windows,

Xy (to, fo) =

t=1t,

Moving frame

Figure 1: Example of multiple windows, wi, i =1, ..., 3.
A frequency estimate is computed within each Wlndow and
then averaged to reduce variance. Even though the multiple
windows overlap, they give almost uncorrelated frequency
estimates for the kinds of processes they are designed for.
The picture shows Welch windows, see Section 3.1.
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It is important that the correlation between the N win-
dowed periodogram, X, (f), i=1, ..., N, is small for all f
(and the same goes for Yi, (f)). When the multiple windows
are appropriate chosen, with respect to the properties of the
stochastic process, this can be achieved even if the multiple
windows is overlapping within one frame. There are different
ways to achieve small correlation of different sub-spectra. In
the following subsections three different multiple windows
are described.

S, (to, fo) =

3.1 Welch multiple windows

In the WOSA algorithm, [12], the overlap of the sequences
can be varied but it has been shown that 50% overlap, as used
in this paper, is a good choice. The windows are then defined
as

M—(i+1) Mw
——
wi=[0,...,00w, 0 ....,0]"; i=1,...,N |
N——
o

where w is a Hanning window (of length M,,) and the num-
ber of windows N is the largest integer where N < 2% 1,
With these windows the data samples x are divided |nto over-
lapping sequences x ((t — 1)“"—2”“2], o x((t+1)% —1) and
each sequence is windowed with the same data window. It is
assumed that the random samples of data give N uncorrelated
sub-spectra which are then averaged. An example of Welch
multiple windows is shown in Figure 1.

3.2 Peak matched multiple windows (PM MW)

An example of the Peak Matched Multiple Windows (PM
MW), [13], is shown in Figure 2. The PM MW are designed
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Figure 2: Example of multiple windows. Peak matched mul-
tiple windows in a) and local stationary process optimal mul-
tiple windows in b).

to give small correlation between sub-spectra when the spec-
trum of the random process includes peaks and notches, i.e.,
spectra with large dynamics. The windows are given by the
solution of the generalized eigenvalue problem

Rgqgi = AiRzqi, i=1,...,L

where the eigenvalues are ordered in decreasing magnitude,
A1>A2>...> AL The (L x L) Toeplitz covariance matrix
Rg has the elements rg(l) = ry, (1) * rpox(l), 0 < |I| <L -1,
where ry, (1) is the covariance function of a desired peaked
spectrum process Xq4(t) and x denotes the convolution opera-
tor.

3.3 Locally stationary process optimal multiple win-
dows (LSP OPT MW)

A locally stationary process (LSP) has a covariance function
determined by two functions,

rx(t,s) = q(H—S) rt—s)

where ¢(7) = e /2 s a fix Gaussian function and r(r) =
e 47°/2 is a variable Gaussian function. The function,
rk(t,s), is a covariance if and only if ¢ > 1. The expected
ambiguity function of a locally stationary process is separa-
ble (rank one),

A(8,T) =Q(8)r(T).
The optimal kernel is
[Q(O)|r ()2
QUO)2|r (T)[2+ (Zr[2)(6)(F~HQI?)(T)
1
1+C*l/2e(17%)92+c+411'27

%pt(ea T)

[14]. The optimal multiple windows for a time-variable pro-
cess are obtained as the eigenvectors of a rotated time-lag
estimation kernel, [15]. Figure 2 shows an example of LSP
OPT MW.

4, RESULTSON SIMULATED DATA
4.1 Thedata

The simulated data is inspired by known properties of EEG.
Interesting components of the EEG is often hidden by larger
components with slightly higher or lower frequency making
time frequency analyze difficult. Spikes and high frequency
noise are often present.

The coherence estimation methods are evaluated on pairs
of twenty seconds long simulated signals, x(t) and y(t), sam-
pled at 256 Hz. The two signals are composed of uncorre-
lated components plus a common component of smaller am-
plitude. The components of x(t) are:

e A one second long AR(2) process with frequency 15 Hz,
centredatt =10s. Itis smoothly raised and lowered with
a one second long Hanning window. Its mean energy is
0.25. This is the only component identical for both x(t)
and y(t).

e A one second long AR(2) process with frequency 15+ &
Hz and mean energy equal to 1. It is centred att =10 s
and smoothly raised and lowered with a one second long
Hanning window.

e Aspikeatt =9s.

e White Gaussian noise with mean energy 0.05.

