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ABSTRACT

Estimation of Directions-Of-Arrival is an important problem in
various applications.A priori knowledge on the signal location is
sometimes available and previous works have exploited this prior-
knowledge. The principle is to ”orthogonally” deflate the signal
subspace and therefor to cancel the known part of the steering
matrix. Our solution is based on a simple modification of the
well-known MUSIC criterion by substituting the classical Moore-
Penrose pseudo-inverse by theobliquely weightedpseudo-inverse.
The later is in fact an efficient way to introduce prior-knowledge
into subspace fitting techniques.

1. INTRODUCTION

Directions-Of-Arrival (DOA) of narrow-band sources estimation
is one of the central problems in passive radar, sensor sonar, radio-
astronomy, and seismology. This problem has received consid-
erable attention in the last 30 years, and a variety of techniques
for its solution have been proposed. Sometimes, in practical sit-
uations, we have the knowledge of somea priori known signal
direction (DOA) and several methods have been proposed to in-
corporate this prior-knowledge into estimation algorithm. Prior-
knowledge of DOA can be classified into two families depending
if we assumesoft or hard constraints.Softconstraints mean that
we known approximativelyall the signal directions. This class
of method is known under the name of beamspace methods [11]
and has received attention as data reduction methods. The second
class of approach incorporates the exact knowledge of a subset of
the signal directions. This constraint is somewhat more restrict-
ing but more interesting gains can be expected. The exact knowl-
edge of signal direction allows the deflation of the signal subspace
and only the remaining directions have to be estimated. In [4],
a Constrained-MUSIC (CMUSIC) algorithm has been presented.
The key idea is to orthogonally project the data onto the noise sub-
space spanned by the steering vectors associated to the known di-
rections. In [3], the authors show that the orthogonal deflation of
the signal subspace leads to a smaller variance for highly corre-
lated or coherent sources but cannot help for uncorrelated sources
with closely-spaced DOA. In addition, they suggest to use not only
orthogonal projectors but also oblique projectors.
Based on this principle, we propose to modify the MUSIC [8, 10]
Least-Squares (LS) criterion in a view to tacking into account prior
knowledge ofM − S (amongM ) DOA. Toward this end, we

rewrite the MUSIC criterion in the context of the oblique pro-
jector algebra. The resulting LS criterion can be decomposed
into the sum of two contributions. The first term is the CMU-
SIC criterion and the second one is a corrective function which
integrates the prior-knowledge. Finally, we show that our solu-
tion outperforms the CMUSIC algorithm for uncorrelated sources
with closely-spaced DOA. In addition, we show the remarkable ro-
bustness of this algorithm to a small error on the prior-knowledge.
Note that our methodology is also valid for all the methods belong-
ing to the class of subspace fitting techniques [14]. In addition,
some potential applications of this algorithm can be considered in
biomedical signal analysis [12] and harmonic retrieval [13].

2. ALGEBRA OF OBLIQUE PROJECTORS

We start with a brief discussion of oblique projections [1], and
we recall that the only requirement of a matrixE[X Y ] to be a
projector isE[X Y ] is idempotent,ie., E2

[X Y ] = E[X Y ]. Let

R(X) andR(Y ) be subspaces ofCL that intersect trivially,ie.,
R(X)∩R(Y ) = {0}. Then, the projector onR(X) alongR(Y )
is the linear operatorE[X Y ] satisfying:

• ∀x ∈ R(X), E[X Y ]x = x,

• ∀y ∈ R(Y ), E[X Y ]y = 0,

• ∀z ∈ C
L, E[X Y ]z ∈ R(X).

The geometric interpretation of the above properties is∀s =
x + y + z ∈ C

L where x ∈ R(X), y ∈ R(Y ) and z ∈
(R(X)∪R(Y ))⊥ thenE[X Y ]s = x. So, the complex Euclidean
Space is decomposed according toC

L = (R(X) ∪R(Y ))⊥ ⊕
R(X) ⊕ R(Y ). Let V be a complex matrix having full column
rank, obtaining by the concatenation of matricesX andY accord-
ing to V = [X Y ]. The orthogonal projector ontoR(V ) is then
defined as

