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ABSTRACT is the signal complex amplitude.
This paper deals with radar detection in impulsive clutter. )
Its aim is twofold. Firstly, assuming a Spherically Invari- L€t us now recap some SIRV theory results. A noise

ant Random Vectors (SIRV) model for the clutter, the cor-modelled as a SIRV is a non-homogeneous Gaussian process
responding unknown covariance matrix is estimated by aith random power. More precisely, a SIRV [6] is the prod-
recently introduced algorithm [1, 2]. A statistical analysisUct of the square root of a positive random variab{texture
(bias, consistency, asymptotic distribution) of this estimatéind am-dimensional independent complex Gaussian vector
will be summarized allowing us to give the GLRT proper- X (Speckl¢ with zero mean covariance matit = E(xx")

ties: the SIRV-CFAR (Constant False Alarm Rate) propertyWith normalization T¢M) = m, whereH denotes the conju-
i.e. texture-CFAR and Covariance Matrix-CFAR, and the redate transpose operator

lationship between the Probability of False Alarm (PFA) and

the detection threshold. c=1X. (2)
Secondly, one of the main contributions of this paper is

to give some results obtained with real non-Gaussian data. The SIRV PDF expression is

These results demonstrate the interest of the proposed detec-

tion scheme, and show an excellent correspondence between +o
experimental and theoretical false alarm rates. Pm(C) = A gm(c, 7) p(T)dT , 3)
1. PROBLEM STATEMENT AND BACKGROUND where

Non-Gaussian noise characterization has gained many

interests since experimental radar clutter measurements, 1 cHM-1c

made by organizations like MIT [3], showed that these data Om(C,T) = exp(—) . (4)

are correctly described by non-Gaussian statistical models. ()™M T

One of the most tractable and elegant non-Gaussian model ) ) ) )

comes from the so-calle@pherically Invariant Random _ This model allowed to build several Generalized Like-

Vector (SIRV) theory. A SIRV is the product of a Gaussian lihood Ratio Tests like the GLRT-Linear Quadratic (GLRT-

random process - callespeckle- with the square root of a LQ) in [4, 5] defined by

non-negative random variable - calleskture This model

leads to many results [4, 5. "M 1y|2 Hh

1 -2 A, (5)

: . : (PHMp)(YAIM y) Ho

The basic problem of detecting a complex signal cor-

rupted by an additive SIRV clutterin am-dimensional com- wherep is the steering vectoy; the observed vector and

plex vectory can be stated as the following binary hypothesisthe detection threshold associated to this detector.
test:

AM) =

. In many problems, non-Gaussian noise can be character-
{ Ho y=c yi=¢ i=1..N (1) ized by SIRVs but the covariance matik is generally not
Hity=st+c y=c i=1...N known and an estimaté is required. Obviously, it has to
where theci’s areN signal-free independent measurementsgsatisfy theM -normalization: T(M) =m.
traditionally called the secondary data, used to estimate the
clutter covariance matrix. The next section is devoted to an adaptive GLRT built
from an Approximate Maximum Likelihood (AML) estimate
Under hypothesid;, it is assumed that the observed of the SIRV covariance matrix. Then, Section 3 presents an
data consists in the sum of a sigreak ap and clutterc,  application of this detector to real data: experimental results
wherep is a perfectly known complex steering vector and perfectly match theoretical analysis.
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2. THE FIXED POINT ESTIMATE Mgp AND THE This property is of most interest in a practical work to
CORRESPONDING ADAPTIVE GLRT detect targets when the covariance matrix is unknown.

2.1 The AML estimate Theorem 2.1

Conte and Gini in [1, 2] have shown that an Approxmate/\(M rp) is M-CFAR.
Maximum Likelihood (AML) estimateéM of M is a solution

of the following equation Theorem 2.1 establishes the M-CFAR property of the
adaptive GLRT built with the FP estimate.
. mN cicH
M=— ho-1 |- (6) Proof2.1 R
Ni& ¢'M ¢ LetM be a covariance matrix. L& gp be the FP estimate

Notice that the ML estimate has been studied in [7]. g;g/lw t;l;?n under hypothest$, (no target signal), we will

Existence and unigueness of the above equation solution,
denotedVigp have already been investigated in [8]. R% (A(MFP)) — (;\(m cnl )) (9)

Let the functionf be defined as o S
where £ (X) stands for the statistical distribution of a

random variablex andI\WFPJ is the FP estimate of the

M ccl! XXH % identity matrix| .
NZ\ cHMm 1ci NZ\ XHM )’ .

