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ABSTRACT T, O

In this paper we present a study on how to estimate the po-

sition of a mobile receiver using ultrasonic beacons fixed in

the environment. Unlike traditional approaches, the ultra-

sonic beacons are independent, and positioning is performed )
by measuring the Doppler shift within their observed peri- T O
ods. We show that this approach allows us to deduce both !
position and velocity, but an analysis of the space indicates

that we can recover the direction of velocity very well, theFigure 1: A receiver at positioX with velocity V moving
magnitude of velocity less well, and that location estimation.q|ative to beacons positioned Bt

is the least accurate. Based on the characteristics of the so-
lution space, we suggest a method for improving positioning

accuracy. tracks itself. Most of these systems use techniques where dis-

tance or range based measurements are the basis for position

Indoor location systems have been developed for a variety  The particular application motivating our research re-
of purposes. Early location systems were built to allowduires the design of a light-weight, easy-to-install location
autonomous robots navigate through buildings (for examSyStem that can be retrofitted to existing installations, such as
ple [3]). More recently, location systems have been develMuseums or art galleries. We have opted to use narrowband
oped by the ubiquitous computing community to track peoUltrasonic beacons fixed at known locations, and carry an ul-
ple and objects, and by the mobile and wearable communit§faSonic receiver with a processing unit to process the signals
to allow mobile devices to position themselves. In both do-fmitted by the beacons. Compared with other solutions, our
mains of research, the systems provide support for locatioBacons are completely independent with no wiring between
based services. One such service takes the form of a guide #fiem. they are low power such that they can be run from
amuseum or art gallery. For example, a location based appfmall solar cells, and they are made from readily available
cation running on a device worn by a tourist has the potentigfomponents that make them cheap to produce.
to enhance the experience of a visit. Such an application !N this paper we discuss the signal processing needed to
would remove the need for visual references in the environt€cover the location and velocity of our receivers. In par-
ment that are usually in the form of markers, descriptions oficular, we discuss the type of data that we receive and the
maps. A properly designed positioning system can thereforémitations of the algorithms that we use. We explore the so-
improve the appearance of displays and give the curator mofdtion space, and show that direction of travel seems to be
freedom in the design of the experience. the easiest to estimate, followed by speed then location. We
There are a large number of decisions affecting the dehave used both a Kalman Filter and Particle Filter solution:
sign of an indoor location system. The system designer mu§d suggest why the latter seems to be more amenable to this
select the sensing technology used (video, RF, ultrasoundjPecific problem.
determine whether or not it is feasible or desirable to modify
the environment, and decide on the orientation of the archi- 2. LOCATION DETECTION USING USING
tecture: infrastructure-centric (tracking) or user-centric (po- DOPPLER PERIODICITY

sitioning). Camera based systems can identify and track fea]_-he approach that we have taken emphasises hardware sim-

'éur;e[s2|n6]a ?—%i;ea:g g;grggfﬁgt?g Slg%?g%%gfcgt{gr?g'zjeeggggicity. We use off-the-shelf 40 kHz narrowband ultrasonic
they do not require modification of the environment. Other}. ansducers on the beacons and receivers. The beacons are

systems use a combination of RF and ultrasound to estima ged on the ceilings and walls of a room, while the receiver

onto X - 7,

. . ' mounted on a mobile device.
distances between receivers and transmitters. These sys-

tems can be configured as infrastructure-centric [8] where the In operation, each beacon “chirps” with a certain period-

transmitter is tracked, or user-centric [7] where the receivels s for example 501 or 507 ms. The receiver unit classifies
chirps arriving at regular intervals as being transmitted from

Funding for this work is received from the U.K. Engineering and Phys-& Particular beacon and monitors the differences from the ex-
ical Sciences Research Council as part of the Equator IRC, GR-N-15986. pected periodicities in order to establish whether the receiver
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Figure 2: Chirp trace received from four beacons, and the resulting measurement periods.

has moved towards a beacon, or away from it. 2.2 Measurement restrictions

There are two issues that make it difficult to solve the sets
2.1 Doppler shift of equations. First, the right-hand side of Equation 1 is ex-

pressed in terms of the instantaneous position and velocity of
Each beacon is programmed to send a 250ultrasonic  the receiver. Therefore, given &andV, the left-hand side
pulse every~ 500 ms. The precise periodicity is dependentof the equation should provide a measure of instantaneous
on the beacon — the period behaves as a unique signatusealar velocity in the direction of the beacon. However, the
that allows the receiver to identify the source of each chirpleft-hand side of Equation 1 measures the Doppler shift over
Given that our mobile receiver will not travel faster than 1-a periodP. As a result, we measure an “average” position
2 ms1, the shift in periodicity will be limited to a fraction and velocity over the perioB.
of a percent, allowing us to identify the signature of the chirp  The second problem is that each chirp arrives asyn-
train [5]. The receiver is equipped with a pick-up, two op-chronously as the receiver is moving. Hence, thequa-
amps, and a PIC micro-controller. When a signal is receivedjons will, strictly speaking, haverbunknowns; we have to
the PIC records the time and passes this on to an attacheshke an assumption thXtand in particulaiV do not change
processing unit. dramatically between measurements, which is the case if we