PV = V V † = E[X Y ] + E[Y X] (1)

where(.)† denotes the Moore-Penrose pseudo-inverse [13] and

E[X Y ] = X(XHP⊥
Y X)−1XHP⊥

Y . (2)

This property is important since it highlights the link between
the orthogonal projectorPV and oblique projectorsE[X Y ] and
E[Y X]. In addition, the ranges forE[X Y ] andE[Y X] areR(X)
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andR(Y ), respectively, and the null spaces forE[X Y ] andE[Y X]

areR(Y ) ⊕R(V ⊥) andR(X) ⊕R(V ⊥), respectively. Finally,
note that

E[Y X]E[X Y ] = E[X Y ]E[Y X] = 0. (3)

3. MATRIX-BASED REPRESENTATION OF THE DOA
ESTIMATION PROBLEM

In this section, we introduce the classical matrix-based representa-
tion of DOA estimation problem for Uniform Linear Array (ULA1,
[5]) and we define the notion of partitioned Vandermonde matrix.

3.1. Parametric Multi-Input Multi-Output (MIMO) model

Assume there areM narrowband plane waves simultaneously in-
cident on an ULA withL sensors. The array response for thet-th
snapshot is given by

x(t) = Zα(t) + b(t) (4)

where x(t) = [x1(t) . . . xL(t)]T , b(t) = [b1(t) . . . bL(t)]T ,
α(t) = [α1(t) . . . αM (t)]T and xℓ(t) is the observation on
the ℓ-th sensor,αm(t) is m-th source andbℓ(t) is the zero-
mean Gaussian white noise of varianceσ2. In addition, the thin
L × M Vandermonde steering matrix is defined by[Z]nm =
1√
L

e−2iπ(∆/λ) sin(θm)n whereθm is them-th DOA, ∆ is the dis-
tance between two consecutive sensors andλ is the wavelength.
ParameterM is assumed to be known or previously estimated [9].
So, the final MIMO model forT snapshots is

X = [x(1) . . . x(T )] = ZΛ + B (5)

whereΛ = [α(1) . . . α(T )]T andB = [b(1) . . . b(T )].

3.2. Partitioned steering matrix and deflated subspace

Assume that we knowM − S DOA amongM . Without loss of
generality, the Vandermonde matrixZ can be partitioned accord-
ing to

Z =
�
A B

�
(6)

where theL × S matrix A is the matrix composed by theS de-
sired DOA andB collects theM − S a priori known DOA. As
S ≤ M , matrix A (respectivelyB) is a rank-S (rank-(M − S))
matrix. Note that it is always possible to rewriteZ according to
expression (6) since we can introduce a non-deficient permutation
matrix such asZP = [A B]. We nameR(A) the deflated signal
subspace since its dimension isM − S which is smaller than the
dimension of the signal subspaceR(Z). We haveR(A) ⊆ R(Z).
For simplicity, we assume that the sources associated to the known
and to the unknown parts are uncorrelated. Consequently, the spa-
tial covariance matrix is block-diagonal and is defined according
to

1Note that the ULA assumption is only use to propose, in section5,
a root version of the PMUSIC algorithm. Otherwise, for arbitrary array
geometry, we can use thespectralversion of this algorithm.

RX = ZRΛZH + σ2I (7)

= RA + RB + σ2I (8)

whereRA = ARΛA
AH with RΛA

the spatial covariance of the
unknown sources andRB = BRΛB

BH with RΛB
the spatial

covariance of the known sources.

4. PRIOR MUSIC-LIKE ALGORITHM

It can be seen that the MUSIC algorithm attempts to find one com-
ponent at a time which is most orthogonal to the noise subspace.
Let p(θ) be a generic test vector parameterized byθ which is given
by

p(θ) =
1√
L

�
1 e−2iπ(∆/λ) sin(θ) . . . e−2iπ(∆/λ) sin(θ)(L−1)

�T
.

The basic unconstrained MUSIC-like optimization problem can
be described according to

arg min
θ

f(θ) where f(θ) =



P⊥

Z p(θ)



2

(9)

with P⊥
Z = I−ZZ† the orthogonal projector associated toR(Z).

