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ABSTRACT 
This communication deals with anisotropy characterization 
of grey level textures in a non stationary context. Three 
classes of characterization methods are tested. The first class 
of methods directly uses the non stationary data. We chose 
here the non stationary fractional Brownian motion (fBm) to 
model such images. The second class is based on a 
stationary approach. Thus, the image is to be stationarized 
first. The third class of methods is founded on stationary 
techniques too, but in a binary framework. For this reason, 
the original image must be stationarized and binarized first. 
All the proposed methods are tested on various grey level 
non stationary textures. Results show that all the techniques 
are in good agreement with the anisotropy visible on the 
data. The fBm based method is the only one that does not 
require any choice or adjustment of parameters. For a real 
application where the anisotropy really matters, this 
technique should be tested. 

1. INTRODUCTION 

Texture is an important feature in image analysis and 
understanding. An anisotropic texture shows different 
characteristics as the angle of analysis varies. It is the case 
for instance in material science [1] in which considerable 
literature on the subject can be found. Some texture can also 
be non stationary. It is seen in material science too [2] or in 
medical analysis [3] to give just two examples among the 
most well documented. Some works have been done to 
characterize anisotropic textures [4]. Identically, the non 
stationary case for grey level images has also been studied 
[5]. But, the anisotropic analysis of grey level images in a 
non stationary context is still an open problem. It is the 
purpose of this communication to compare various methods 
to assess anisotropy in such a background. 
To take into account the non stationarity of grey level 
images, at least three kinds of techniques can be thought of. 
The first class of methods directly uses the non stationary 
data. Among all the possible approaches, the non stationary 
fractional Brownian motion (fBm) of H parameter in ]0,1[ 
could model such images [6]. The key point is that H 
translates the roughness of a texture: the more H is close to 0, 
the more an image appears to be rough and the more H is 
close to 1, the more images are smooth [7]. In the case of 
anisotropic data, this fractal technique should be adapted 

[8][9]. The proposed method was named Directional 
Averages Method (DAM) and will be tested in this work. 
As non stationary data are in general difficult to analyze, a 
possible solution is to stationarized them first. In such a 
context, the most well known techniques are based on second 
order statistics. These methods take advantage of Co-
Occurrence Matrices (COM) or Run Length Matrices 
(RLM). They will be included in this study. 
The third class of methods uses stationary techniques too, but 
in a binary context. The original image is to be stationarized 
and binarized first. These well known methods are the Mean 
Intercept Length (MIL), the Star Length Distribution (SLD), 
and the Line Fraction Deviation (LFD). They will be 
incorporated in this work. 
All these 6 methods need to be implemented for various 
directions to take anisotropy into account. To do so, and to 
avoid problems linked to the extraction of 1D lines in 2D 
images, only multiple angles of 45° are used. Thus, 8 
directions are of interest. Results are represented on a polar 
diagram. A Fourier analysis of this polar diagram leads to a 
single anisotropy index. 
This communication is organized as follows. First, we will 
explain in details the DAM since it is the most recent one. 
The other methods will be very briefly described. Then, they 
will be evaluated on various grey level non stationary 
textures. 

2. FIRST CLASS OF METHODS  

The first class of methods, and the most natural one, directly 
uses the non stationary data. The non stationary fractional 
Brownian motion (fBm) of H parameter in ]0,1[ could be a 
good model. The H parameter translates the roughness of the 
texture. To present the method, let us recall the spectral 
definition of a 2D isotropic fBm of H index and with 
variable t=(t1,t2) [10]: 

 
),(dB

1e
)(B 2

R
1H

i

H
2

ξ
ξ

t
t.ξ

∫ +

−
=

  
(1) 

where B2 = {B2(ξ) ; ξ ∈ R2} is the 2D complex Brownian 
field depending on the frequency ξ=(ξ1, ξ2), t.ξ is the scalar 
product of t and ξ, and |ξ| is the modulus of ξ. A possible 
modification to take anisotropy into account is to replace H 
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by a π-periodic function of the angle θ = arctg(ξ2/ξ1) taking 
values in the interval ]0,1[. Such an anisotropic fBm can be 
written:
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A natural evaluation of the anisotropy would consist in 
measuring the parameter H of parallel lines extracted from 
an image and in repeating this analysis for a finished number 
of directions. But, this natural evaluation fails [11]. A new 
method, called Directional Averages Method (DAM), allows 
a precise measure of the fractal anisotropy [8][9]. It consists 
in averaging the 2D image along parallel lines and to 
estimate the H parameter of this signal. This is explained 
more precisely in the following. 
Averaging an anisotropic fBm along parallel lines of 
direction ϕ, within a square integral window ψ of average 1, 
results in a Gaussian process {YH,ϕ(s); s ∈ R} of spectral 
representation: 
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where B1 = {B1(ξ) ; ξ ∈ R} is the 1D complex Brownian 
process. The spectral density gH,ϕ is given by: 
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ψ̂ is the Fourier transform of ψ. Therefore the spectral 
density gH,ϕ is equivalent at high frequency to: 
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Let us recall that the spectral density of 1D fBm is 
equivalent to 1/|ξ|H+0.5. It clearly shows that the averaged 
process YH,ϕ behaves at high frequency as a 1D fBm of 
index H(ϕ+π/2)+0.5. It is then possible to estimate H(θ) of 
the 2D image from the knowledge of the 1D averaged 
process. Thus, the roughness of an anisotropic non 
stationary grey level texture is clearly analyzed using the 
DAM. 
To sum up, this method can be simply explained as follows: 
- extract N parallel lines of an image in the direction θ; 
- average each line; a signal composed of N samples 

