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ABSTRACT sensor. These signals are uniquely defined, which removes

In this paper, we focus on convolutive mixtures, expressed ithe filter indeterminacy. It can also help to simplify the in-
the time-domain. We present a method based on the minflependence criterion and we prove in this paper that testing
mization of the mutual information and using wiener filter- the independence between the contributions of all sources on
ing. Separation is known to be obtained by testing the inthe same sensor at same time indealso leads to separa-
dependence between delayed outputs. This criterion can tsdlity. We recover these contributiozg(n) by using Wiener
much simplified and we prove that testing the independenciéters which are included in the separation procedure. The
between the contributions of all sources on the same sensiiidependence criterion is therefore less complicatedras it

at same time index also leads to separability. We recover th@uires only the independence between the outpts and
contribution by using Wiener filtering (or Minimal Distortio ~ zj(n) (and no morey;(n) andy;(n—m)). The mutual infor-
Principal) which is included in the separation proceduree Th mation is used here and shows good results on simulation.
independence is tested here with the mutual information. It

is minimized only for non-delayed outputs of the Wiener fil- 2. MODELING THE OBSERVED SIGNALS

ters. The test is easier and shows good results on simulatiopg 5 consider the standard convolutive mixing model with

M inputs andM outputs. Each senseg(n) (j =1,...,M)
1. INTRODUCTION receives a linear convolution (notedl of each source;(n)

Blind source separation (BSS) is a method for recovering & = 1,...,M) at discrete time :

set of unknown source signals from the observation of their "

mixtures. Among open issues, recovering the sources from xi(n) = S hii *s(n) @

their linear convolutive mixtures remains a challengingipr = iZl ji*Sn).

lem. Many solutions have been addressed in the frequency- B

domain, particularly for the separation of non-statiorauty ~ whereh;j represents the impulse response from source

dio signals. In the BSS of stationary signals, two problemsensorj. The inverse of mixing filters are not necessarily
remain open in the time-domain. It has been proved [1] thatausal, therefore the aim of BSS is to recover non-causal fil-
convolutive mixtures are separable, that is, the indeperele ters with impulse responsdg between sensarand output

of the outputs insures the separation of the sources, up tg such that the output vectgtn) estimates the sources, up

a few indeterminacies. However, the meaning of the indeto a linear filter :

pendence is not the same in convolutive and instantaneous ML

contexts. In the convolutive context, the outputs have to be (n) = 51 (k)% (N —K) @)
independent in the sense of stochastic processes [2] which yith) = i;k_ L JAVA '

requires the independence of the random variagles and T

yj(n—m) for all discrete times andm. The independence Any linear transform of a source can also be considered as a
criteria are therefore more complicated and computatipnal source and there is an infinity of separatdsthat can ex-
expensive. Several ideas are given in [3, 4] to test the intract sources. We focus here on the estimation of the signals
dependence in function of time delays using the mutual  h;j x s (n), coming from sourcé on sensojj. These signals
information criterion. The second problem is coming fromare uniquely defined, which removes the filter indeterminacy.
the inherent indeterminacy of the definition of a source & th Let the model be @ sourcesp sensors scheme . For sake
BSS model. Indeed, any linear transform of a source can alsgf simplicity, we call here sources tigecontributions on the

be considered as a source and there is an infinity of separfirst sensor. Thereforey (n) is equal to :

tors that can extract sources. Some constraints can be added

either on the source signals (they are usually supposed to be X1(n) =s1(N) +$2(n) + ... 4 sp(N). 3)
normalized) or on the separator system (Minimal Distortion

Principal [5]). In [5], one proposition is to choose the sepa  L€tY1(n), y2(n),. ..
tor which minimizes the quadratic error between sensors and b L

outputs, also known as Wiener filter. In this paper, we deal ) — s (N —

with convolutive mixtures and express the model in the time- yi(m) i;kngJ' (ks (n—k). @
domain. In this paper, we consider an example of convolutive

mixing model withp inputs andp outputs. We are only inter- whereg;j = fjj « hjj represents the global filter.

ested in the contribution of thegesources recorded on each If yj(n) is any linear filtering of only one source, than

