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ABSTRACT
In this paper, we focus on convolutive mixtures, expressed in
the time-domain. We present a method based on the mini-
mization of the mutual information and using wiener filter-
ing. Separation is known to be obtained by testing the in-
dependence between delayed outputs. This criterion can be
much simplified and we prove that testing the independence
between the contributions of all sources on the same sensor
at same time index also leads to separability. We recover the
contribution by using Wiener filtering (or Minimal Distortion
Principal) which is included in the separation procedure. The
independence is tested here with the mutual information. It
is minimized only for non-delayed outputs of the Wiener fil-
ters. The test is easier and shows good results on simulation.

1. INTRODUCTION

Blind source separation (BSS) is a method for recovering a
set of unknown source signals from the observation of their
mixtures. Among open issues, recovering the sources from
their linear convolutive mixtures remains a challenging prob-
lem. Many solutions have been addressed in the frequency-
domain, particularly for the separation of non-stationaryau-
dio signals. In the BSS of stationary signals, two problems
remain open in the time-domain. It has been proved [1] that
convolutive mixtures are separable, that is, the independence
of the outputs insures the separation of the sources, up to
a few indeterminacies. However, the meaning of the inde-
pendence is not the same in convolutive and instantaneous
contexts. In the convolutive context, the outputs have to be
independent in the sense of stochastic processes [2] which
requires the independence of the random variablesyi(n) and
y j(n−m) for all discrete timesn andm. The independence
criteria are therefore more complicated and computationally
expensive. Several ideas are given in [3, 4] to test the in-
dependence in function of time delaysm, using the mutual
information criterion. The second problem is coming from
the inherent indeterminacy of the definition of a source in the
BSS model. Indeed, any linear transform of a source can also
be considered as a source and there is an infinity of separa-
tors that can extract sources. Some constraints can be added
either on the source signals (they are usually supposed to be
normalized) or on the separator system (Minimal Distortion
Principal [5]). In [5], one proposition is to choose the separa-
tor which minimizes the quadratic error between sensors and
outputs, also known as Wiener filter. In this paper, we deal
with convolutive mixtures and express the model in the time-
domain. In this paper, we consider an example of convolutive
mixing model withp inputs andp outputs. We are only inter-
ested in the contribution of thesep sources recorded on each

sensor. These signals are uniquely defined, which removes
the filter indeterminacy. It can also help to simplify the in-
dependence criterion and we prove in this paper that testing
the independence between the contributions of all sources on
the same sensor at same time indexn also leads to separa-
bility. We recover these contributionszi(n) by using Wiener
filters which are included in the separation procedure. The
independence criterion is therefore less complicated as itre-
quires only the independence between the outputszi(n) and
zj(n) (and no moreyi(n) andy j(n−m)). The mutual infor-
mation is used here and shows good results on simulation.

2. MODELING THE OBSERVED SIGNALS

Let us consider the standard convolutive mixing model with
M inputs andM outputs. Each sensorx j(n) ( j = 1, . . . ,M)
receives a linear convolution (noted∗) of each sourcesi(n)
(i = 1, . . . ,M) at discrete timen :

x j(n) =
M

∑
i=1

h ji ∗si(n). (1)

wherehi j represents the impulse response from sourcei to
sensorj. The inverse of mixing filters are not necessarily
causal, therefore the aim of BSS is to recover non-causal fil-
ters with impulse responsesfi j between sensori and output
j, such that the output vectory(n) estimates the sources, up
to a linear filter :

y j(n) =
M

∑
i=1

L

∑
k=−L

f ji (k)xi(n−k). (2)

Any linear transform of a source can also be considered as a
source and there is an infinity of separatorsfi j that can ex-
tract sources. We focus here on the estimation of the signals
hi j ∗ si(n), coming from sourcei on sensorj. These signals
are uniquely defined, which removes the filter indeterminacy.
Let the model be ap sources,p sensors scheme . For sake
of simplicity, we call here sources thep contributions on the
first sensor. Therefore,x1(n) is equal to :

x1(n) = s1(n)+s2(n)+ . . .+sp(n). (3)