The signal y(t) is simulated in a similar manner:

e A one second long AR(2) process with frequency 15 Hz,
centredatt =10s. Itis smoothly raised and lowered with
a one second long Hanning window. Its mean energy is
0.25. This is the only component identical for both x(t)
and y(t).

e A one second long AR(2) process with frequency 15— &
Hz and mean energy equal to 1. It is centred att =10 s
and smoothly raised and lowered with a one second long
Hanning window.

e Aspikeatt=11s.

e White Gaussian noise with mean energy 0.05.

A realization of x(t) and y(t) are presented in the time fre-
quency plane in Figure 3. The target for our coherence esti-
mation methods is to find the one second long coherence at
frequency 15 Hz even though the signals have large non cor-
related energy content at 15 — 6 and 15+ ¢ and also spikes
att =9 andt = 11 s, respectively. Next section will dis-
cuss how to evaluate the time-frequency coherence estimates
produced by the different methods.

4.2 Evaluation method

We expect the coherence of x(t) and y(t) to be zero every-
where except between t = 9.5 and t = 10.5 s at frequency
15 Hz. Since it is reasonable to believe that small coherence
values are due to noise we apply a threshold level at the 90%-
quantile, leaving only ten percentages unaffected.

We define the signal to noise ratio (SNR) as the mean
estimated coherence in the time frequency areat =10+0.5s,
f =15+ 1.5 Hz divided with the mean estimated coherence
in a larger surrounding time frequency area (t = 10+2.5s,
f =15+4 Hz). By simulating many pairs of x(t) and y(t) we
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Figure 3: The simulated signals, x(t) and y(t), is a sum of
four different components (white noise, spikes and two AR-
process of which one is the same in both x(t) and y(t)). They
are only correlated at 9.5 <t < 10.5 (s) and f = 15 (Hz).

can get a picture of different coherence estimation methods’
SNR distribution.

4.3 Results

Modifying the composition of x(t) and y(t) largely affects
the optimal adjustments of the coherence estimation meth-
ods. The parameter &, which is the distance, in Hz, between
the correlated component at 15 Hz and the two disturbing
AR(2) processes at 15+ & Hz, has greatest impact on the
performance of different methods.

Figure 4 shows histograms of the performance of four
different coherence estimation methods and three different
values of . The performance is measured using SNR as de-
scribed previously. The evaluated methods are: (a) a Gaus-
sian kernel (Hanning window length was 1 second, o =
1.25, and a; = 0.469.), (b) the Welch MW (frame length was
1second, N =4), (c) the PM MW (frame length two seconds,
N = 4) and (d) the LSP OPT MW (frame length two seconds,
N = 5). Note that even though the Gaussian kernel method
has slightly higher average SNR for all three values of 9, it
performs very badly more often than the others for low val-
ues of 4. Taking this important fact into account, one might
say that the MW methods sometimes are slightly superior to
the method using Gaussian kernels.

5. RESULTS ON REAL EEG DATA

To show the performance for real-data, EEG was recorded
from a healthy subject presented to a 9-Hz flickering light
(Grass Photic stimulator Model PS22C). The subject was
supine with closed eyes on a bed in a silent laboratory. Am-
bient light was dimmed. A flickering light was flashed at
the subject from a distance of approximately 1 m during one
second. The sampling rate was 256 Hz. Figure 5 shows the
estimated coherence between electrodes placed at F3 and P4
according to the international 10-20 system. Coherence es-
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Figure 4: The histograms shows the distribution of SNR for
four different methods and three different values of 6. Mean
and its approximately 95% confidence interval is indicated.
Number of simulations is 400.

timates are made with the same methods as evaluated with
simulated data in Section 4, but a few parameters had to be
adjusted. The estimates were made using (a) a Gaussian ker-
nel (Hanning window length was 1 second, o = 0.625, and
or = 0.469.), (b) the Welch MW (frame length was two sec-
onds, N = 4), (c) the PM MW (frame length two seconds,
N = 4) and (d) the LSP OPT MW (frame length two seconds,
N = 5). All estimates shows a particularly high coherence at
9 Hz when the light was flickering, indicating synchronized
cortical activity. However, there is also high coherence at
some other time frequency areas.

6. CONCLUSIONS

The problem of local coherence estimation is very difficult
and different strategies will have different advantages and
drawbacks. Furthermore, it is not trivial to develop a reason-
able measurement by which different methods can be com-
pared. Using SNR as described above, indicates that esti-
mation techniques using MW are interesting alternatives to
the Gaussian kernel approach, especially when the corre-
lated components are masked by larger components closely
located in time and frequency.
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