,Yp(n) be p outputs of the BSS :
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the contribution of this source on the first sensor is cal-The delaysmy,mp,...,mp_1 can be taken in an a priori
culated by an (eventually non causal) Wiener fiNg(z)  set [-K,...,K], which depends on the degree of the fil-
such that the quadratic error betwerp(n) andy;(n) :  ters corresponding to the whole mixing-separating system.
o 12 e i . The criterion (7) is computationally expensive. In [3], a
E{,‘Xl(n) w; ()| } 1S m|rT|m|zed (1). Thep Fontr| gradient-based algorithm minimizes (7) : at each time itera
butions of the sources on the first sensor are so given by : tjon, a random value of delayy,my, ..., m, 1 is chosen and
I(y1(n),y2(n—my),ys(N—Mp),...,yp(N—My_1)) is used as
Z wi (K)yi (n— k). 5) the current separation criterion. N
Z i(Kyi We propose to study here the separabilitggh), z(n), ...,
andzp(n) (5) versusy1(n),yz(n), ..., andyp(n) wherez;(n)
where the Discrete Fourier Transforms (DFT) of the Wienetis linked toy; (n) by wiener filtering (5)(6).
filters wj (k) are computed in function of the cross-spectraWe will show that it is simpler and that no time delay— m)

k=—L

VYle(f) of x3(n) andyj( ), andwj( ) the spectra 07]( ): with m=1i,...,p—1 is needed. Suppose now any out-
putsyl(n),yz(n),...,and Yp(n). To ensure the separation,
waixa(f) it is necessary (but not sufficient) that the mutual informa-
Wy (f) = a(f) tion 1(y1(n),y2(n),...,yp(n)) is zero. Then two cases can
Wax1(f) happen. If each outputj(n) only depends on one differ-
Wy (f) = Yea(1) ent source, the outputyi(n),y2(n),...,yp(n)) are also in-
() dependent in the sense of stochastic processes (the separa-
Ws(f) = W3Xl (6) tion has been effected) and so are #pfn),z(n),..., and
Wa(f) zp(n). In that case, we havigyi(n),y2(n),...,yp(n)) =0,
[(z1(n),z2(n),...,Zp(n)) = 0 and the separation is obtained.
W oxa() In the second case, the outpytgn) can be independent
Wp(f) = pgf. (1(y2(n),y2(n),...,yp(n)) = 0 at time delay 0) but remain
Wp(f) mixtures of sources. For example, in the case of i.i.d s@jrce
the p following outputsy;j(n) are independent (9):
L ¥ y1(n) =s1(n) +s2(n) + ... +sp(N)
s1(M—> Mixing *1(n)*Demixing>Y1("-* Wiener -~ 21(") yo(n) =s1(n—1)+s(n—1)+...+Sp(n—1)
: Matrix i Matrix i Filtering|
M= H M E ey W 70 : (9)
Giobal Fiers Yp() = S1(n—(p— 1)) +-52(n— (P~ 1)) +
Figure 1: Demixing and separating system. sp(n—(p—1)).
It occurs (typically for i.i.d. sources) when one source is
3. SEPARABILITY OF THE SOURCE common in thep outputs but with two different time index
CONTRIBUTIONS ON ONE SENSOR (n—ng) and(n—ny). In that casey,( ) are independent but

rely not the components gf(n) =W (2)y;(n), as common
me index can appear after linear filtering. It can be seen in
uitively, since Wiener filtering aims at the maximizatioh o
he correlation betweer (n) andxy(n) (respectivelyz(n)
andxy(n),...,zy(n) andxy(n)). We will prove theoretically
that indeedz; (n),z(n),...,zp(N) cannot be independent in
that case and thdty;(n),y2(n),...,yp(n)) is not equal to

ro. The separation is not achieved in that second case.

s a consequence, the only solution to perform BSS is to
st the cancellation of both(y1(n),y2(n),...,yp(n)) and
71(n),22(N),...,zp(N)) at same time indem.

