
REPRESENTING LAPLACIAN PYRAMIDS WITH VARYING AMOUNT OF
REDUNDANCY

Gagan Rath and Christine Guillemot

IRISA-INRIA, Campus de Beaulieu, 35042 Rennes, France

ABSTRACT

The Laplacian pyramid (LP) is a useful tool for obtaining spa-
tially scalable representations of visual signals such as image and
video. However, the LP is overcomplete or redundant and has lower
compression efficiency compared to critical representations such as
wavelets and subband coding. In this paper, we propose to improve
the rate-distortion (R-D) performance of the LP by varying its re-
dundancy through decimation of the detail signals. We present two
reconstruction algorithms based on the frame theory and the cod-
ing theory, and then show them to be equivalent. Simulation results
with various standard test images suggest that, using suitable quan-
tization parameters, it is possible to have better R-D performance
over the usual or the dual frame based reconstruction.

1. INTRODUCTION

The Laplacian pyramid (LP) [1] is a useful tool for obtaining mul-
tiresolution representations of visual signals such as image and
video. In the context of present day multimedia communications
over heterogeneous media with varying capacities, its impact can
be hardly underestimated. The on-going scalable video coding s-
tandard (SVC), for instance, incorporates the LP structure as a prin-
cipal component for achieving the spatial scalability in the form of
standard definition (SD), CIF, and QCIF resolutions [2]. In addition
to the multiscale representation, the LP also provides a means to
compactly represent visual signals. In comparison to other compact
representation techniques such as wavelets and subband coding, the
LP has the advantage that it provides greater freedom in designing
the decimation and interpolation filters.

An LP achieves the multiscale representation of a signal as a
coarse signal at lower resolution together with several detail signals
at successive higher resolutions. Since the number of coefficients
of the LP is larger than the number of samples of the original sig-
nal, an LP representation is overcomplete or redundant. Therefore it
can be studied using the frame theory, which provides a mathemat-
ical framework for overcomplete systems. In [3], Do and Vetterli
consider the LP as a frame expansion and propose a dual frame
based structure for the reconstruction. Given an LP representation,
the usual reconstruction procedure is to iteratively interpolate the
coarse signal and to add the detail signals successively up to the de-
sired resolution. In [3], Do and Vetterli show that the dual frame
based reconstruction has lesser error than the usual reconstruction
method when the LP coefficients are corrupted with noise. Since
the proposed structure in [3] requires biorthogonal filters, the au-
thors in [4] modify the LP by including an update step so that the
reconstruction structure is valid for any pair of decimation and in-
terpolation filters.

In the context of scalable compression, LP is a natural choice
for obtaining lower resolution signals from a higher resolution sig-
nal. However, the redundancy of the LP is still an undesirable fea-
ture from the compression point of view. In [3], Do and Vetterli
improve the rate-distortion (R-D) performance by utilizing the d-
ual frame based reconstruction structure, but the original LP, and
consequently its redundancy, remain untouched. The lifted pyramid
proposed in [4] modifies the coarse signal (which is undesirable in
the context of scalable video compression), but the new pyramid is
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Figure 1: Laplacian pyramid decomposition.

still overcomplete. In this paper, we propose to improve the R-D
performance by varying the redundancy of the LP through down-
sampling of the detail signals. A closer look at LP reveals that it is
the detail signals which contain the redundancy of the LP. Therefore
the redundancy of the LP can be varied by varying the decimation
factor of the detail signals. We first show that, in the absence of
noise, perfect reconstruction is possible even if the LP is modified
with downsampling of detail signals up to the critical representa-
tion. We present two reconstruction algorithms, one based on the
frame theory and the other based on the coding theory, and then
show them to be equivalent. In the presence of quantization noise,
the reconstruction algorithms provide the best estimates in the sense
of minimum mean square error (MMSE).

2. LAPLACIAN PYRAMID

The LP structure proposed by Burt and Adelson [1] is shown in
Fig. 1. For convenience of notation, we will consider here only 1-
D signals; the extension to the 2-D case is straightforward. The
input signal � is first lowpass filtered using the decimation filter

�
and then downsampled producing the coarse signal ��� . This coarse
signal is upsampled and then filtered using the interpolating filter� producing the prediction signal � � . The prediction error � � is
the first level of detail signal. The process is repeated on the coarse
signal ��� until the final resolution is reached. Note that the subscript
in Fig. 1 denotes the index of the pyramid level. Here we have
used vector notations in order to facilitate matrix operations. By
convention 1-D signals are assumed to be column vectors.

