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ABSTRACT

The second-order blind identification (SOBI) algorithm
for separation of stationary sources was proved to be
useful in many biomedical applications. This paper re-
visits the weights-adjusted variant of SOBI, known as
WASOBI, which is asymptotically optimal (in separat-
ing Gaussian parametric processes), yet prohibitively
computationally demanding for more than 2-8 sources.
A computationally feasible implementation of the algo-
rithm is proposed, which has a complexity not much
higher than SOBI. Excluding the estimation of the corre-
lation matrices, the post-processing complexity of SOBI
is O(d*M), where d is the number of the signal com-
ponents and M is the number of covariance matrices
inwolved. The additional complexity of our proposed im-
plementation of WASOBI is O(d® + d®M?) operations.
However, for WASOBI, the number M of the matri-
ces can be significantly lower than that of SOBI without
compromising performance. WASOBI is shown to sig-
nificantly outperform SOBI in simulation, and can be
applied, e.g., in the processing of low density EEG sig-
nals.

1. INTRODUCTION

The second-order blind identification (SOBI) algorithm
is a classical blind source separation (BSS) algorithm
for wide-sense stationary (WSS) processes with distinct
spectra [1]. This algorithm has proved to be very use-
ful in biomedical applications and became more popular
than other algorithms [2, 3, 4].

This paper is focused on the optimal achievable sep-
aration. Hence we primarily study the SOBI algorithm
that utilizes the full number of O(d* M) operations (ex-
cluding the O(d> M N) operations necessary for estimat-
ing the correlation matrices), where d is the number of
sources, M is the number of correlation matrices used
and N is the data length. In the literature, several ex-
tensions and modifications of the SOBI algorithm have
been proposed - e.g., “robust SOBI” [7], “thin ICA” [6].
These algorithms are different in the sense that they do
not perform all O(d*M) operations but a lower num-
ber, which allows e.g. processing of high density EEG
signals with dimension 64 and more. The lower com-
plexity, however, is attained at the cost of compromised
separation accuracy, as will be shown in the simulation
section.
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In [8], the SOBI algorithm was reformulated as
a weighted nonlinear least squares (LS) problem, for
which the optimum weights are in general different than
those applied in SOBI. The use of asymptotically op-
timal weights gave rise to the weights-adjusted SOBI
(WASOBI), which is asymptotically optimal (approach-
ing the corresponding Cramér Rao bound (CRB) for
best possible separation) for Gaussian moving average
(MA) sources, [8], and later for sources modeled as
Gaussian autoregressive (AR) and ARMA processes [9].

The estimation of the optimal weight matrix for
the WASOBI algorithm requires the estimation of the
observed processes parameters. Generally the obser-
vations are ARMA(p,q) processes, where p = E?:l Dis
q = maz{q+p—p1,g2+p—p2,--.,q4+p—pq} and p; and
g; are i-th source’s AR and MA orders, respectively (d
is the number of sources). Then, the minimum number
of estimated correlation matrices required to attain the
asymptotic optimality equals ¢ + p + 1, a number that
increases linearly with the number of sources. There-
fore, the direct implementation of WASOBI for AR or
ARMA sources was highly computationally demanding
and in practice it allowed blind separation of only 2 or
3 sources.

We concentrate the discussion in this paper on sep-
aration of AR sources for at least two reasons. First,
AR processes are the most frequently used to model
biomedical signals, MA or ARMA models are rarely
used. Second, Gaussian AR processes are known to be
the maximum entropy processes among all random pro-
cesses having a prescribed set of values of covariance
function. In this sense, the AR assumption is the least
informative and hence the least committed to a partic-
ular structure.

It was shown that, when all the sources are Gaussian
AR processes, a sufficient statistic for their separation
is the set of estimated correlation matrix from lags 0 to
their maximal AR-order [10], c¢f. Theorem 6.4 in [12]. In
such cases, the estimation of correlation matrices for far-
ther lags cannot improve the performance of an optimal
estimation procedure.