The method that we use for estimating the position angample the system often enough. Each of our eight beacons
velocity of the receiver involves measuring the variation inchirps at a periodicity of around 520 ms, giving us an average
periodicity of each of the beacons. For example, if the reupdate rate of 65 ms, or 16 Hz.
ceiver moves towards a beacon, the observed periodicity of The two issues interact, as the measurement of each bea-
that beacon will be reduced within the time frame of the pecon overlaps with the measurement of the other beacons.
riod. This happens because chirps arriving later do not tak&his is depicted in Figure 2, which shows the arrival of chirps
as long to reach the receiver. The reverse is true when tHfeom four beacons over a 1.5 second period. The measured
receiver moves away from a beacon: the period will increasgeriods of each of the four beacons is shown. Note that the
depending on the velocity of the receiver. As shown in Fig-measurements shift relative to each other since the beacons
ure 1, a moving receiver will move towards a number of beatransmit asynchronously with unique periods. If we only use
cons while simultaneously moving away from others. TheEquation 1 to estimate location and velocity, we will end up
period shiftAP observed for each of the beacons depends oWith approximations that are averaged over a, typicaly, 2
the location of a beacor)), and the positionX) and veloc-  period of about one second.
ity (V) of the receiver:

3. SAMPLING THE SPACE

In order to explore the nature of the Doppler equation (Equa-
ap L _X-T (1) fion 1) we have performed a number of Monte Carlo simu-
P+AP ° |X — T lations. In these experiments, we randomly sample position
and velocity pairs and compare th&lP values with a refer-
ence pair. The aim of the experiments is to determine how the
Doppler equation constrains values for position and velocity.
We assume that we can take instantaneous measurements for

nitude of the receiver velocity in the direction of the beaconp a1 that we can identify the source of each of the mea-
which is also proportional to the observed periodicity Shm'sur’ements with 100% accuracy.

The relative distance that the receiver moves in the time be-
tween successive observations from a single beacARvg ;

wherevs is the speed of sound. Dividing by the elapsed time3'1 Experimental set up
P + AP gives the magnitude of velocity in the direction of The experiments use two different eight-beacon configura-
the beacon expressed in terms\, as is shown on the left tions that cover a virtual room. The first configuration situ-
side of the equation. This equation relates six unknows ( ates the beacons on the corners of:a44x 4 metre cube at
andV), to a single measuremef\P. Once we receive mea- locations(—2,-2,-2),(-2,-2,2),...(2,2,2). The second
surements frorm beacons, we will obtain equations, with ~ configuration simulates the set-up that we have in our lab,
six unknowns, which can be solved if there are no depenwith the eight beacons placed on the walls and ceiling.
dencies between equations, and if 6. In practice we use The reference pair is placed near the centre of the space,
eight transmitters(= 8), and we place the transmitters in an at location(—0.5,0.5,0.4) m and we assume that it is mov-
irregular pattern, avoiding dependencies. ing with a velocity of(0.5,0.7,0.1) msL. This allows us to

The right part of Equation 1 is the projection of the ve-
locity vectorV onto the unit vectoX — T. This is the mag-
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Figure 3: Position and velocity samples wifHess than (a) 2 cm, (b) 4 cm, (c) 6 cm, and (d) 8 cm using the cubic beacon
configuration

compute a referendlsPiref that corresponds to each beacon 3.2 Results on cubic layout of beacons