Let y1(n), y2(n),. . . ,yp(n) be p outputs of the BSS :

y j(n) =
p

∑
i=1

L

∑
k=−L

g ji (k)si(n−k). (4)

wheregi j = fi j ∗hi j represents the global filter.
If y j(n) is any linear filtering of only one source, than
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the contribution of this source on the first sensor is cal-
culated by an (eventually non causal) Wiener filterWj(z)
such that the quadratic error betweenx1(n) and y j(n) :

E
{

∣

∣x1(n)−w j ∗y j(n)
∣

∣

2
}

is minimized (1). Thep contri-

butions of the sources on the first sensor are so given by :

zj(n) =
p

∑
i=1

L

∑
k=−L

wj(k)yi(n−k). (5)

where the Discrete Fourier Transforms (DFT) of the Wiener
filters w j(k) are computed in function of the cross-spectra
γY jX1( f ) of x1(n) andy j(n), andγY j( f ) the spectra ofy j(n):

W1( f ) =
γY1X1( f )
γY1( f )

W2( f ) =
γY2X1( f )
γY2( f )

W3( f ) =
γY3X1( f )
γY3( f )

...

Wp( f ) =
γY pX1( f )

γY p( f )
.

(6)
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Figure 1: Demixing and separating system.

3. SEPARABILITY OF THE SOURCE
CONTRIBUTIONS ON ONE SENSOR

In specific cases, testing the independence between
y1(n),y2(n),y3(n), . . . , andyp(n) is sufficient [7] to ensure
the separation. For example, for i.i.d. normalized sources,
the sum of fourth-order cumulants of the outputs is a con-
trast function [8] under a condition on separating filters [7].
For linear filtering of i.i.d. signals, the same result is ob-
tained after a first step of whitening of the data. How-
ever, in a general case, delays must be introduced in the
contrast function, the separability of convolutive mixtures
is obtained only when the components of the output vector
y(n) are independent in the sense of stochastic variables :
y1(n),y2(n−m1),y3(n−m2), . . . ,yp(n−mp−1) have to be in-
dependent for all discrete time delaysm1,m2, . . . ,mp−1. For
example, a solution is to minimize the criterionJ :

J = ∑
m1

∑
m2

. . . ∑
mp−1

I(y1(n),y2(n−m1), . . . ,y2(n−mp−1)).

(7)
whereI represents the mutual information (8).I is nonnega-
tive and equal to zero if and only if the components are sta-
tistically independent.

I(y) =
∫

R
py(y) ln











py(y)
p

∏
i=1

pyi(yi)











dy. (8)

The delaysm1,m2, . . . ,mp−1 can be taken in an a priori
set [−K, . . . ,K], which depends on the degree of the fil-
ters corresponding to the whole mixing-separating system.
The criterion (7) is computationally expensive. In [3], a
gradient-based algorithm minimizes (7) : at each time itera-
tion, a random value of delaym1,m2, . . . ,mp−1 is chosen and
I(y1(n),y2(n−m1),y3(n−m2), . . . ,yp(n−mp−1)) is used as
the current separation criterion.
We propose to study here the separability ofz1(n),z2(n), . . . ,
andzp(n) (5) versusy1(n),y2(n), . . ., andyp(n) wherezj(n)
is linked toy j(n) by wiener filtering (5)(6).
We will show that it is simpler and that no time delay(n−m)
with m = i, . . . , p− 1 is needed. Suppose now any out-
puts y1(n),y2(n), . . . ,and yp(n). To ensure the separation,
it is necessary (but not sufficient) that the mutual informa-
tion I(y1(n),y2(n), . . . ,yp(n)) is zero. Then two cases can
happen. If each outputy j(n) only depends on one differ-
ent source, the outputs(y1(n),y2(n), . . . ,yp(n)) are also in-
dependent in the sense of stochastic processes (the separa-
tion has been effected) and so are forz1(n),z2(n), . . . , and
zp(n). In that case, we haveI(y1(n),y2(n), . . . ,yp(n)) = 0,
I(z1(n),z2(n), . . . ,zp(n)) = 0 and the separation is obtained.
In the second case, the outputsy j(n) can be independent
(I(y1(n),y2(n), . . . ,yp(n)) = 0 at time delay 0) but remain
mixtures of sources. For example, in the case of i.i.d sources,
the p following outputsy j(n) are independent (9):