Now, consider a new criterion associated to the Prior-MUSIC al-
gorithm

arg min
θ

f ′(θ) where f ′(θ) =



�I − ZZ‡

�
p(θ)




2

(10)

whereZ‡ = Z†E[A B] denotes theobliquely weightedpseudo-
inverse2 whereE[A B] is the oblique projector on the unknown
spaceR(A) along the known spaceR(B) defined in (2).

After some derivations and using expressions (1), (3) and the
fact that all projectors are idempotent, the cost function in criterion
(10) can be rewritten according to

f ′(θ) =



�P⊥

Z + E[B A]

�
p(θ)




2

. (11)

Now, one can easily verify thatP⊥
Z E[A B] = 0 and therefor

expressions (10) and (11) become

arg min
θ

f ′(θ) where f ′(θ) = f(θ) +


E[B A]p(θ)



2
. (12)

As we can see, the above expression is a MUSIC-like criterion
with an additional corrective term which takes into account the
prior-knowledge. Note that

• ∀p(θ) ∈ R(Z) = R(A) ∪ R(B), f(θ) = 0 and thus is
minimal.

• ∀p(θ) ∈ R(A), the corrective term,


E[B A]p(θ)



2
= 0.

So, criterion (12) is null.

• ∀p(θ) ∈ R(B), the corrective term is

E[B A]p(θ)


2

= ‖p(θ)‖2 = 1.

So, criterion (12) is not minimal.

2Note that solutionα = Z‡p(θ) is the minimal norm solution of crite-
rion arg minθ,α ||p(θ) − E[A B]Zα||2 subject top(θ) ∈ R(A).
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4.1. Estimation of projectorsP⊥
Z with known part B

The estimation of projectorP⊥
Z , denoted by

P̂⊥
Z = I −

�
Â B

� �
Â B

�†
, (13)

is obtained by the methodology introduced in the context of the
CMUSIC algorithm [4]. Hereafter, symbolˆ denotes unknown
quantities.

4.2. Estimation of oblique projectors

4.2.1. Invariant to change of basis

Let us begin by an important remark. The oblique projectors
E[B A] andE[A B] are invariant to change of basis. Indeed a ba-
sis of spaceR(A) is not unique, so consider (for instance through
the SVD) another basisΦ such asR(A) = R(Φ). We know that
there exits an invertible matrixΘ such asΦΘ = A. In that case, it
comes the two following equalities:

E[B A] = E[B AΘ−1] and E[A B] = E[AΘ−1 B]. (14)

This invariance property forE[B A] is a consequence of the fact
that P⊥

A is essentially unique sincePA = AΘ−1ΘA† = AA†.
For projectorE[A B], we can show this result in the following man-
ner:

E[AΘ−1 B] = AΘ−1Θ
�
AHP⊥

B A
�−1 �

Θ−1Θ
�H

AHP⊥
B

= E[A B].

4.2.2. Estimation of projectorE[B A]

Knowing matrixB, we need to estimate projectorP⊥
A in E[B A]

to compute the corrective term in expression (12). Now, observe
that

P⊥
B Z =

�
I − BB†

� �
A B

�
=

�
P⊥

B A 0
�
. (15)

After that, consider the following weighted spatial covariance
matrix:

R̄X = P⊥
B RX . (16)

Note that it is possible to show that projectorP⊥
B does not de-

stroy the statistic distribution of the noise. In addition, asRX ad-
mits a Vandermonde decomposition according to expression (7), it
comes

R̄X = P⊥
B ZRΛZH + σ2I (17)

= P⊥
B ARΛA

AH + σ2I (18)

and the rank of̄RX is S. The above expression shows that we can
estimate projectorP⊥

A according to

P̂⊥
A = V̄ ∗V̄ T (19)

where V̄ is constituted by theL − S last columns of the
right singular-basisV of the sample weighted spatial covariance
P⊥

B XXH/T . Note that we use the right basis since the left basis

is corrupted by projectorP⊥
B . Finally, using expression (19), the

estimated oblique projector is given by

Ê[B A] = B
�
P̂⊥

A B
�†

=
�
P̂⊥

A PB

�†
. (20)

4.3. Spectral Prior-MUSIC algorithm

Let us define

fCMUSIC(θ) = p(θ)H P̂⊥
Z p(θ),

fCOR(θ) = p(θ)H
�
P̂⊥

A PBP̂⊥
A

�†
p(θ).