For exampleAR]®f for the beacon at-2,—2,—2) is 1.1 ms Figure 3 depicts the results of the cubic beacon experiment.
and AP{ef for the beacon at2,2,2) is -1.2 ms. The col- Each plot in the figure shows the X-Y placement of posi-
lection ( Aporet Aplref7 Ap7ref) forms a vector of reference tion (in the top row) and velog:ity (in the bottom row). The
ref Z-axis has been left out for simplicity. The dot surrounded
measurements, denotexlP ™. by a circle is the reference point, while all other dots are the
For each experiment, we sample a large number of rarrandomly generated position-velocity pairs. For the plots de-
dom pairs(X,V); in the six dimensional space spanningtailing position, the stars depict the position of the beacons in
location and velocity. The pairs are uniformly distributedthe X-Y plane. For this experiment, only four beacons can be
in location (with bound$—5..5]) and velocity (with bounds seen since the other four have the same X and Y coordinates
[—3..3]). For each paifX, V); we calculate th&P’ foreach  Wwith different Z coordinates.
beacori and compare them with the reference measurements The figure has been separated into columns (a) through
by taking the magnitude of their difference: (d), which correspond to different thresholds &@nColumn
(a) includes all pairs that hav® values less than 2 cm, and
j ref ; Column (d) includes all pairs that havevalues less than
8! =[AP ™' — AP 8 cm. We use distance values (cm) to descdilfby dividing
by the speed of sound) to make it easier to compare with
Ideally, position-velocity pairs that are further away from theour observed sensor noise (which we commonly describe in
reference pair in the 6D space should have highealues, terms of distance). Nevertheless, it can be seen that, as the
while pairs that are nearby have low&rvalues. However, .thI'EShO|d foré |ncrea$e.s, there is more of the 6D space that
it turns out that there are many pockets of local minima thats covered by local minima.
are distributed over the 6D space. They are widely spread in Viewing the location space, one can see that the local
the location space, while the velocity space is slightly moreninima seem to occupy, roughly, a plane (which extends in
constrained. the Z direction — not visible in the plots). It appears that
The importance o lies in the fact that our location the plane is perpendicular to the velocity of the receiver. In
hardware has limited accuracy and precision. As such, me#ie velocity space, the local minima appear as an ellipsoid
surements foAP contain errors. In an ideal Situa‘[ion, small of velocities that have the same direction as the reference
measurement errors will cause small perturbations in posielocity, but with higher magnitude (speed).
tion and velocity estimates. However, if there are pockets of From the simulation we can also get a rough idea on the
solutions that have smallér values than our measurement fraction of the 6D space that contains local minima that are
error, then our estimators could easily move into those pocKewer than the measurement error. The number of pairs with
ets. In the two succeeding sections we present results fromo of 15 cm or less (which is a very conservative estimate
our experiments on the cubic and real-world configurationgor the maximum sensor noise we observe; the standard de-
of the beacons. We use a varying thresholdddo observe viation of the sensor noise measured in our lab is around 1 to
how deep the local minima are relative to the measuremer& cm), is less than 0.0005%. For a 64 oom, that corre-
errors. sponds to a space approximately 6.7 cm cubed.



14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

B
© 20 N
10 ]
3 3 0 ! ! ! ! ! ! ! !
-2 -1 0 1 2 3 4 5 6 7
2 2 distance (m)
1 1
0 0 Figure 5:6 measured along three lines in the 6D space
1+ E 1k .
2+ E 2+ .
e ) S S ) S T ence of using the Doppler model with two types of estimator,
3 2 - \9 1.2 3 3 2 A VO 1.2 3 a Kalman Filter and a Particle Filter.
@) (0) 4. APPROXIMATION METHODS
Figure 4: Position and velocity samples wilHess than (a) We have explored two methods to retrieve the location and
4 cm, (b) 8 cm using the lab beacon configuration velocity using Equation 1: one uses a Kalman Filter and the
other uses a Particle Filter. Details of these two filters are in
two companion papers [4, 5].
3.3 Results on laboratory layout of beacons 4.1 Kalman Filter

The results from the experiment using the beacon configurd=or this algorithm, the receiver uses a Kalman Filter to model
tion employed in our lab is given in Figure 4; we provide two position and velocity in three dimensions. Each measure-
thresholds for§, 4 and 8 cm. In this configuration, there is ment is incorporated using Equation 1 as it arrives; this
only a small variation in the Z-coordinates for the location ofmethod is known as “single constraint at a time” filtering [9].
the beacons. As a result, we observe a much more unpleasantorder to deal with collisions and ambiguities, the algo-
distribution of local minima. Specifically, the local minima rithm uses a multi-hypothesis [1] approach. For example,
are widely distributed over the X and Y axes. We believe thawhen a chirp arrives that could possibly come from multiple
the higher dilution of precision of the beacons in the Z-axissources, the algorithm createshypotheses, whema is the
means that many ghost solutions are created under the floowimber of possible sources (including noise or reflections).
and are widely spread over X and Y. Each hypothesis contains a Kalman Filter that uses a unique
As with the previous configuration, the ghost solutionsguess as to the source of the ambiguous measurement. The
in velocity are approximately constrained to an ellipsoid ex4idea behind this approach is that, as more chirps arrive, in-
tending in the same direction of the reference velocity. How<orrect hypotheses can be eliminated.
ever, compared with the previous experiment, the error in
position seems to be determined by the relative positions ¢f.2 Particle filter

the reference point and the beacons. The fraction of solutiong,e particle filter models the 6D space for location and ve-
that fall under the 15 cm threshold is less than 0.0186%, Ofity, where each particle models a point in this space. The

