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ABSTRACT
This paper presents a full multiresolution lossless coding
method, with advanced semantic scalability. In particular,
a reversible form of the usual Walsh Hadamard Transform
(RWHT) is first introduced as an alternative to standard loss-
less transform. A pyramidal representation and decompo-
sition schemes involving this basic transform are then pro-
posed. Significant improvements are obtained using two ad-
ditional concepts: the “locally adaptive resolution” through a
quadtree representation and a prediction step. The given ex-
perimental results show that the proposed RWHT+P achieves
excellent performances compared to state-of-the-art.

1. INTRODUCTION

New generations of images codecs should have of course to
be efficient in terms of compression performances, but also
to provide advanced functionalities such as scalability, rate
control, region of interest encoding, meaningful scene de-
scription. Moreover, a single coding scheme able to com-
press from very low bit rates to lossless, would be a suitable
solution for general purpose uses of image coding. In [1],
we have introduced the LAR (Locally Adaptive Resolution)
method leading to an efficient lossy image compression tech-
nique. The LAR compression method is a two-layer codec:
a spatial codec and a complementary spectral one. The spa-
tial coder provides a main image compressed at low bit rate,
whereas the spectral one encodes the local texture. The qual-
ity lossy compressed images by LAR has been evaluated and
recognized to be better than Jpeg-2000 [1]. The LAR method
relies on a quadtree variable block-size decomposition esti-
mated from local activity. This particular representation en-
abled an extension to region-based image representation and
encoding from only the low bit rate images [2]. Recently,
we have proposed a modified version of the codec enabling
also efficient lossless coding while significantly improving
its scalabity [3]: spatial and spectral layers have been subti-
tuted by two successive multiresolution quadtree decomposi-
tions based on a modified version of the S transform. This pa-
per presents an alternative to the previous coding scheme in
terms of decomposition. This new form of LAR codec called
“RWHT+P” outperforms previous version both for very low
bit rates and lossless encoding, but we focus here only on the
last framework. In particular, the first part of the paper intro-
duces a new method to enable the classical Walsh-Hadamard
Transform (WHT) with a 2×2 kernel to be used in a lossless
transformation context. The remaining of the paper proposes
a full lossless coding scheme with enhanced resolution scal-
ability.

In lossless coding, compresssion and decompression of
source data result in the exact recovery of every element of
the original source data. Lossless image coding is necessary

in applications where no degradation is tolerable. Examples
are medical imaging, remote sensing, image/video archiving
and studio applications. The state-of-the-art in lossless cod-
ing is roughly composed of two main approaches: predictive
methods in the spatial domain with some popular coder such
as CALIC [4], and transform-based methods generally using
the wavelets theory. The main advantage of wavelets coders
is that they offer scalable coding and possibly multiresolution
representations of the image.

Lossless transforms have the particularity to map integers
into integers in contrary to lossy ones. Most of the methods
use the concept of “rounding” to enable an unambiguously
retrieval of the transformed coefficients [5].

The WHT is a well known technique used for signal
and image compression. Many multiresolution image cod-
ing methods use this transform on 2×2 blocks, especially in
wavelet decomposition schemes. For lossless compression
purposes a modifed version of the 1D WHT has been pro-
posed by P. Lux [6], popularized by Said [5] and known as
the “S” transform or “Haar integer wavelet transform” [7].
The S transform is currently known as one of the best in-
teger wavelet basis among all existing ones for reversible
compression[8]. To improve compression, a prediction stage
has been associated to the S transform, leading to the pop-
ular S+P method [5], which has been later genalized by the
“lifting scheme” concept [9].

Section 2 introduces the adaption of the lossyWHT2×2
to a lossless form calledRWHT. Section 3 presents
the pyramidal lossless compression method based on the
RWHT. In particular, it relies on two main features suc-
cessively detailed: a quadtree decomposition and a predic-
tion/interpolation technique. Finally, we will conclude in
section 4.

2. THE RWHT TRANSFORM

In order to losslessly recover the input data from the trans-
formed vector, normalisation of the S transform has been
modified:

WHT2×2 = 1√
2

[
1 1
1 −1

]
, S=

[
1
2 1
1
2 −1

]
. (1)

Then the unambiguous integers to integers mapping is pos-
sible thanks to dual rounding operations during the forward
and inverse transformations. 2DWHT2×2 is realized by ap-
plying the previous transform along horizontal and vertical
directions. However, this transformation kernel is less effi-
cient for lossy compression, as it increases the dynamics of
high frequency coefficients.