In specific cases, testing the independence be'twe@;i’rJ
y1(n),y2(n),y3(n),..., andyp(n) is sufficient [7] to ensure
the separation. For example, for i.i.d. normalized soyrce
the sum of fourth-order cumulants of the outputs is a con-
trast function [8] under a condition on separating filters [7
For linear filtering of i.i.d. signals, the same result is ob-
tained after a first step of whitening of the data. How-
ever, in a general case, delays must be introduced in t
contrast function, the separability of convolutive mixsr
is obtained only when the components of the output vectofe
y(n) are independent in the sense of stochastic variablesT(o describe the ocond  case o ose that
y1(n),y2(n—my),y3(n—mp),...,yp(n—my_1) have to be in- sch S e, ~we Suppos

: : ixtures of sources and that
dependent for all discrete time delays, m,,...,my 1. For y(n),y2(n), ..., yp(n) are mix
example, a solution is to minimize the criteridn I(y1(n),¥2(n),....¥p(n) = 0. z1(n), Z(n),..., and zp(n)
are deduced fronyi(n),y2(n),...,yp(n) by Wiener filter-

_ _ ing (figure 1) and are also mixtures of sources. Let be
1= 3 3 N0y mp ). ZES T oz 1), their DFTS
: : . (7) Zy(f) = Wa(f)va(f)
wherel represents the mutual information (8)is nonnega- Zo(f) = Ws(f)Ya(f)
tive and equal to zero if and only if the components are sta- ] (10)

tistically independent. :
Zo(f) = We(f)Yp(f).

By(y) They are of the form (10)(12) where the transfer functions
/py p4 dy. (8)  WA(f),Wx(f),..., and Wp(f) of the Wiener filters are
expressed in function of the DFT of filteg; (k),G;i (),
l_l Pyi(%) and the source spectra (11) :
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(To simplify the equations, we repla@; (f) by Gij, ysi(f)
by ysi, andyi(f) by wi).

_ 611Vs1 + 612V52 +...+ élpVSp

Wi (f) =
Go1ya + G: le+ .+ Gap.
Wo(f) = 21Ys1 222 2pYsp
Y2 (12)
G+ GV ..+ G,
Wo(f) = p1¥sl + GpaYe2 + ...+ pstp.
Wp
Z1(f) = |G11|2V31+G11G12flz+...+G1161stpSl(f)
G12G: G1o|? ...+ G1,G:
| G2 11¥et + G2l Yoo + ... + G2 lpVSpsz(f)
W1
J— J— ) 2
G1pG + G12G +...+|G
" 1pG11Ys1 12G1pYs2 | lp‘ VSpSp(f)
Wi
Zy(f) = |Gzl|2Vs1+621ézi:(/s§+~~.+62162stpSl( )
G22G21Vsl+|G22| Yo .. +G22G2stpSZ( f)
Y2
_ = 5
GG + GG +...+|G
n 2p21Ys1 2p22Ys2 | Zp‘ ySpSp(f)
Y2
Z5(f) ‘Gpl‘ Vs1+Gp1Gp2Vs2+ +Gp1GpstpSl(f)
Wp
GpZGprsl+‘Gp2| Yo f - JrszGpstpSZ( f)
Wp
—_ ._ 2
GpG + GppG +...+1|G
4 2P p1¥s1 + Gpp ;iVs2 |Gpp| ySpSp(f).
p
(12)

zj(n) is a linear filtering ofsy(n),sx(n),..., andsy(n) as
y1(n),y2(n),..., andyp(n). Call ujj(k), the new mixing fil-
ters between the sourcg$n) and the signalg;(n): ujj (k) =
[wj *gij] (k) wherex stands for the linear convolutiog;j (n)

Z Z IJ
k=—

The p signalsz; (n), z(n), ...,
dent ((z1(n),z(n),...,zp(n)) is not zero) if it exists non
zero coefficientsi 1 (K), ur2(K), ..., andugp(k) for common

(13)

andzp(n) cannot be indepen-

= (gerys)

lu1(0)
‘ZGnGleser +GllGlstp
N Z Guaf? Va1 Z G11GraYe + .- +§11G1stp
Wi Wi
N \GMZE G11G12Ye2 + ... + G11G1pYsp 4
Wi Wi
(15)
If the third term and the fourth term of the sum
are positive or null, thenu;;(0) cannot be null. If

they are negative,(u11(0))? is always superior to a
strictly positive value (16). Similar computations can
be done withui»(0),..., Ulp(O), up1(0),..., Uzp(O), ..., and

2
u1(0))? > G L
|uz1(0)] <§| 11| Wi

‘ 11 12V52
; VYl

— 2
+G11G1pYsp

2 Vel G11G1oYe + ... + éllGlstp
- Z |G11|” — Z ol

)
)

(16)