23 cm cubed in terms of a 64%space. particle state is progressed by changing the particle location
o in line with the particle velocity, and by adding a random
3.4 Results along a line in space variation to both. Variation in the X and Y components of the

In order to further explore the presence of the local minimfi’eIOCIty has a standard deviation of 2 msand the variation

in the cubic beacon experiment, we have made three Onflﬁn the Z component is assumed to be 0.2 fasve assume
dimensional cuts through the 6D space and plotted the errdp@t OUr receivers are mounted on humans and, hence, sudden
against the distance traversed along these cuts. This is shofifiations in X and Y are possible, but only minor variations

in Figure 5. Each cut follows the same path through the 30 Z aré expected.

location space, intersecting the reference point. The Iine23 Result
follow the diagonal band of points displayed in Figure 3(d).™ esults

The horizontal line in Figure 5 is the corresponding 6 8m To date we have managed to get the Kalman Filter approach
threshold. Each of the three lines depicting the path througto work with simulated data and are in the process of config-
the 6D space have a fixed but different velocity. We observering it to work with real data. Initial observations have sug-
that one of the lines reaches zero-error. This is the line witlgested that it may be difficult to determine which hypothe-
velocity set to the reference velocity and, as expected, it hitses are stronger than others and we have yet to find a set of
zero when it goes through the reference point. We notice thahetrics to provide this evidence consistently. It may also be
the other lines have local minima at other points on the diagthe case that ambiguous measurements do not actually make
onal path traversed. In the next section, we detail our experenough of a difference to warrant the branching of separate
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Unlike ranging solutions that are common to ultrasonic
positioning, errors in measurements used with the Doppler
equation will have pronounced effects on the positioning ac-
curacy. Ranging systems with an optimal layout of beacons,
for example a cubic layout, tend to have localised position
errors in response to measurement errors. From our discus-
sion in Section 3, we observe that this is not the case for the
Doppler solution.

However, it should be feasible to introduce a ranging
component to our model. For example, we can use the
Doppler equations to provide an estimated velocity and lo-
cation and subsequently build a model of the beacon trans-
mission clocks (a form pseudo-ranging). Using that model,
we may be able to recover our location with a higher accu-

Figure 6: Position estimation with particle filter: (a) the
tracks, made between two corners; (b) the positions in tw?
of the corners of the test track. 1]

2
hypotheses. For example, an ambiguous measurement COIEIA
be ignored, used as a chirp from the most likely beacon, or
interpreted as coming from both. If this is true, it may explain 3
the lack of evidence to support “stronger” hypotheses. [3]

The Particle Filter works on real data, and results are
detailed in Figure 6. Figure 6(a) shows fragments of paths
that the particle filter recovered on five separate runs Witl‘T
the same recorded measurements. The plot highlights t él
variation in position that the filter produces, independent of
the input data. We observe that the tracks have slightly odd
shapes (due to the particles being updated with a single mea-
surement at a time), but we also notice that the direction of5]
the tracks mostly agree.

Figure 6(b) shows the positions that the particle filter es-
timates on 1000 separate runs over the set of recorded mgaj
surements. The two clouds of points are the location for two
separate time shapshots in the test track, three seconds apatrt.
Each pointin the cloud is the location produced by one run of
the particle filter. The 50% CEP (circular error probability) r-
is around 25cm, but the error seems to be less pronounced[in]
the direction of travel. For example, the receiver was moved
clockwise along the green line. One can see that on arriving
at the bottom left-hand corner, the error in the X-direction
is about half the error in the Y-direction. Similarly, arriving
at the top left-hand corner produces errors in the Y-direction®]
that are about half the error in the X-direction. These results
support the observations in Section 3, where position error is
largest perpendicular to the direction of travel. o

5. DISCUSSION

The presence of local minima within the bounds of our mea-
surement error suggests that the Doppler equation is rela-
tively insensitive to the position of the receiver, especially
for a beacon arrangement with a high dilution of precision.
Despite this, we have shown that it is possible to recover
position to a coarse degree of accuracy using a particle fil-
ter. We speculate that, because of the non-linearity of the
measurement function and the associated distribution of lo-
cal minima, a Kalman filter will perform less well than the
particle filter.

racy.
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