results; 

- on the last signal, compute the H parameter using the 
variance method of Pentland which is very easy to 
implement [7]; 

- by subtracting 0.5 to the last value, the H parameter in 
the direction θ + π/2 of the original data is obtained. 

Finally, it should be noticed that DAM does not require any 
choice or adjustment of parameters. 

3. SECOND CLASS OF METHODS 

The second class of methods to characterize the anisotropy 
of non stationary textures is based on a grey level analysis of 
the image in a stationary context. Thus the image is first to 
be stationarized.  
The most well known techniques that are based on this 
stationary approach are second order statistics, namely Co-
Occurrence Matrices (COM) [12] and Run Length Matrices 
(RLM) [13].  
The COM consists in constructing M, a n×n matrix, where n 
is the number of grey-levels within the image. For reasons of 
efficiency, the number of grey levels of the image is reduced 
to eight. The matrix M(i,,j,d,θ) is defined as the number of 
pixel pairs having the intensities i and j, separated by a 
distance d for a direction θ. We can evaluate the energy 
which is defined as follows: 
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In the framework of this study, this parameter gives the best 
results among all that can be extracted out of this method. In 
addition, we choose d=3. 
For the RLM, a matrix M(i,l,θ) stores the number of grey 
level runs with grey level i, length l, in the θ direction. It is a 
L×n matrix where L is the maximum length of a run and n 
the maximum grey level value. As for the COM, the number 
of grey levels of the image is reduced to eight. Among the 
feature typically extracted from the run length matrix, we 
calculated the long run emphasis which gives the best results 
in our case. This parameter is estimated as follows: 
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4. THIRD CLASS OF METHODS 

The third class of methods is based on a binary analysis of 
the image in a stationary context. Thus the image is first to 
be stationarized as previously. But, in addition, they also 
have to be binarized. 
These well known methods are the Mean Intercept Length 
(MIL) [14], the Star Length Distribution (SLD) [15] and the 
Line Fraction Deviation (LFD) [16]. 
The MIL is defined as the mean length of the bright and dark 
line segments on an analyzed grid and allows to estimate the 
main orientation of the image texture. At first, the number of 
dark and bright intercept (N) along all the lines of the image 
in a direction θ is calculated. Finally, the MIL is equal to the 
total length of analysed lines L divided by the number of 
intercepts N: 

 .)(
N
LMIL =θ   (8) 
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For the SLD, a regularly spaced point grid is generated on 
the binarized image. Only points falling within the phase of 
interest are retained. A test line of direction θ is generated 
from each point and is stopped at the black and white 
interface. Then we summated the lengths of the lines for a 
direction θ to obtain l(θ). The following parameter results: 
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To estimate the LFD index of an image in a direction θ, the 
fraction of bright pixels is estimated for each line following 
θ. The parameter LFD(θ) corresponds to the standard 
deviation of these fractions. 

5. ANISOTROPY INDICATOR 

All these 6 methods need to be implemented for various 
directions to take anisotropy into account. To do so, and to 
avoid problems linked to the extractions of 1D lines in 2D 
images, only multiple angles of 45° are used. Thus, 8 
directions are of interest. A polar diagram results of these 
analyses. One of these polar diagrams is presented in figure 1 
for the LFD method and for grass (small dashed line) and 
straw (large dashed line) which are presented in figure 2. It is 
obvious that straw is more anisotropic than grass. 

 
Figure 1: a polar diagram for grass (small dashed line) and 

straw (large dashed line) for the LFD method. 
 