y1(n) = s1(n)+s2(n)+ . . .+sp(n)
y2(n) = s1(n−1)+s2(n−1)+ . . .+sp(n−1)

...
yp(n)= s1(n− (p−1))+s2(n− (p−1))+ . . .+

sp(n− (p−1)).

(9)

It occurs (typically for i.i.d. sources) when one source is
common in thep outputs but with two different time index
(n−n0) and(n−n1). In that case,y j(n) are independent but
surely not the components ofzj(n) =Wi(z)y j(n), as common
time index can appear after linear filtering. It can be seen in-
tuitively, since Wiener filtering aims at the maximization of
the correlation betweenz1(n) andx1(n) (respectivelyz2(n)
andx1(n), . . . ,zp(n) andx1(n)). We will prove theoretically
that indeedz1(n),z2(n), . . . ,zp(n) cannot be independent in
that case and thatI(y1(n),y2(n), . . . ,yp(n)) is not equal to
zero. The separation is not achieved in that second case.
As a consequence, the only solution to perform BSS is to
test the cancellation of bothI(y1(n),y2(n), . . . ,yp(n)) and
I(z1(n),z2(n), . . . ,zp(n)) at same time indexn.
To describe the second case, we suppose that
y1(n),y2(n), . . . ,yp(n) are mixtures of sources and that
I(y1(n),y2(n), . . . ,yp(n)) = 0. z1(n),z2(n), . . . , and zp(n)
are deduced fromy1(n),y2(n), . . . ,yp(n) by Wiener filter-
ing (figure 1) and are also mixtures of sources. Let be
Z1( f ),Z2( f ), . . ., andZp( f ), their DFT’s :

Z1( f ) = W1( f )Y1( f )
Z2( f ) = W2( f )Y2( f )

...
ZP( f ) = WP( f )YP( f ).

(10)

They are of the form (10)(12) where the transfer functions
W1( f ),W2( f ), . . ., and Wp( f ) of the Wiener filters are
expressed in function of the DFT of filtersgi j (k),G ji ( f ),
and the source spectra (11) :
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(To simplify the equations, we replaceGi j ( f ) by Gi j , γsi( f )
by γsi, andγYi( f ) by γYi).

W1( f ) =
Ḡ11γs1 + Ḡ12γs2 + . . .+ Ḡ1pγsp

γY1

W2( f ) =
Ḡ21γs1 + Ḡ22γs2 + . . .+ Ḡ2pγsp

γY2
...

Wp( f ) =
Ḡp1γs1 + Ḡp2γs2 + . . .+ Ḡppγsp

γY p
.

(11)

Z1( f ) =
|G11|

2 γs1 +G11Ḡ12γs2 + . . .+G11Ḡ1pγsp

γY1
S1( f )

+
G12Ḡ11γs1 + |G12|

2 γs2 + . . .+G12Ḡ1pγsp

γY1
S2( f )

...

+
G1pḠ11γs1 + Ḡ12G1pγs2 + . . .+

∣

∣G1p
∣

∣

2 γsp

γY1
Sp( f )

Z2( f ) =
|G21|

2 γs1 +G21Ḡ22γs2 + . . .+G21Ḡ2pγsp

γY2
S1( f )

+
G22Ḡ21γs1 + |G22|

2 γs2 + . . .+G22Ḡ2pγsp

γY2
S2( f )

...