Based on the above notations and expression (12), we introduce
the spectral-PMUSIC criterion according to

arg max
θ

C(θ)−1 where C(θ) = fCMUSIC(θ) + fCOR(θ). (21)

It is straightforward to see that the peaks in the pseudo-
spectrum,C(θ)−1, coincide with the unknown DOA.

5. ROOT PRIOR-MUSIC

The enumerative search procedure associated to the spectral PMU-
SIC criterion (21) is a costly operation. Thanks to the ULA as-
sumption, we expose the ”root” version of the PMUSIC algorithm
which has a lower complexity cost. In addition, it is well-known
that the ”root” version of the MUSIC-like algorithms is superior to
its spectral form [7].

5.1. Root-CMUSIC

The criterion of the root-CMUSIC is based on polynomial
fCMUSIC(z) wherez = e−2iπ(∆/λ) sin(θ). Due to the ULA assump-
tion, p (.) has a Vandermonde structure and the DOA estimation
problem can be formulated in term of finding the zeros of the above
conjugate centro-symmetric polynomial of degree2L − 2. This
symmetry is a consequence of the Hermitian character of projector
P̂⊥

Z and the explicit computation of the coefficients offCMUSIC(z)
denoted by{qℓ}ℓ∈[1−L:L−1] is given by summing along the diag-
onal of the projector matrix. In addition, we haveqℓ = q∗−ℓ andq0

is real and equals toTr(P̂⊥
Z ) = L−M . Moreover, one can easily

verify thatfCMUSIC(z) is equal to its reciprocal polynomial [2] and
therefor ifzm is a zero thenz∗

m
−1 is also a zero,ie., (zm, z∗

m
−1)

occur in pairs. Note that for theM desired DOA, we have con-
straint|zm| = 1, ie., DOA belong to the unit circle. In presence of
noise, the DOA may be extracted (among2L − 2 possible roots)
based on their proximity to the unit circle.

5.2. Polynomial form of the corrective function

In this part, we follow the same methodology as for the root-
MUSIC approach, and we associate a polynomial form tofCOR(θ)
such as: for all unknown DOA, polynomialfCOR(z) must be zero.

Note that due to the fact that
�
P̂⊥

A PBP̂⊥
A

�†
is Hermitian, the coef-

ficients offCOR(z), noted{pℓ}ℓ∈[1−L:L−1], are conjugate centro-

symmetry,ie., pℓ = p∗
−ℓ, p0 = Tr

�
P̂⊥

A PBP̂⊥
A

�†
and therefor

(zm, z∗
m

−1) occur in pairs. Consequently, the Root-PMUSIC is
based on the following result.
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Theorem 1 TheS roots of the polynomial form

C(z) = fCMUSIC(z) + fCOR(z)

are the DOA without the subset of the known DOA.

Proof: As we know that(zm, z∗
m

−1) occur in pairs, we can
give the factorized forms of polynomialsfCMUSIC(z) and fCOR(z)
according to:

fCMUSIC(z) =

SY
m=1

(z − zm)

�
z −

1

zm
∗

� MY
m=S+1

(z − zm)

�
z −

1

zm
∗

�
(22)

L−M−1Y
m=1

(z − z
′

m
)

�
z −

1

z′

m
∗

�
(23)

and

fCOR(z) =

SY
m=1

(z − zm)

�
z −

1

zm
∗

�L−S−1Y
m=1

(z − z
′′

m
)

�
z −

1

z′′

m
∗

�
(24)

where{zm} are the desired (known or unknown) DOA and{z′
m}

and{z′′
m} are the extraneous DOA. Based on expressions (22) and

(24),C(z) admits the following factorization:

C(z) = I(z)Q(z) (25)

where

I(z) =

SY
m=1

(z − zm)

�
z −

1

zm
∗

�
Q(z) =

MY
m=S+1

(z − zm)

�
z −

1

zm
∗

�L−M−1Y
m=1

(z − z
′

m
)

�
z −

1

z′

m
∗

�
+

L−S−1Y
m=1

(z − z
′′

m
)

�
z −

1

z′′

m
∗

�
.