In this paper, the WASOBI algorithm is re-visited
and a novel implementation for AR sources is proposed.
The new implementation involves about the same or-
der of operations as SOBI (in our simulations, it needs
about three times more operations than SOBI). At the
present time it allows us to separate up to 20 sources
of AR order 10, in computation time of about 2 min-
utes. The proposed approach is based on an iterative
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scheme, in which a pre-processing separation algorithm
(e.g., SOBI) is applied first, and then the optimal WA-
SOBI is applied to the estimated correlation matrices of
the nearly-separated sources. Consequently, the mini-
mal number of estimated correlation matrices required
for the estimation of the optimal weighting is reduced
to the maximum assumed AR order plus one.

In simulations we show that the new implementation
of WASOBI remains asymptotically efficient in the sense
that it achieves the corresponding CRB in separating up
to 20 sources, and may represent a vital alternative to
SOBI in biomedical applications, for example in pro-
cessing of low density EEG. In addition, we explore, in
simulation, the robustness of WASOBI to additive noise
(with which WASOBI is no longer claimed to be asymp-
totically optimal).

2. DATA MODEL AND METHOD

We address the noiseless static invertible model:

x[n] = As[n] n=12,...,N (1)
where A € R¥*? is the unknown mixing matrix, s[n] =
[s1[n], - .., sq[n]]T € R? are the unobserved statistically
independent sources and x[n] = [z1[n],. .., z4[n]]T € R?
are the d observed static linear mixtures of s[n]. In our
case, we further assume that the sources are Gaussian
AR processes of known orders. The BSS problem con-
sists of recovering the unobserved sources, or estimating
the unknown mixtures coefficients.

The performance of BSS algorithms is usually mea-
sured by the interference to signal ratio (ISR), or its in-
verse signal-to-noise ratio (SIR).! In [10] the minimiza-
tion of the ISRs was proven to be approximately equiva-
lent to the minimization of the mean square error (MSE)
in estimating the mixing matrix (assuming that the in-
herent scaling and permutation ambiguity are resolved).
Therefore, by reformulating the problem as a weighted
LS (WLS) problem, two goals are achieved: minimizing
the MSE of the estimated A and data reduction: rather
than estimate A from N vectors we estimate A from a
small number of estimated correlation matrices. Such
a data reduction is permissible since, as was proven in
[10], cf. [12], the statistic:

7=0,...,Pmaz (2)

1/~ ~

5 (Ralr] + RII)
forms asymptotically sufficient statistic for the separa-
tion of AR Gaussian sources, where ppq; is the max-
imal AR-order of the sources. We therefore choose
M = ppee + 1 and compute

R[] = NZ

(assuming N + M — 1 samples are available). The ob-
servations’ true correlation matrices take the structure

n)x'[n+7] 7=0,....,M—1 (3)

R.[7] = AR.[7]A” vr (4)

1Tn the presence of additive noise, a preferred measure of per-
formance is the signal-to-interference plus noise ratio (SINR) [11].

where due to the spatial independence of the
sources, their correlation matrices Rs[r] =
diag[)\g),)\(rz)7~~ ,)\(Td)] are diagonal matrices and
A% is the auto-correlation of skg[n] at lag 7. This
relation can also be written as

vec{Rx[7]} = (A ©® A)A; (5)

where ® denotes the Khatri-Rao product (a column-
wise Kronecker product), and A, = diag{Rs[r]} =
A AD L ADIT Since the matrix Ry[r] is sym-
metric, (5) can be further equivalently re-written as

svec{ Rx[7]} = Q(A ® A)A, (6)

where svec{R} is similar to vec{R}, but only stacks

the d(d; D elements of 1 3R+ R7) lying on and below
its main diagonal, and Q is a suitable matrix composed
of zeros, ones, and 3’s.