+
G2pḠ21γs1 +G2pḠ22γs2 + . . .+

∣

∣G2p
∣

∣

2 γsp

γY2
Sp( f )

...

...

Zp( f ) =

∣

∣Gp1
∣

∣

2 γs1 +Gp1Ḡp2γs2 + . . .+Gp1Ḡppγsp

γY p
S1( f )

+
Gp2Ḡp1γs1 +

∣

∣Gp2
∣

∣

2 γs2 + . . .+Gp2Ḡppγsp

γY p
S2( f )

...

+
GppḠp1γs1 +GppḠp2γs2 + . . .+

∣

∣Gpp
∣

∣

2 γsp

γY p
Sp( f ).

(12)
zj(n) is a linear filtering ofs1(n),s2(n), . . . , and sp(n) as
y1(n),y2(n), . . . , andyp(n). Call ui j (k), the new mixing fil-
ters between the sourcessi(n) and the signalszj(n): ui j (k) =
[wj ∗gi j ](k) where∗ stands for the linear convolution.zj (n)
are expressed as :

zj(n) =
p

∑
i=1

L

∑
k=−L

ui j (k)si(n−k). (13)

The p signalsz1(n),z2(n), . . . , andzp(n) cannot be indepen-
dent (I(z1(n),z2(n), . . . ,zp(n)) is not zero) if it exists non
zero coefficientsu11(k),u12(k), . . . , andu1p(k) for common
time delaysk. And, at least, we prove that one coefficient,
ui j (k)(0), is non zero. Suppose that the DFT is computed on
N time samples :

u11(0) =
N−1

∑
f=0

|G11|
2 γs1 +G11Ḡ12γs2 + . . .+G11Ḡ1pγsp

γY1
.

(14)

|u11(0)|2 =

(

∑
f
|G11|

2 γs1

γY1

)2

+

∣

∣

∣

∣

∣

∑
f

G11Ḡ12γs2 + . . .+G11Ḡ1pγsp

γY1

∣

∣

∣

∣

∣

2

+∑
f

|G11|
2 γs1

γY1

(

∑
f

Ḡ11G12γs2 + . . .+ Ḡ11G1pγsp

γY1

)

+∑
f
|G11|

2 γs1

γY1

(

∑
f

G11Ḡ12γs2 + . . .+G11Ḡ1pγsp

γY1

)

.

(15)
If the third term and the fourth term of the sum
are positive or null, thenu11(0) cannot be null. If
they are negative,(u11(0))2 is always superior to a
strictly positive value (16). Similar computations can
be done withu12(0), . . . ,u1p(0),u21(0), . . . ,u2p(0), . . . , and
up1(0), . . . ,upp(0).

|u11(0)|2 ≥

(

∑
f
|G11|

2 γs1

γY1

)2

+

∣

∣

∣

∣

∣

∑
f

G11Ḡ12γs2 + . . .+G11Ḡ1pγsp

γY1

∣

∣

∣

∣

∣

2

−∑
f
|G11|

2 γs1

γY1

(
∣

∣

∣

∣

∣

∑
f

Ḡ11G12γs2 + . . .+ Ḡ11G1pγsp

γY1

∣

∣

∣

∣

∣

)

−∑
f

|G11|
2 γs1

γY1

(
∣

∣

∣

∣

∣

∑
f

G11Ḡ12γs2 + . . .+G11Ḡ1pγsp

γY1

∣

∣

∣

∣

∣

)

.

|u11(0)|2 ≥

∣

∣

∣

∣

∣

∑
f
|G11|

2 γs1

γY1
−

∣

∣

∣

∣

∣

∑
f

G11Ḡ12γs2 + . . .+G11Ḡ1pγsp

γY1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

.