For convenience of explanation, let us consider an LP with on-
ly one level of decomposition. Considering an input signal of 	
samples, the coarse and the detail signals can be derived as��

� � and ��
 ����� ��
������ ��� ��� ��� (1)

where � � denotes the identity matrix of order 	 , and � and �
denote the decimation and the interpolation matrices which have
the following structures:

��
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Figure 2: Standard reconstruction structure for LP.
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Here the superscript ; denotes the matrix transpose operation. If the
coarse signal has resolution < , then the matrices � and � are of
dimension <>=?	 and 	@=?< respectively.

Given an LP representation, the standard reconstruction method
builds the original signal simply by iteratively interpolating the
coarse signal and adding the detail signals at each level up to the
final resolution. The standard reconstruction method is shown in
Fig. 2. Considering an LP with only one level of decomposition,
we can reconstruct the original signal asA�CB 
 � ��DE� " (4)

3. LAPLACIAN PYRAMID AS A FRAME EXPANSION

Consider the 	 -dimensional Euclidean complex space, i.e., F � . A
set of 	 -dimensional vectors GIHKJML0NPORQ0SO�T � , U9VK	 , is called a
frame if there exist WX��YZ, and W�[]\
^ such that

WX��_a`b_ []c SdO�T �fe/g ` � NPO�h e [�c W][R_a`b_ [ � for all `�ijF � � (5)

where g ` � NPO�h denotes the inner product of ` and N�O , and _a`k_ de-
notes the Euclidean norm of ` . WX� and W][ are called the frame
bounds. The inner product g ` � N�O�h gives the l th frame expansion
coefficient of ` . Any finite set of vectors that spans F � is a frame.
A subframe is defined as a subset of a frame which is itself a frame,
that is, the subset of frame vectors spans F � . A frame is called
tight if its bounds are equal, i.e., WX�f

W][ .

The frame GfH is associated with a frame operator m which is
defined as follows:�-mn`��#OoJ g ` � NPO�h � for lX
p) � & � "#"#" � U " (6)

Therefore the frame expansion coefficients of ` are given by mn` .GfH is tight if and only if m�q�mr
sW�� � , where m�q denotes the
conjugate transpose of m , and WM
tWX�u
vW][ . This implies that the
columns of m are orthogonal.

Associated with the frame GIH , there exists a dual frame whose
frame operator is given as wm�
Mmj�-mxq�mx�ay � . Given the frame ex-
pansion coefficients of any vector ` , the vector can be reconstructed
using the dual frame operator as `o
zwmxq{�-mn`�� . The conjugate trans-
pose of the dual frame operator is the pseudo-inverse of the frame
operator, and it minimizes the reconstruction error when the expan-
sion coefficients are quantized [5]. For an in-depth treatment of the
frame theory, the reader is referred to [6].
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Figure 3: Dual frame based reconstruction structure of Do and Vet-
terli [3].

Considering now the LP, the coarse and the detail signals in
Eqn. 1 can be jointly expressed as| ��{} 
 | �� � �~� ��} � Jtm ��� (7)

where m denotes the matrix on the right hand side. Since the in-
formation in � is preserved in the coarse and the detail signals, the
rank of m is 	 . The rows of m constitute a frame and m can be
called the frame operator associated with the LP.