We introduce here a new technique of lossless 2D
WHT2×2 using directly the formal transform matrix.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Let U2×2 be the input block with:

U2×2 =
[

u0 u1
u2 u3

]
. (2)

Then the block transformedZ2×2 is defined by:

Z2×2 = WHT2×2(U2×2) = W2×2U2×2W2×2 =
[

z0 z1
z2 z3

]
= 1

2

[
u0 +u1 +u2 +u3 u0 +u1−u2−u3
u0−u1 +u2−u3 u0−u1−u2 +u3

]
.

(3)
Let beẐ2×2 the rounding block ofZ2×2 such as:

Ẑ2×2 = Round(Z2×2) =
[

ẑ0 ẑ1
ẑ2 ẑ3

]
=

[
Roundz0 [z0] Roundz1 [z1]

Roundz2 [z2] Roundz3 [z3]

]
.

(4)

Roundzi [.] stands for the rounding operator applied on
zi which can be either downward (b.c ) or upward (d.e )
rounding.

The inverse transform is identical to the forward one.
Ũ2×2 denotes the inverse block transformed ofẐ2×2, and
Û2×2 the rounded block of̃U2×2. Defining a lossless trans-
form impliesÛ2×2 = U2×2 despite the rounding operations.
To achieve that directly in the 2D space, we propose a method
to control the rounding values based on the following parity
functionP(.):

P(x) =
{

o if x odd
e if x even , x∈ N. (5)

Assertingz0 = bz0c+ ε

2 ,ε ∈ {0,1} , and when substitut-
ing it in equation (3),Z2×2 can be expressed as follows:

Z2×2 = 1
2

[
2bz0c+ ε 2(bz0c−u2−u3)+ ε

2(bz0c−u1−u3)+ ε 2(bz0c−u1−u2)+ ε

]
.

(6)
As this point, there are two cases.

Even sum: If P(
3
∑

i=0
ui) = e, thenε = 0 andẐ2×2 = Z2×2 .

It also leads to integer reconstructed values:

ũ0 =
1
2

(4bz0c−2(u1 +u2 +u3)) =
1
2

(2u0) = u0 (7)

andû0 = u0.

Odd sum: If P(
3
∑

i=0
ui) = o. The problem of rounding

Z2×2 is shifted to the problem of roundingε/2 for each
coefficient. Let∆i ∈ {0,1} be the rounding ofε/2 for zi

(∆i = Roundzi

[
ε

2

]
= ε

2 + εi
2 ,εi ∈ {−1,+1}).

Ẑ2×2 =
[
bz0c+∆0 bz0c−u2−u3 +∆1
bz0c−u1−u3 +∆2 bz0c−u1−u2 +∆3

]
= Z2×2 + 1

2

[
ε0 ε1
ε2 ε3

]
.

(8)

Consequently the rebuild coefficients are expressed:

Ũ2×2 = 1
2

[
2(u0− ε)+(∆0 +∆1 +∆2 +∆3)
2u2 +(∆0−∆1 +∆2−∆3)

2u1 +(∆0 +∆1−∆2−∆3)
2u3 +(∆0−∆1−∆2 +∆3)

]
.

(9)

Therefore, the correct reconstruction implies:
∆0 +∆1 +∆2 +∆3 = 2ε = 2
∆0 +∆2 = ∆1 +∆3
∆0 +∆1 = ∆2 +∆3
∆0 +∆3 = ∆1 +∆2

(10)

Clearly the equations system on∆i values cannot be
solved and no systematic rounding, as for the S transform,
enables an exact reconstruction.

The alternative relies in controlling the rounding opera-
tions, i.e. the decoding process can distinguish from inte-
ger to non integer reconstructed value. Fixing{∆i} so that

P(
3
∑

i=0
∆i) = o, produces only real values for ˜ui coefficients. If

we consider that
3
∑

i=0
∆i = 1, then:

∆0 +∆1 +∆2 +∆3 = 1 ⇒ 4ε

2 + ε1
2 + ε2

2 + ε3
2 + ε3

2 = 1
⇒ ε0 + ε1 + ε2 + ε3 =−2.

(11)
For instance, the set{ε0 = 1, ε1 = ε2 = ε3 =−1} is one

solution for condition in (11). With a such choice, the inverse
transform is finally realized in two simple steps:

1. ComputeŨ2×2 = WHT(Ẑ2×2).
2. If ũi is real, then compute new̃U2×2 such as:

Ũ2×2 = WHT

(
Ẑ2×2− 1

2

[
1 −1
−1 −1

])
. (12)

It can be easily verified that̃U2×2 = U2×2 in all cases.