G11G1oy + ... + Gllelpysp

vt (3

Z‘G |2 Ysl ‘Z (311(312V52+ +(311(31pysp

Therefore, for any outputgy;j(n))j—1,..p Which verify
[(y1(n),y2(n),...,yp(n)) = 0, then after Wiener filter-
ing projected on the same sensor (here the first one)
[(z1(n),z2(N),...,Zp(n)) is non zero. The only exception
concerns the outputg;(n) which depend on one source
and it means that the separation has been achieved. As
a consequence, testingy,(n),y2(n),...,yp(n)) = 0 and
[(z1(n),22(N),...,zp(N)) = 0, ensures the separability. The
criterion is much more easier to test than the mutual infor-
mation of delayed outputs as it can be verified in an iterative
way. Moreover the outputs are directly the contribution of
the sources on the processed sensor.

lu11(0)

4. SEPARATING ALGORITHM AND
SIMULATIONS

Let us consider a convolutive mixing model with two

inputs and two outputs. The final separating algorithm for
convolutive mixtures is based here on the minimization of
the mutual information using the score function which is the

time delaysk. And, at least, we prove that one coefficient, gradient of the mutual information [3] but the previous gdroo
uij (k)(0), is non zero. Suppose that the DFT is computed orf separability could be exploited with another indepenéenc

N time samples :

B N-1 |Gll|2 Vo1 + GllG_12V32 +...+ G11G_lpysp
u11(0) = {Z W1 '
=0

(14)

test.

Initialization : y(n) = x(n)
Repeat until convergence:
e Estimate the score function difference betwgem) and
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y2(n) : B(y1(n),y2(n)) Therefore, the new algorithm is:

e Updatey(n) — y(n) — uB(ya(n),y2(n)) o
o Compute the Wiener filteif (z), and the contributions :  Initialization :y(n) = x(n)
zj(n) = W(2)y;j(n) Repeat until convergence :
e Replace y(n) < z(n) . ) .
e Estimate the score function difference between

The performance for two sources and two observations are B(le(n)_’le(n))’ﬁ(221(n)’222(n))
shown in figures 2 and 3 with simulations results. Each ® Update:
source (of 1500 samples) is constituted of the sum of a uni-  ¥(N) — ¥(N) — K [B(Z21(n), 222(n)) + B (z11(n)z12(N))]
form random signal and a sinusoid. They are mixed with ® Compute the Wiener filtei8f; (z), and the contributions:

filters : zj(n) =W (2)yj(n)
e Replace y(n) « [z11(n),z12(Nn
M _ | 14022140128 054037 14017 place y(n)  [211(n),212(n)]
~ | 054+03z1+01zt 1+02z1'+0.1z1? 5. CONCLUSION

The mutual information (between (n) andz(n)) and the In this paper, we focus on the separability of convolutive-mix
quadratic error between (n) and the exact contribution are tures, expressed in the time-domain. In the convolutive con
plotted in fig.2 and 3 with marks, for each iteration. Theyt€xt, the outputy;(n) have to be independent in the sense
are averaged on 50 realizations of the sources. It shows go& Stochastic processes which requires the independence of
results for the convergence speed and the residual quadra¥i(n) andyi(n—m) for all discrete times) andm. The in-
error. The results can still be improved by adding soméleépendence criteria are therefore complicated and computa
constraints. Indeed, four contributions must be compute§onally expensive. The criterion has been simplified as we
in this scheme by projecting;(n) (respectivelyy,(n)) on  recoveronly the contribution of all sources on all sensiys,
the two sensorszy1(n), zx1(n) (respectivelyzio(n), zoo(n)).  USing Wiener filtering (or Minimal Distortion Principal). It
The convergence speed is increasing by adding the mutuBfS been proved that testing the independence between these
information between the projections on the second senséontributions on the same sensor also leads to separability
|(z21(N), 222(N)) to 1(z12(n),z12(n)) (as previously) in the without testing an independence test of delayed outputs. The
minimization. The results are displayed in figures 2 and 3 irffiterion is easier to test and is implemented here by min-
solid line and show the increasing of the convergence.  imizing the mutual information of the outputs after Wiener
filtering. The experiments show its efficiency, it shows good
results on simulation and experimental signals for the sepa

o7 ‘ ‘ ‘ ‘ ‘ ration of piston slap and combustion in diesel engine [6].
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