The usual reconstruction shown in Eqn. 4 can be equivalently
expressed using the reconstruction operator � � � ��� asA�CB 
�� � � �X� | ���} " (8)

It is trivial to prove that � � � �x� mp

� � . However, this reconstruc-
tion operator is not equal to the dual frame operator of m , which is�-m : mx�ay � m : . The reconstruction proposed by Do and Vetterli [3]
aims to reconstruct the original signal using the dual frame oper-
ator. It can be shown that, if the decimation and the interpolation
filters are orthogonal, i.e., � : � 
M�E� : 
���� , � 
M� : , the dual
frame operator of m is � � � � �E� � � . In this case, the frame as-
sociated with the LP is tight [3]. If the filters are biorthogonal, i.e.,� � 
v��� , the above operator is still an inverse operator (i.e., it is
a left-inverse of m ) even though it is not the dual frame operator
[3]. Therefore, with either orthogonal or biorthogonal filters, the
original signal can be reconstructed asA��� 
p� � � � �~� � � | �� } 
 � �-� � �E����DE� " (9)

Their proposed reconstruction structure is shown in Fig. 3. Under
either orthogonality or biorthogonality,�E��
t����� � �~� ��� � 
��-� � � � ��� � 

�k��� � � (10)

where � ��� � denotes a null vector of length < . Therefore the usu-
al reconstruction and the dual-frame based reconstruction methods
lead to identical results when there is no noise in the LP coefficients.

4. LP WITH VARIABLE REDUNDANCY

Since an LP is overcomplete, it is certainly not required to transmit
all of its coefficients in order to be able to reconstruct the original
signal. The latter can be perfectly reconstructed even if some of the
coefficients are intentionally not transmitted and the remaining co-
efficients are received without any noise at the receiver. This partial
transmission of the LP coefficients is analogous to the case of era-
sures of the frame expansion coefficients during transmission over
erasure channels. Therefore one could apply the signal reconstruc-
tion algorithms applicable to erasure channels [5, 8] to reconstruct
the original signal from the partially received LP coefficients.

For the reconstruction to be feasible, the frame vectors (i.e., the
rows of m ) corresponding to the transmitted coefficients must make
a subframe [5, 8]. Consider the case when the decimation and the
interpolation filters are either biorthogonal or orthogonal. In this
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case, since � � 
�� � , the rank of the matrix ��� ��� � is 	 �< . Therefore, only 	 � < row vectors of � � �E� � are linearly
independent, and they span a �-	 � <�� -dimensional subspace. In
order to span the original 	 -dimensional space, which contains the
signal vector � , we need all the row vectors of � . This means
that we cannot discard coefficients from the coarse signal � for the
reconstruction to be feasible. At the same time, we can dispose
of at best < coefficients of � , in which case the transmitted LP
coefficients have a critical representation.

On the other hand, if the decimation and the interpolation fil-
ters are neither biorthogonal nor orthogonal, this condition may not
hold. For instance, if the filter coefficients are such that � � ��� �
is a full-rank matrix, we could discard the coarse signal � altogeth-
er and reconstruct � from the detail signal � simply by applying��� � �E� ���ay � on � . In view of the practical application of scal-
able compression, here we assume that the coarse signal is fully
transmitted and consider discarding coefficients only from the de-
tail signals.

4.1 Frame-theoretic reconstruction

First, let us assume that the LP coefficients are not quantized. Let
the number of detail coefficients transmitted be � where �pVZ	 �< . Let the detail signal � be partitioned as ��J | �������} , where� � and � � denote the vector of transmitted coefficients and the
vector of discarded coefficients, respectively. Considering only the
transmitted coefficients, we could express Eqn.7 as| ����u} 
 | ����o� � �~� �f��} � JtmC� ��� (11)

where ���o� � and � � denote the � rows of � � and � correspond-
ing to the transmitted coefficients indices. If the rows of m�� make
a subframe, we can reconstruct � as follows:A��� 
��-m :� m���� y � m :� | ����u} " (12)

In the critical representation case, i.e., when �M
M	 � < , m�� is a

square matrix and we obtain
A� 
Mm y �� | ���� } . Observe that, for

the reconstruction to be feasible, the inverse matrix operations in
Eqn.12 and above should be valid. Therefore the coefficients to be
discarded have to be chosen accordingly.