(16)
Therefore, for any outputs(y j(n)) j=1,...,p which verify
I(y1(n),y2(n), . . . ,yp(n)) = 0, then after Wiener filter-
ing projected on the same sensor (here the first one)
I(z1(n),z2(n), . . . ,zp(n)) is non zero. The only exception
concerns the outputsy j(n) which depend on one source
and it means that the separation has been achieved. As
a consequence, testingI(y1(n),y2(n), . . . ,yp(n)) = 0 and
I(z1(n),z2(n), . . . ,zp(n)) = 0, ensures the separability. The
criterion is much more easier to test than the mutual infor-
mation of delayed outputs as it can be verified in an iterative
way. Moreover the outputs are directly the contribution of
the sources on the processed sensor.

4. SEPARATING ALGORITHM AND
SIMULATIONS

Let us consider a convolutive mixing model with two
inputs and two outputs. The final separating algorithm for
convolutive mixtures is based here on the minimization of
the mutual information using the score function which is the
gradient of the mutual information [3] but the previous proof
of separability could be exploited with another independence
test.

Initialization : y(n) = x(n)
Repeat until convergence :
• Estimate the score function difference betweeny1(n) and
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y2(n) : β (y1(n),y2(n))
• Update:y(n)← y(n)− µβ (y1(n),y2(n))
• Compute the Wiener filtersWi(z), and the contributions :

zj(n) = Wi(z)y j(n)
• Replace :y(n)← z(n)

The performance for two sources and two observations are
shown in figures 2 and 3 with simulations results. Each
source (of 1500 samples) is constituted of the sum of a uni-
form random signal and a sinusoid. They are mixed with
filters :

H(z) =

[

1+0.2z−1+0.1z−1 0.5+0.3z−1+0.1z−1

0.5+0.3z−1+0.1z−1 1+0.2z−1+0.1z−1

]

The mutual information (betweenz1(n) andz2(n)) and the
quadratic error betweenz1(n) and the exact contribution are
plotted in fig.2 and 3 with marks, for each iteration. They
are averaged on 50 realizations of the sources. It shows good
results for the convergence speed and the residual quadratic
error. The results can still be improved by adding some
constraints. Indeed, four contributions must be computed
in this scheme by projectingy1(n) (respectivelyy2(n)) on
the two sensors:z11(n),z21(n) (respectivelyz12(n),z22(n)).
The convergence speed is increasing by adding the mutual
information between the projections on the second sensor
I(z21(n),z22(n)) to I(z11(n),z12(n)) (as previously) in the
minimization. The results are displayed in figures 2 and 3 in
solid line and show the increasing of the convergence.

0 5 10 15 20 25 30
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0.3

0.4

0.5

0.6

0.7

Figure 2: Mutual information versus iterations.
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Figure 3: Quadratic error between the contribution of one
source on the first sensor and its estimate, versus iterations.

Therefore, the new algorithm is:

Initialization : y(n) = x(n)
Repeat until convergence :

• Estimate the score function difference between
β (z11(n),z12(n)),β (z21(n),z22(n))
• Update:

y(n)← y(n)− µ [β (z21(n),z22(n))+ β (z11(n)z12(n))]
• Compute the Wiener filtersWi j (z), and the contributions:

zi j (n) = Wi j (z)y j (n)
• Replace :y(n)← [z11(n),z12(n)]

5. CONCLUSION

In this paper, we focus on the separability of convolutive mix-
tures, expressed in the time-domain. In the convolutive con-
text, the outputsyi(n) have to be independent in the sense
of stochastic processes which requires the independence of
yi(n) andyi(n−m) for all discrete timesn andm. The in-
dependence criteria are therefore complicated and computa-
tionally expensive. The criterion has been simplified as we
recover only the contribution of all sources on all sensors,by
using Wiener filtering (or Minimal Distortion Principal). It
has been proved that testing the independence between these
contributions on the same sensor also leads to separability,
without testing an independence test of delayed outputs. The
criterion is easier to test and is implemented here by min-
imizing the mutual information of the outputs after Wiener
filtering. The experiments show its efficiency, it shows good
results on simulation and experimental signals for the sepa-
ration of piston slap and combustion in diesel engine [6].
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