Clearly, Q(z) has no trivial roots,ie., any known or unknown
DOA are solution toQ(z) = 0. Inversely, we only haveI(z) =
0 for the unknown DOA. So, according to expression (25), zeros
of C(z) are only the DOA which annulateI(z), ie., the unknown
DOA.

6. NUMERICAL SIMULATIONS

6.1. Illustration

In this part, we consider a numerical example to illustrate the
PMUSIC algorithm. On Fig. 1-a, we have drawn the pseudo-
spectrums of the MUSIC and the PMUSIC algorithms for three
DOA where one is known and two others have to be estimated.
First, note on the PMUSIC pseudo-spectrum that the known DOA
has been efficiently cancelled from the MUSIC pseudo-spectrum
without altering the unknown one. In contrast to the classical MU-
SIC algorithm, we can note on Fig. 1-b thatC(θ) has only two null
values at0.8 and2.2 rad.

On Fig. 2, we have drawn the zero location with respect to
the unit circle for the root-MUSIC and root-PMUSIC algorithms.
Note that the zeros occur in pairs, as expected. However in pres-
ence of noise, selecting the zeros (with unit modulus constraint)
based only onfCOR(z) is a difficult task due to their proximity to
the unit circle. So, a decision only based onfCOR(z) seems inef-
fective. Inversely, note that a decision on criterionC(z) is a more
practicable task.
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0

1

2

3
x 10
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Fig. 1. (a) MUSIC and Prior-MUSIC pseudo-spectrums for three
AOA (one known and two unknown), (b)fCMUSIC(θ), fCOR(θ) and
C(θ) for L = 20 sensors andT = 100 snapshots.
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Fig. 2. Zero location with respect to the unit circle.

6.2. Performances

6.2.1. Accuracy of the proposed method

The context of these simulations is an Uniform and Linear Ar-
ray. The performance of the proposed method is compared to the
classical root-MUSIC [7] and to a ”root” version of the CMU-
SIC algorithm presented in [4]. The accuracy of the estimation
of the DOA of interest is measured thought the RRMSE (Root
Relative Mean Square Error). Each simulation is based on 1000
Monte-Carlo trials. On Fig. 3-a, we consider well separeted DOA,
e.g, θ = [0.8 1.7]. In this situation, all the tested algorithms
are equivalent. On Fig. 3-b, we choose closely spaced DOA,
e.g, θ = [0.8 0.75]. In this scenario, we can note that the root-
PMUSIC algorithm shows a RRMSE close to the root-MUSIC
algorithm for a single DOA and is more efficient than the root-
MUSIC for two DOA. By the light of this example, we can say
that most of the influence of the known DOA has been efficiently
cancelled. This is not the case for the CMUSIC algorithm. De-
spite of the fact, that this algorithm performs slightly better than
the root-MUSIC for two DOA, its accuracy is close to the two
DOA root-MUSIC algorithm than the single one.

6.2.2. Robustness

For this example, the scenario is the same as for Fig. 3-b but we
perturb the known DOA in the range[θ2(1 − 20

100
), θ2(1 + 20

100
)]

and we compute the RRMSE of the DOA of interest. Fig. 4 shows
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Fig. 3. RRMSE Vs. SNR, (a) Non-close spaced DOA withL =
10 sensors andT = 10 snapshots, (b) Close-spaced DOA with
L = 15 sensors andT = 100 snapshots.

that for the CMUSIC algorithm, a small error on the known DOA
affects drastically the estimation of the DOA of interest, in par-
ticular for high SNR. Inversely, we can note the remarkable ro-
bustness of the root-PMUSIC algorithm for several SNRs. This
leads to think that a multi-stage version of the PMUSIC algorithm
can be a valuable solution. This direction is the subject of current
researches [6].
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Fig. 4. RRMSE Vs. Error on the known DOA withL = 15
sensors andT = 100 snapshots.

7. CONCLUSION

In this work, we have presented a subspace-based solution to es-
timateS DOA amongM using the knowledge ofM − S known
DOA. Our solution is based on an oblique deflation of the sig-

nal subspace. We show that the proposed algorithm, called Prior-
MUSIC, efficiently mitigates the influence of the known DOA on
the DOA of interest in particular when the DOA are closely spaced.
In addition, this algorithm is remarkably robust when an error cor-
rupts the known DOA.
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