Let us partition the vector � as � J | � �� ��} , where � � and� � have the same indices as the transmitted coefficients and dis-
carded coefficients respectively (recall that � and � have the same
resolution.). By rearranging the columns of mP� in the according
manner and using simple matrix algebra, Eqn. 12 can be expressed
asA��� 
 | A� �A� � } 
 | � � ����E�� ���2� � �?� � �I� � �E�� �j� } | ���� } � (13)

where � � and � � denote the columns of � having the same in-
dices as the transmitted coefficients and the discarded coefficients
respectively, and � �� Js�-� :� �j�o�ay � � :� . Note that, for the above
equation to be valid, � � must have full-column rank. In the critical
representation case, ��� is a <�=n< square matrix and therefore the
above expression can be rewritten asA� � 
 | A� �A� �f} 
 | � � ���� y �� ���2� � �?� � �I� � � y �� �j� } | ��C�u} " (14)

Since there is no quantization error, the reconstruction in Eqn. 13 is
perfect and it is identical to

A� B in Eqn. 4 and
A�C� in Eqn. 9.

From the above equation, we obtainA� � 
 � �I��D��C��� (15)A� � 
 � y �� � � � y �� � � � � � ��D�� � �
 � y �� � � � y �� � � A� � " (16)

Observe that reconstruction of � � is done using the usual method
whereas the missing samples are calculated by solving the equation�j� � ��DE�j� � ��
t� , or equivalently, � � 

� .
4.2 Coding-theoretic reconstruction

It is known that frames in finite dimensional spaces are associated
with codes in the complex or the real fields [8]. The frame operatorm an be looked upon as the generator matrix of the associated code,

and the vector of frame expansion coefficients

| ���} can be seen as

the codevector corresponding to the input vector � . A parity check
matrix for this code can be given as� 
�� � ����� � � � ���~� �
where ��� denotes the identity matrix of order < . It is easy to prove
that

� mZ
Z�k���b� . The missing detail coefficients can be recovered
using syndrome decoding [7] as follows. Using the property that
every codevector lies in the codespace, we get� | �� } 
v�k��� � " (17)

Substituting the expression for
�

, we get� ����� � � � �*��DE�E��
v�k��� � (18)� �E��
p����� � � � �*� " (19)

Now, partitioning � and � into the transmitted and discarded parts,
we get �j�I����DE�j�f����
������ � � � �*� (20)� ����
v� �� � � �?�f����D������ � � � �*��� " (21)

Observe that, in order that the above equation be valid, � � must
have full-column rank. In the case of critical representation, the
above expression can be rewritten as����
v� y �� � � �j�f�C��D
���2� � � � �*��� " (22)

When the filters are either biorthogonal or orthogonal, � � 
��� , and the above expressions simplify to� � 
 � � �� � � � � (23)
 � � y �� � � � � � for critical representation " (24)

Once the missing detail signal coefficients are recovered, the
original signal can be reconstructed by adding the detail signal to
the interpolated coarse signal, as in the standard reconstruction:| A� �A� � } 
 | � � � �� �~DE�E�� ����� � � � � � �E�� �j� } | �� � } � (25)

where � � denotes the rows of � having the same indices as the
discarded detail coefficients. Like the previous method, since there
is no quantization noise, the reconstruction of the original signal is
perfect. Observe that, when the filters are either biorthogonal or
orthogonal, the parity check matrix

�
given earlier is � � ���b� � � .

In this case, Eqn. 19 is the same as the Eqn. 10 mentioned in section
3.
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Now consider the realistic case when the LP coefficients are
quantized. In this case, following the frame-theoretic reconstruc-
tion, the original signal can be estimated by substituting the quan-
tized values of the coarse signal and the transmitted detail signal
coefficients in Eqn.13 or in Eqn.14 (for critical representation). Or,
following the coding-theoretic reconstruction, first the missing de-
tail signal coefficients can be estimated by substituting the quan-
tized values of the coarse signal and the transmitted detail signal
coefficients in Eqn.21 or in Eqn.22 (for critical representation), and
then adding the estimated detail signal to the interpolated quantized
coarse signal.

To prove that the above two reconstructions are equivalent, we
see that� � DE� �� ��� � � � � �b
 � � D�� �� ��� � � � � � � � � � � � �
t� �� ���2� � �j� � ��� "
Therefore, Eqn. 13 and Eqn. 25 produce identical results. In the
following, we use coding-theoretic reconstruction to analyze the re-
construction error.