3. LOSSLESS CODING WITH THE RWHT+P
PYRAMID

Notations: I(i, j) denotes the pixel in an im-
age I with the coordinates (i, j), I(bN(i, j)) the
block bN(i, j) in I including the set of pixels
{I(N.i,N. j), . . . I(N.i +N−1,N. j +N−1)}.

3.1 The RWHT pyramid

We introduce the pyramid{Yl}Lmax
l=0 as the multiresolution

representation of an imageI of sizeNx×Ny, whereLmax is
the top of the pyramid andl = 0 the full resolution image.
As for the classicalWHT2×2 case, we iteratively construct
the pyramid gathering four blocks to form a mean block at
the upper level:

∣∣∣∣ l = 0, Y0(i, j) = I(i, j);
l > 0, Yl (i, j) =

⌊
1
4 ∑1

k=0 ∑1
m=0Yl−1(2x+k,2y+m)

⌋
(13)

with 0 ≤ i ≤ Nl
x, 0 ≤ j ≤ Nl

y, where Nl
x = Nx/2l and

Nl
y = Ny/2l .
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The top-down decomposition of the pyramid consists in
encoding theRWHT block transformedZl (b2(i, j)) of each
input blockYl (b2(i, j)). From (3) and (13), we get:

Yl+1(i, j) =
⌊

z0l
(2i,2 j)
2

⌋
⇒ z0l (2i,2 j) = 2×Yl+1(i, j)+ εz0l

(2i,2 j),εz0l
(2i,2 j) ∈ {0,1} .

(14)
Then, theDC component of each block is unambiguously re-
constructed from the upper level plus an additional bit. This
bit is separately encoded from the other coefficients. Let
Żl (b2(i, j)) be the WHT transformed block ofYl (b2(i, j))
with only this bit as continuous component (˙z0l = εz0l

), then
the reconstruction from the previous level and current WHT
transform is given by:

Ỹl (b2(i, j)) = EXPAND(Yl+1(i, j))+ ˜̇Yl (b2(i, j))
with ˜̇Yl (b2(i, j)) = WHT−1

2×2

(
Żl

(
b2 (i, j)

))
.

(15)

The expand function only duplicates a node value in the
tree to its four sons.

At this step, we get a common pyramidal representation
and encoding based onWHT2×2 transforms, but with the ex-
ception of a possible lossless decomposition. Table 1 gives
zero-order entropy values for lossless compression with both
the S and the proposed RWHT transforms. Top level has
been encoded for the two methods by a simple DPCM. Fig-
ures show that the proposed method gives compression im-
provements while generalising the lossy 2D WHT kernel to
lossless coding.

3.2 Quadtree decomposition

In some previous works, we have investigated some coding
schemes based on variable block size representations leading
to efficient compression at both low and high bit rates [1].
We will demonstrate that this concept in a lossless coding
context also provides significant improvements.

A quadtree partition implies that the whole image is split
into squares of sizeN×N, with N = 2k andk a positive inte-
ger. The previous pyramid representation involving a diadic
decomposition is generally associated to a multilevel quatree
partitionQP[2Lmax...2l ] where the levell of the pyramid speci-
fies also the finest resolution. More generally, we consider a
global quadtree partition of the imageQP[Nmax...Nmin] defining
allowed block sizes, and the parameterNl ∈ [Nmax. . .Nmin]
giving the upper limit of block sizes to be decomposed at
level l of the pyramid. For instance, a global partition
QP[32...2] leads to encode only the representation from sizes
32 to 2, whileN0 = 4 means that blocks of sizes 4 and 2 will
be decomposed at level 0.

Finally, a last decomposition paramaterLmin specifies the
last level to be encoded: for all level lower thanLmin, value
of all nodes in the pyramid are only expanded.

The image partition is constructed from the local activity,
which is estimated by a morphological gradient (difference
betweenmaxandmin values) within blocks. Then, the first
decomposition pass in the pyramid consists in refining only
small blocks located on contours, according to the following
expression:

Ỹl (b2(i, j)) =


EXPAND(Yl+1(i, j))+ ˜̇Yl (b2(i, j)),

if b2(i, j) /∈QP[Nmax...Nl [ and l≥ Lmin

EXPAND(Yl+1(i, j)) otherwise
with l < Lmax

(16)
Ỹl (b2(i, j)) stands for the reconstructed blocks ofYl (b2(i, j)).

Figure 1 gives the global coding on this model for the
first pass, calledC1 coder.

Y     l

].. minN[Nl

WHT2x2

WHT2x2
-1⊗++⊗++

l< Lmin l≥Lmin

Coder
Entrop

Coder C1

Expand

Z     l
].. minN[Nl

.