Since the statistics Jf(l\7| rp) is independent of the tex-
turet, we choosa = 1: secondary data,...,xy are thus

where the right hand side of (7) is rewritten in terms of theGaussian with covariance mathik,

Xi's and thert;’s

Eqgn. (7) obviously implies thaWl gp is independent of X ~ A (O,M).
thet’s. The FP estimate dfi is defined as the unique solution

. Pt ) ) (up to a scalar factor) of
The statistical properties &fl rp have been investigated

and published in [11], the main results are recaped here be- X xH
low: Mep = N Zl ; (10)
xH M,:px.

Proposition 2.1

(1) Mep is a consistent estimate bf; and the adaptive GLRT detector is

(2) Mep is an unbiased estimate Wf; Ay IpH M ;éx|2 H )
(3) the asymptotic distribution dflgp is Gaussian and its (Mrp) = H 1 H i |$o )
covariance matrix is fully characterized in [11]; (P"Mepp) (X" MepX)

(4) this distribution is the same as the asymptotic distributiowherex is the observation vector (under hypothésis such

of a Wishart matrix WIl’)‘(TJ_) N degrees of freedom. atx ~ 4" (0,M)
m

The first part of the proof is the whitening of the data. By

, . applying the following change of variablg,= M~Y/2x to
2.2 The studied adaptive GLRT Eqn. (10), one has

Let us now present the adaptive GLRT [9, 10], used for de-

tection R mN Mm1/2 M /2
Mep =5 L7 (11)
A G IIOHI\leI2 Hy =Ty
AM) = <A ®)  where
(PHN ) (YN ) o
In the next section dealing with applications to real data, T=M Y2MgpMm /2.
we will use/A(Mep) as detector. This detector is obviously  Therefore,
texture-CFAR (independent of the distribution@fand, an
original result of this paper is to show the independence of ~ mN yyH
the distribution of A(Mgp) with the covariance matri : T= N-leifl (12)
we will say thatA (M gp) is Matrix-CFAR (M-CFAR). SYET Y
o T is thus the unique FP estimate (up to a scalar factor) of
Definition 2.1 the identity matrix. Its statistics is clearly independent/of

An adaptive detectoh(M) verifies the M-CFAR property - since they,’s are.# (0, 1).
if its statistical distribution is independent of the covariance

matrixM estimated bWI . Moreover, for any unitary matri¥, one has
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Clutter Map
H T T T T
o |0 o

NZLzH (UTUH) 'z’ | | H
!

wherez; = Uy, is also.# (0,1) . ThereforeUTU" has the
same distribution &5 .

UTUH =

Azimuth

In terms of the adaptive detector, one has

2
IpT Yl 2

T P HT ) o
wherep; = M~Y2p andy = M~Y2x is_#(0,1). |

A(Mgp) =

)

i
H ““ H‘H:\ I \|I|

Now letU be a unitary matrix such that

100 200 300 400 500 600 700 800
Range bins

Upy = [Ipslle (14)
Figure 1: Ground clutter data level (in dB) corresponding
wheree= (10...0)", T denotes the transpose operator andg the first pulse echo. Y-coordinates represent 70 azimuth
[p1|| denotes the 2-norm of vecta;. angles and X-coordinates represhint 868range bins.

Thanks to Eqn. (14), one has

¢ the Probability of False Alarm

Afiep) = e (UTU") 2P Y Pra=P(A > A|Ho), (15)
(eH(UTu) e)(zH (UTUM) “z) Ho

¢ the Probability of Detection (PD)
wherez = Uy is also./"(0,1) . Py = P(A > AJHy). (16)
By settingMep| = UTU™, we see that the distribu- | [12], a theoretical relationship between the detection
tion of A(MgP) does not depend o, which completes thresholdA and the PFA has been established when the co-
the proof of Theorem 2.1. Note also that the distribution ofvariance matrixM is estimated by the well known Sample
A(MgP) does not depend on the steering vegtor Covariance Matrix (SCM) estimate defined by