5. RECONSTRUCTION ERROR ANALYSIS

In a practical application setup, the LP coefficients will be quantized
before being encoded. Here we will consider only the case where
the quantization of the coarse signal is outside the prediction loop.
This structure is called the ”open-loop prediction” in the literature
[3].

Let ��� and ��� denote the quantized coarse signal and the quan-
tized detail signal with the standard reconstruction. Let �P� � denote
the transmitted detail signal coefficients. With the usual method
and the dual frame based method of Do and Vetterli, the decoder re-
ceives all the quantized LP coefficients and reconstructs the original
signal using Eqn.4 and Eqn.9. The resulting reconstruction errors
can be expressed as� B 
 �n �¡ D  �¢�� and (26)�R� 
 �n  ¡ D���� � �~� ���  C¢�� (27)

where   ¡ ,  C¢ denote the quantization noise vectors for the coarse
signal and the detail signal respectively. Here, for the sake of sim-
plicity of analysis, we will assume that the coarse and the detail
signals are scalar quantized. The quantization step sizes are smal-
l enough so that the corresponding quantization noises can be as-
sumed to be white and uncorrelated. Furthermore, because of the
open-loop structure, the quantization noises of the coarse and the
detail signals can be assumed to be uncorrelated as well. The re-
spective mean square errors can be computed as follows:U¤£P¥ B 
 )	�¦ _ �RB _ [ 
 )	�¦ � �n  ¡ D  �¢ � : � �n  ¡ D  �¢ �#�
 )	M§ [¡ ;*¨�� � : � ��D § [¢ � (28)

Us£�¥ � 
 )	�¦ _ �R� _ [ 
 )	M§ [¡ ;©¨R� � : � �D )	M§ [¢ ;*¨��#��� � �~� ��� : ��� � �~� ���#� � (29)

where § [¡ and § [¢ denote the quantization noise variances for the
coarse signal and the detail signal respectively, ¦ denotes the math-
ematical expectation, and ;©¨R� " � denotes the trace of a matrix. In the
special case when the filters are orthogonal, the above expressions
can be simplified asUs£P¥ B 
 <	p§ [¡ D § [¢ � and (30)U¤£P¥ � 
 <	 § [¡ D��*) � <	 � § [¢ " (31)

With the proposed method, the decoder receives the quantized
coarse signal � � and the decimated detail signal �P� � . For the worst
case scenario, it receives the critically decimated detail signal. Fol-
lowing the coding theoretic approach, it reconstructs the original
signal as shown in Eqn. 25. The resulting reconstruction error for
the critical case can be expressed as� � 
 | � � � �� � DE� y �� ��� � � � � � � � y �� � � } |   ¡ �¢ � } � (32)

where  C¢ � denotes the quantization noise vector for the decimated
detail signal. Therefore the mean square error can be derived asU¤£P¥ � 
 )	 ¦ _ � � _ [
 )	 § [¡ ;*¨�� � : � ��D &	 § [¡ ;©¨R� � : � � y �� ���2� � � � �#�D )	 § [¡ ;©¨R�#����� � � � � : �-�j��� :� � y � ���2� � � � �#�D?�*) � <	 � § [¢ D )	 § [¢ ;©¨R�-� :� �-� � � :� � y � � � � " (33)

In the special case when the filters are orthogonal, the above expres-
sion can be simplified asU¤£P¥ � 
 <	 § [¡ D��*) � <	 � § [¢D )	M§ [¢ ;©¨R�-� :� �-�j��� :� � y � �j�f� " (34)

Comparing the above expressions, we observe that the mean square
error of the reconstructed signal is larger than that obtained with the
dual-frame based reconstruction. This is expected since we intend
to trade MSE for the bit rate. We also observe that the mean square
error is a function of the filter coefficients. Therefore, the recon-
struction error can be kept low by choosing the filters properly.