The polar diagram as presented in figure 1 brings information 
about the anisotropy. To extract this information, we model 
the polar diagram by an ellipse. We then calculate an 
anisotropic degree which is equal to the main axis divided by 
the small axis of the ellipse. For that purpose we use the 
Fourier decomposition. The discrete polar diagram D 
composed of N samples is considered as a 2π-periodic 
function and is decomposed into coefficients Cn: 
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C0 corresponds to the ray of the mean square circle. C2 
quantifies the elliptic character of the polar diagram. The 
main axis of the mean square ellipse is equal to 
C0+modulus(C2), and the small axis to C0-modulus(C2). We 
define the anisotropy degree AD by: 
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AD is equal to 1 for isotropic images, and greater than 1 for 
anisotropic ones.  
 
 
 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
Figure 2: non stationary grey level textures that will be tested 
concerning their anisotropy. From left to right and top to 
bottom: a synthetic isotropic fBm image, pig skin, grass, 
calcaneum radiograph, pressed calf leather, and straw. 
 

6. TESTED IMAGES AND PREPROCESSING 

We will test the 6 non stationary grey level textured images 
presented in figure 2. The first one is a synthetic fBm image. 
It is expected that the methods give an AD equal to one. The 
five other are natural textures which clearly show anisotropy 
as well as first order non stationarity (the average grey level 
is not identical in all regions). Four images are extracted 
from the Brodatz data base (pig skin, grass, pressed calf 
leather and straw). The last one is a radiograph corresponding 
to the trabecular bone which is a porous material. It is 
organized so as to supply a mechanical resistance adapted to 
various constraints. Trabeculae in the directions undergoing 
the main forces are more numerous, bigger and thus 
deteriorate less quickly. These non uniform changes due to 
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riorate less quickly. These non uniform changes due to 
osteoporosis induce variations in the degree of anisotropy. 
 
 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
Figure 3: First row: isotropic fBm and pig skin images. 
Second row: stationarized images. Third row: stationarized 
and binarized images. 
 
These images are directly used as entries for DAM. 
For the COM and RLM, they are to be stationarized. A 
possible technique to render the image stationary is to 
remove the low frequency trends from the original image. 
They are calculated by a low pass filtering of the original 
image. The low pass filter is a square filter of size 25×25 
with only one as coefficients 
Finally, for MIL, SLD and LFD, images are also binarized. 
As the histograms are unimodal, thresholds are chosen as 
the maximum value of the smoothed histograms. 
Related images are presented in figures 3, 4 and 5. 

7. RESULTS 

The 6 images are tested concerning their anisotropy using the 
6 methods previously described. Results are presented in 
table 1. 
For these images, AD is between 1 and 2 so that the 
variations can easily be interpreted.  

Results show a good general agreement. First, on the 
synthetic isotropic fBm image, AD is always lower than 
1.026 which is close to the theoretical value of 1 for perfect 
isotropic objects. Second, on straw which visually is the most 
anisotropic one, all the techniques have their maximal value. 
For other images where the anisotropy is mild, the results 
may be different relatively to the methods. Reasons for these 
differences could be a subject of a thorough experiment and 
is beyond the scope of this work. Only a practical application 
can decide which technique is the best for a given context. As 
a final remark, the processing cost for all methods is 
equivalent. 
 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 
 
Figure 4: First row: grass and calcaneum images. Second 
row: stationarized images. Third row: stationarized and 
binarized images. 

8. CONCLUSION 

In this communication we have presented 6 methods for the 
analysis of anisotropy of grey level textures in a non 
stationary context. The first one (DAM) directly uses the non 
stationary data. Two of them (COM and RLM) are based on 
a stationary approach. The last three ones (MIL, SLD, and 
LFD) are founded on stationary techniques too, but in a 
binary perspective. All the proposed methods were tested on 
six grey level non stationary textures. Results show that all 
the methods are in good agreement with the anisotropy 
visible on the data. DAM is the only method that does not 
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need any choice or adjustment of parameters. For a real 
application where the anisotropy really matters, this method 
is a technique that should be tested 

In a near future, we will test these methods to characterize 
the anisotropy of trabecular bone radiographs for an early 
diagnosis of osteoporosis. 
 

 DAM COM RLM MIL SLD LFD 
Isotropic fBm 1.0097 1.0038 1.0053 1.0015 1.0135 1.0253 
Pig skin 1.1500 1.0603 1.1033 1.0507 1.1636 1.1151 
Grass 1.2830 1.0693 1.1167 1.0470 1.2482 1.1276 
Calcaneum radiograph 1.1013 1.1477 1.2205 1.1245 1.4333 1.2431 
Pressed calf leather 1.3666 1.1481 1.2182 1.0553 1.4395 1.3136 
Straw 2.0756 1.5293 1.8418 1.3246 2.1781 1.8349 

 
Table 1: Anisotropy Degree (AD) on the 6 tested images using the 6 techniques. 

 
 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
Figure 5: First row: pressed calf leather and grass images. 
Second row: stationarized images. Third row: stationarized 
and binarized images. 
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