~
Y   l

].. minN[Nl

Y     l+1

~

Exp(Y            )    l+1

[.. lN[Nmax~

Y     l

~

Exp(Y           )    l+1

].. minN[Nl~

E     l

].. minN[Nl

Exp(Y    )    l+1

~

Figure 1: Simple pyramidal coder

The second pyramid pass consists in decomposing all
blocks at the current level which have not be encoded dur-
ing the first pass, processing local texture information.

The quadtree decomposition use has several advantages:

1. it doubles the number of decomposition levels (2×Lmax),
increasing the scalability,

2. good quality images are available at low bit rates,
3. the approach acts as an “objective context modeling”,

decorrelating error prediction laws between high entropy
features during the first pass, and low entropy ones dur-
ing the final pass.

3.3 Prediction in the RWHT pyramid

Prediction and interpolation are closed functions in the spa-
tial domain but with different objectives: the first one tries
to optimize the compression by limiting the prediction er-
ror, while the second one tends to increase image quality and
resolution. A good predictor does not necessarily leads to a
good interpolator and vice-versa. Both functions are useful
in our coding scheme. In particular, a decomposition level
during the first pass require both prediction for decomposed
blocks to encode and interpolation for the other blocks to
smooth homogeneous areas. Therefore, we propose an uni-
fied framework for the two functions as an unique estimation
process. In the following,̆Yl (b2(i, j)) will denote the recon-
structed blocks ofYl (b2(i, j)). Then, the estimation process
consists in a linear rebuilding of unknown values around their
block mean, exploiting both inter and intra levels information
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Entropy (bpp)
Image Raw S RWHT CALIC S+P RWHT+P RWHT+P Qd

Barbara2 7.51 5.45 5.47 4.93 5.04 5.06 4.89
Hotel 7.57 5.11 5.09 4.57 4.97 4.83 4.60
Lena 7.44 4.77 4.75 4.33 4.33 4.30 4.19
Gold 7.60 5.08 5.06 4.65 4.73 4.73 4.63

Peppers 7.57 4.89 4.87 4.58 4.67 4.54 4.43
us 4.84 3.65 3.64 3.60 3.78 3.78 3.26

tools 7.52 5.95 5.95 5.53 5.73 5.71 5.50
Average 7.15 4.99 4.97 4.60 4.75 4.71 4.49

Table 1: Comparison of the proposed approaches with state-of-the-art methods. First-order entropy (bit/pixels).

in a 2D context.∣∣∣∣∣∣∣∣∣∣∣

Initialization :
Y̆l (b2(i, j)) = Ỹl+1(i, j),∀(i, j) ∈ Ỹl+1

Estimation:
Y̆l (2i +k,2 j +m) =

Ỹl+1(i, j)+βm
(
Y̆l (2i +k,2 j−1+3m)−Ỹl+1(i, j)

)
+βk

(
Y̆l (2i−1+3k,2 j +m)−Ỹl+1(i, j)

)
,(k,m) ∈ {0,1}2 .

(17)
βm andβk the weights applied on the local gradients.

Without any quantization step, the neighbour value dif-
fers depending on the configuration and corresponds to:
• an exactly reconstructed value (already processed posi-

tion at the current level with exact coding),
• a block mean value (not yet processed position at the cur-

rent level),
• an interpolated value (previous processed position but not

encoded).
In this last case, an inter-dependency exists as the neighbour
value has been partially computed from the current block
mean. It induces a relationship between theβ coefficients
for two adjacent positions of two blocks. For instance, for
two close positions(2i,2 j) and(2i−1,2 j), and looking only
at horizontal relationships, expression 17 gives:∣∣∣∣∣∣∣∣∣∣∣∣

Y̆l (2i,2 j) =
Ỹl+1(i, j)+β0

(
Y̆l (2i−1,2 j)−Ỹl+1(i, j)

)
Y̆l (2i−1,2 j) =

Ỹl+1(i−1, j)+β1
(
Y̆l (2i,2 j)−Ỹl+1(i−1, j)

)
⇒ Y̆l (2i,2 j) =

Ỹl+1(i, j)+β0
(
Ỹl+1(i, j)−Ỹl+1(i−1, j)

)
(β1−1)

(18)
Moreover, if we impose a symmetrical gradient such as:(

Y̆l (2i−1,2 j)−Ỹl+1(i−1, j)
)

=−
(
Y̆l (2i,2 j)−Ỹl+1(i, j)

)
,

(19)
it leads to the relationship:

β0 =
β1

1−β1
,β1 ∈ [0,0.5]. (20)

The estimation effect can be calibrated byβ1 value.