6. SIMULATION RESULTS

In order to test the proposed algorithm, we performed simulations
over various standard images. To keep the computational complex-
ity of the matrix operations low, we built LPs over blocks of size
16 and performed two levels of decomposition with downsampling
factor 2. We used the Daubechies 9/7 wavelet filters for the lowpass
filtering and interpolation even if the use of wavelet filters is not a
necessity here. For all the simulations, the encoding of the coarse
signal was performed with a JPEG-like algorithm with quality fac-
tor 50 whereas the detail images were scalar quantized and entropy
coded. For the proposed method, we critically decimated the two
detail signal levels by discarding the top-left coefficient in every&o=?& block. Fig. 4 shows the peak signal-to-noise ratio (PSNR) vs
bits per pixel (bpp) for the ”Barbara” image for all the three meth-
ods. The plots were obtained by varying the quantization step-sizes
from 1 to 16 and finding the convex-hull of the resulting PSNR-rate
pairs. The better performance of Do and Vetterli’s reconstruction
over the standard reconstruction is because of the use of biorthogo-
nal filters and is already known [3]. We observe that the proposed
approach can lead to higher compression performance at the same
PSNR, or can lead to higher PSNR at the same bit rate by choosing
proper quantization step sizes.

Fig. 5 shows the reconstructed images when the two detail lay-
ers are quantized with step sizes 16 and 7 respectively. We observe
that the proposed method (bottom-left) requires lesser bpp but de-
creases the PSNR slightly compared to the other two reconstruction
schemes. At the bottom-right, the proposed reconstruction at the
same bpp (obtained with quantization step sizes 11 and 5) has bet-
ter quality than the other two.

We also performed simulations over various other standard im-
ages. We observed that the PSNR vs rate plots for these images have
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Figure 4: PSNR vs rate for ”Barbara” represented using 2 levels of
LP with 9/7 biorthogonal filters.

image bpp PSNR
source standard Do and Vetterli proposed
Barbara 1.99 29.96 30.15 30.33
Lena 2.3 30.01 30.06 30.12
Boat 1.35 28.25 28.44 28.54
Baboon 2.65 26.46 26.64 26.91
Peppers 2.82 30.36 30.41 30.48
Sailboat 2.33 28.27 28.32 28.39
Goldhill 2.17 29.90 30.00 30.10

Table 1: Bit rate and PSNR results for various standard images rep-
resented using 2 levels of Laplacian pyramid with 9/7 biorthogonal
filters.

similar characteristics as of the ones for ”Barbara” image. In gen-
eral, the gain in compression efficiency is higher when the image
contains significant detail components. Table 6 shows the PSNR of
the reconstructed images for the three reconstruction methods at the
same bits per pixel. We observe that the proposed algorithm results
in higher PSNR values than the other two algorithms.

7. CONCLUSION

In this paper, we have reexamined the Laplacian pyramid from a
frame representation point of view. This representation had been s-
tudied earlier by Do and Vetterli [3], who had proposed an improved
reconstruction structure based on the dual frame. Here, on the other
hand, we have proposed varying the redundancy of the LP through
decimation of the detail signals. The decimation factor could be
increased up to the critical representation.

For the decimated LP, we have presented two reconstruction al-
gorithms. These algorithms were borrowed from the frame theory
and the coding theory literature and were adapted to the LP repre-
sentation. The reconstruction algorithm based on the frame theory
aimed at estimating the original signal directly from the received
coarse signal and the decimated detail signals through a dual sub-
frame operator. The reconstruction algorithm based on syndrome
decoding, however, aimed at recovering the decimated detail sig-
nals completely and then estimating the original signal by the usu-
al reconstruction procedure. The two reconstruction methods were
shown to produce identical output results.

Using a simple scalar quantization noise model, we have an-
alyzed the mean square reconstruction error with the proposed

Figure 5: ”Barbara” reconstructed from 2 levels of LP with 9/7
biorthogonal filters. top: (left) standard reconstruction (1.99 bpp,
29.96 dB), (right) frame-based reconstruction (1.99 bpp, 30.15 d-
B); bottom: (left) proposed method (1.62 bpp, 29.82 dB), (right)
proposed method (1.99 bpp, 30.33 dB).

method and compared it to the errors obtained with the usual re-
construction and the dual frame based reconstruction. The analyti-
cal mean square reconstruction error was observed to depend on the
decimation and the interpolation filters, and on the decimation pat-
tern of the detail signals. The simulation results suggest that, using
proper quantization parameters, it is possible to have better R-D per-
formance over the standard reconstruction and the dual frame based
reconstruction, where all the detail signal coefficients are transmit-
ted.
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