Introducing the notation y, 2 svec{R,[7]}, and
G(A) £ Q(A ® A), (6) can be written as

- =G(A)A, . (7)

Given M estimated correlation matrices f{x[T], trans-

formed as ¥, = SVQC{ﬁX[T]}, the overall LS formulation
of the problem is:

¥ ~ [T ® G(A)A £ G,(A)A, 8)

where y = [¥{,57,--- ,?ﬂfl]T is the new measure-
ments vector, IM denotes the M x M identity matrix,
[)‘0 ) A o AT
Accordlng to the WLS approach, we have to mini-
mize the following criterion:

Cwis(A,A) = [§ — G(ANTWIF — G,(A)A (9)
with respect to A, and A, where W is a weight ma-
trix. The optimum weight matrix, which minimizes
the mean square errors of the estimated parameters, is
W = {cov[y]}~!. In the original WASOBI algorithm
it was proposed to estimate the full matrix W from
the estimated correlation matrices, basing the result on
the relations between second- and fourth-order moments
of the Gaussian sources. The resulting estimation pro-
cedure, followed by the tedious high-dimensional mini-
mization procedure, resulted in a computationally pro-
hibitive algorithm for cases of more than 2-3 sources.

The key observation which forms the basis for our
proposed implementation, is that when the sources are
nearly unmixed and the elements of ¥ are properly
reordered, together with the rows in G,(A), the re-

ordered optimal weight matrix, denoted W, becomes es-
sentially block-diagonal, and therefore its computation
from the estimated correlation becomes simpler. More-
over, the high-dimensional LS problem (9) can be de-
composed into smaller individual LS problems - which
offers substantial computational relief. Thus, the opti-
mum weight matrix is estimated from correlation matri-
ces of the nearly-separated sources, following an initial
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separation attained by any closed form algorithm (e.g.
SOBI). Iterating the loop (separation) - (estimation of
W) - (updated separation) by minimizing (9) usually
converges within up to three iterations, resulting in the
same asymptotic efficiency (attaining the CRB) as orig-
inal WASOBI.

Note further, that it is not necessary to actually sep-
arate the sources in the preprocessing (SOBI) stage and
then re-estimate their correlations, since the estimated
separating matrix can be applied directly to the original
observations’ estimated correlation matrices, yielding in
turn the estimated correlations of the nearly-separated
sources. The same holds true for each subsequent itera-
tion of WASOBI.

The exact closed form expression for estimation of

elements of W will be shown later. However, we observe

that W is block diagonal. To be more specific, criterion
(9) can then be rewritten in the form

Cwis(AA) = [ — Go(A)AN"WIF — Go(A)A] (10)
where

y = [?%L?;ﬂa---’y;a?g;a---a?de]T (11)

G,(A) = [G];(A),GJ,(A),...,GL (A" (12)

W = block diag[W11, Wa1,...,Wgg]. (13)

The 7-th element (7 =1,..., M) of ¥x is

(ykg)-,— = % I:ﬁh-g[T - 1] + ﬁgk[T — 1]] (14)
Wi = [cov(Fre)] (15)
Gkg(A) =Iy® (Ak *Ag.) (16)

for k,0 =1,...d, k > ¢, where Ay. is the k—th row of
A and “x” is the elementwise product.

Exploiting the block-diagonal structure of W, the
criterion Cyyrs(A, A) in (10) can be simplified as

= ) [Fre — Gre(A)A " Wie[Fe — Gre(A)A] (17)
k,l, k>4

2.1 Computing elements of the weight matrix

For Gaussian sources it can be easily shown that

lim N E{(Ryelr] = Relr]) Rpglr'] = Ryglr')}

N-1

) m
= Jim 3 (= ) RegmRegfm + 7' 7]
m=—N+1
+Rpq[j + 7' R[5 — 7))
~ g ED [ _ 7] 4 pBDER) [ 4 7] (18)
where
¢(}c,p)([,q) [7-] = Z Rk:p[m]REQ [m + T]

m=—o0
1

(kp) (¢q) -1
5] ]{S (2)SYY(2)2z" " dz (19)

and S*?)(z) is the cross-spectrum (in the Z-domain)
between the k-th and p-th sources [9].

Note that for independent (separated) sources,
Rip[m] = 0 unless k = p, so that ¢5P)Ea[r] =
unless k¥ = p and ¢ = ¢q. The computational relief of
the new implementation of WASOBI consists in part in
the observation that in a neighborhood of the point of
the separation, the values of ¢(*?)(49)[r] for k # p or
¢ # g need not be computed and can be neglected. This
implies the block-diagonality of W.