• for β1 = 0,Y̆l (2i,2 j) = Ỹl+1(i, j): estimation has no effect
(block rebuild by its average value),

• for β1 = 0.25, Y̆l (2i,2 j)− Ỹl+1(i, j) = Ỹl+1(i − 1, j)−
Y̆l (2i−1,2 j): the slot is regular between the two recon-
structed points (smoothes the image),

• for β1 = 0.5, Y̆l (2i,2 j) = Y̆l (2i−1,2 j): adjacent recon-
structed points are identical (accentuates the contours).

Actually, the smoothing mode (β1 = 0.25) provides the best
prediction in our experiments.

Figure 2 shows new coding schemes including the es-
timation stage.C2 coder uses only inter-level relationships
and can be useful for progressive reconstruction (resolution
enhancement can be directly done from a previously inter-
polated image from the previous level).C3 coder capitalizes
also reconstruted values at the current level, and obviously
leads to better compression performances.

l<L_min l≥L_min

EstimEstim Estim

⊗+
-

3for C
 Only ⊕ WHT2x2

-1

WHT2x2

Coder
Entrop

E     l

].. minN[Nl

Expansion.

Y     l+1

~

Exp(Y    )    l+1

~

Exp(Y            )    l+1

[.. lN[Nmax~ Exp(Y           )    l+1

].. minN[Nl~

Y   l

].. minN[Nl

(
Y   l

].. minN[Nl

Y     l

[.. lN[Nmax~
Y     l

].. minN[Nl~

Y     l

~

Coder C2 & C3

Figure 2: Pyramidal coder with prediction step

Lossless compression results are given in table 1. We
have compared the proposed method with the state-of-the-art
“CALIC” (non scalable) and “S+P” (scalable). The choice
of “S+P” instead of another integer wavelets kernel has been
motivated by the fact it remains one of the best and also be-
cause an open source coder exists and enables reliable com-
parisons before the entropic coding layer.

The “RWHT+P” configuration corresponds to theC3
mode without partition (only one pass for the decomposi-
tion). “RWHT+P & Qd” involves a partitionQP[64...2] with
N0 = 2 andNl = 2l otherwise. We can notice that the laws
separation for symbols to encode occuring with the quadtree
decomposition, widely offsets the coding cost of its structure:
this configuration outperforms both “S+P”and “CALIC”.

To illustrate the “semantic” scalabity of our approach,
figure 3 shows some intermediate rebuild images from ini-
tial to final steps. For six levels of decomposition, the whole
lossless image encoding implies eleven sucessive streams (
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a)First pass, Lmin = 5 b) First pass, Lmin = 3 c) First pass, Lmin = 1 d) First pass, Lmin = 0
(1 stream): 0.005 bpp (3 streams): 0.073 bpp (5 streams): 0.433 bpp (6 streams): 1.194 bpp

e)Second pass, Lmin = 1 f) Second pass, Lmin = 0 g) Quadtree partition h) Error image x10
(10 streams): 2.014 bpp (11 streams): 3.87 bpp Original (f) - image (d)

Figure 3: Scalable lossless coding on “Zelda” with partitionQP[64...2]

1+ 2×5). It is noticeable that distorsion is essentially due
to a blurring effect, which is less disturbing than blocks or
ringing artifacts. At the end of the first pass, rebuid images
present perfect accuracy upon strong contours while homo-
geneous areas appears as smooth regions.

4. CONCLUSION

The S transform has been primarily developped to introduce
reversibility in the classicWHT2×2. The first part of this
paper has demonstrated that the usual kernel can also offer
this ability with rounding operations based on a parity cri-
teria. The proposedRWHT pyramidal decomposition offer
slightly better lossless compression performances than S.

Two main other originalities have been also presented
leading to additional decorrelation, and further significant
improvements: a content-based pyramidal decomposition,
and a prediction step. The global scalable coding scheme sur-
passes both S+P and CALIC. It also provides locally adap-
tive multiresolution representations for good quality images
rebuilding at low bit rates.

Actually, this coding scheme has also proved to be effi-
cient for lossy low bit rates compression by introducing er-
rors quantization adapted to the content: fine quantization
for large blocks (human eye more sensitive to luminance dif-
ferences in uniform areas) and coarse quantization for small
blocks (human eye less sensitive upon contours).

One direct application of this work is definition of an
archiving system for high resolution art pictures of the Lou-
vre’s museum. This digital library will provide a selective
access with different quality of images (project “TSAR” sup-
ported by the French ministry of research).
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