Second, note that each integral in (19) can be com-
puted in O(M?) operations as a variance of an AR pro-
cess which has its coefficients given as a convolution of
AR coefficients of the k—th and {—th signal [10].

2.2 Minimization of the weighted criterion

The main idea of the minimization of (10) is to write it
as minimization of

C(0) = [¥ — £(0)]"W[¥ — £(8)] (20)

where @ is the unknown parameter composed of ele-
ments of A and A, and £(0) = G,(A)A. Then, a Gauss
iterative method can be applied [13],

o+ = gl ¢ [FTWF,|'WF,[y — £(67)]  (21)

where F; = 9£(6)/00|g_gi-

Note that the minimization problem (10) has the in-
herent BSS scaling ambiguity, which allows us to com-
mute scales between the elements of A and the columns
of A. Hence it is possible, without any loss in generality,
to fix e.g., the first d elements of A to arbitrary nonzero
values (e.g. 1’s), and exclude them from the minimiza-

tion. Thus, the unknown parameters are 6 = (6%, XT]T,
where 05 = vec{AT} and A= [ATAT ... AT, _||T.
The iteration (21) can be rewritten as

it 'R H/WH,
il | T | 2l | T &g
A A

—~ -1
HTWG,
G, WH;,

G, WG,

H'W | /. ~ ~iqwr
. i vy _ [y )[4 P —
[Efw ] (y G, (AlHX ) i=0,1,... (22)
where
oo OGN g 0GR
aeA 0:0[” aA 0:0[i]

Further, exploiting the block diagonality of W (13), the
right term of (22) could be rewritten as sums of smaller
matrices as follows:

L [ Wi (H b {(H Wi (Gl 1
{£ £Vt St}
{H:} 5, Wi (?ke - GM(KH])XU])

Kz

TRV 5 vz | (2
=1k=t |{G;}1/ Whe (}’M — Ge( ))\1)
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where ¥, Wi and Gy (A) were defined in (14), (15),

and (16), respectively, and
A
{Hitre = 9Cke(A)A M x d® (24)
00 0—0"
— A
{Gitre = M‘ _ M x (M —1)d
o\ 0-0"!
= Gre(AM[0:T40-1)]" (25)
The initial conditions could be set as follows: @Ez] =
vec{I;} and A = diag(Rg[r]) for 7 = 1,...,M — 1,

where “diag” denotes the diagonal elements of Rg[7].
Usually, 3 iterations are sufficient to achieve convergence
of the algorithm.

Note that the size of the matrix to be inverted in
(23) is d(d + M — 1) x d(d + M — 1). Computation
of the matrix and its inversion involves O(d*M?) and
O(d® + d®M?) operations, respectively. Hence we can
conclude that the total cost of the minimization of the
weighted criterion is O(d® + d® M3) operations.

3. COMPLEXITY ISSUES

For evaluating the computational complexity of the al-

gorithm, we can divide it into four parts.

1. Computation of the lagged covariance matrices re-
quires d2M N operations.

2. Computation of SOBI - requires O(d* M) operations.

3. Computation of diagonal blocks Wi, kl=1,...,d,
k # £ of the weight matrix W. Each (k,¢) pair
requires to evaluate 2M values of the function ¢,
each requiring O(M?) operations, all together it is
O(d? M3) operations to form ““F A7 x M blocks.
Inversion of each block requires O(M?) operations,
which does not alter the complexity O(d?M?) oper-
ations.

4. Minimization of the criterion (10) is done recursively,
each iteration requiring O(d® + d® M3) operations.

4. CRAMER-RAO LOWER BOUND

As mentioned in the Section 2, the performance of BSS
algorithms can be measured by means of the ISR matrix.
The (k, £)—th element of this matrix ISR, characterizes
the mean square residual presence of the k—th original
source in the /—th estimated source. For both theo-
retical and practical reason it is interesting to compare
the ISR obtained in simulations with the best achievable
lower bound, in particular the CRB. For Gaussian para-
metric AR and ARMA sources, the bound was derived
in general form in [10]. We cannot include more details
here for lack of space, but it can be shown that in the
case of AR sources, the CRB on ISR can be written in
the form

%5 R,[0]
(,Lg R [0]

1
N 1 — ¢peder

ISRy, > CRLBg, = (26)

where {Ry[t]}/25" is the covariance sequence of the

k—th source, o7 is the variance of the innovation se-

quence of the source,

= 1 [ Ag(2)AL(2)27!
7 X Rl = g M

{ai}M 5t are the AR coefficients of the £—th source with
ape = 1 V¢, and Ay(z) = Zf\io apz"t 0=1,....d.

Since WASOBI is asymptotically equivalent to Max-
imum Likelihood ([10]), it asymptotically attains the
CRB, which can be estimated in turn from the data
and serve to predict the performance of WASOBI.

5. SIMULATIONS

Performance of the new implementation of the WASOBI
was tested on simulated data of the length N = 5000
with d = 20 components. The first 10 component were
constructed so that the k—th component was Gaussian
AR process of the k—th order, with AR parameters
(1,0,...,0,p), where p was a free parameter in interval
(0,1), and k = 1,...,10. The remaining 10 components
were defined similarly with the difference that the AR
parameters were (1,0, ...,0,—p). The parametric choice
of the sources has the advantage that by controlling a
single parameter (p), it allows us to simulate sources
that are difficult to separate (for p close to zero), and
sources that are relatively easy to separate (for p close
to one). In the former case, the power spectra of the
sources are similar to each other, whereas in the latter
case the spectra are very different from each other.

All these sources can be characterized by the same

“spectral dynamic range” n 29 log;q Gf—l";l‘), which

is the ratio (in [dB]) between the peak spectral density
of the sources and their minimal spectral density. Note
that n = —oo for white processes (p = 0) and extends
to infinity as p approaches 1.

Performance of the WASOBI is compared with that
of SOBI and with the corresponding Cramér Rao bound
in terms of the interference-to-signal ratio (ISR) for var-
ious n in Figure 1. The empirical ISR is based on 10
independent trials for each . We can see that (1) WA-
SOBI is nearly statistically efficient (attains the CRB)
in the whole range of ny between 0 dB and 40 dB 2) WA-
SOBI outperforms SOBI significantly in terms of ISR,
namely for moderate and high 7.

5.1 Sensitivity to additive noise

To evaluate its robustness, WASOBI was also tested in
the presence of white Gaussian additive noise (in the
same scenario). In accordance with the recommendation
in [11], we study the achieved signal-to-interference plus
noise, SINR, and compare it with the SINR obtained by
the hypothetical separator computed for known mixing
matrix and variance of the noise. Results are shown in
Figures 2 and 3. They demonstrate good performance
of WASOBI in the noisy environment, but show, that if
the additive noise exceeds a certain level, the difference
in performance between SOBI and WASOBI disappears.
In addition, we have not observed any improvement of
performance of SOBI or SOBI-RO, if the number of the
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Figure 1: Average interference-to-signal ratio achieved
in simulation by WASOBI and SOBI as a function of
the spectral dynamic range i of the 20 sources.

involved matrices was increased above M = 11. Perfor-
mance of SOBI-RO did not improve even at M as high
as 100.

SNR = 20dB
40 : : :
30 R :
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Figure 2: Average SINR achieved in simulation by WA-
SOBI and SOBI where the mixture is contaminated by
additive white Gaussian noise at SNR=20dB as a func-
tion of the spectral dynamic range n of the sources.

6. CONCLUSIONS

A novel implementation of the weighted SOBI (WA-
SOBI) algorithm was proposed. At the present time,
it allows a separation of about 20 sources in Mat-
lab computation time in order of minutes. The al-
gorithm is asymptotically efficient, which means that
it attains the performance limit given by the Cramér-
Rao lower bound if the data length is large enough,
provided that the initial separation - here done by
SOBI - is sufficiently good. Matlab code for the
proposed implementation of WASOBI is available at
http://si.utia.cas.cz/Tichavsky.html.
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