In this section, the statistical performance of the FP i _ Mo H 17
estimate has been investigated as well as the SIRV-CFAR SCM— N_Zc'q : 17
(texture-CFAR and M-CFAR) property of the adaptive ) = . o
GLRT, built with Vi rp. One of the first deduction of previous Now, the expression of PFA-threshold relationship in this
results is that whatever the SIRV used, for different distribuSPecific case (SCM estimate) is
tions of the texture and for different covariance matrices, the a1 ) )
resulting GLRTA(M) follows the same distribution. This is Pra=(1-2)""2R(a,a—-1b-12), (18)
of a major interest in areas of clutter transition like for exam-wherea= N —m+2, b =N+ 2 and,F; is the hypergeomet-
ple, in coastal areas (ground and sea) or at the edge of forests function [13] defined as
(fields and trees) because the detector should be insensitive
to the different clutter areas. This is the object of the next

section. 2F1(a, b:c; X) _

3. RADAR APPLICATIONS

M) & Matkr(bek) x
Far®o 2, etk k9

Moreover, thanks to point (4) of proposition 2.1 and since
This section is devoted to the analysis of different radar megy,o g (17) is Wishart distributed [14], expression 18 still

surements in which the clutter is strongly impulsive. In afirst, j|4s for largeN, when the covariance matri is estimated
time, let us give some generalities. by the FP estim’ate:

In radar detection, the analysis falls into two independent
stages: , _ Pra=(1-A)* 1 F(aa-1;b-1;A),  (20)
e The calculation of the detection threshdldo ensure a

false alarm rate, given by the operator. This part is per;
formed by a learning of the clutter. ) ) -
« The comparison of the adaptive GLRA‘T(I\A/I) with the that it is the same relationship but with less secondary data

; m ) . .
detection threshold. (——N data instead ol in the Wishart case).
Let us define some notations: m+1

m m
wherea = mN —m+2andb= ——N+2. It means
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tection threshold\ for a given PFA. A common procedure
is to set this threshold, which is a system design parameter,
based on the designer perception of tradeoffs between false
alarms and missed detection. Traditionally, the experimental
detection threshold adjustment is determined by counting, by
moving a rectangular CFAR-mask of size 5. For all cen-
RS R tral cells of the mask (i.e. the cell under test), the dark cell
‘ on Figure 3, corresponding to the studied observayi¢d-

| (1 vector), a value of\(M) is calculated. The covariance ma-
e ‘ L el trix M has been estimated with the sethbf= 24 8-vectors,
6"}\ Ty W ,“w’f"’f“,‘\w““‘ﬂ’” L considered as the secondary datg,...,Y,s, and situated
0N e "‘ e around the tested cell. These reference cells are the light blue
N T e e o cells on Figure 3.
20 ™\ . e
10>\(/§ 400 - -
0, 3.1 Validation of Egqn.(20) on real data

) ] ~ One purpose of this paper is to validate the theoretical rela-
Figure 2: Ground clutter data level (in dB) correspondingtionship (20) between the detection threshold and the PFA
to the first pulse echo. Y-coordinates represent 70 azimutthanks to counting of the real data when the covariance ma-
angles and X-coordinates represBint 868range bins. trix is estimated by the FP estimate.

Moreover, when it is assumed that the covariance ma-
1

trix M is known, one had = 1—P;,' ™ (see for example

This result has never been validated on real measur¢is)). Notice that this equation has just a theoretical interest
ments: this is one of the purposes of this section. because in practicM is a|Ways unknown.

The ground clutter data presented in this paper were col-
lected by an operational radar at THALES Air Defehce Remark 3.1

placed 13 meters above ground and illuminating the groun@ote that the counting system on the real data makes sense
at low grazing angle. Ground clutter complex echoes wergn)y thanks to the M-CFAR property of the adaptive detector.

collected inN = 868range bins for 70 different azimuth an- ngeed, there is no valid reason why all the sets of 24 data
gles and fom= 8 recurrences, which means that vectors sizeygye the same covariance matrix.

is m= 8. Near the radar, echoes characterize non-Gaussian

heterogeneous ground clutter whereas beyond the radioelec-

tric horizon of the radar (around 15 kms) only Gaussian ther- Curves "PFA-threshold"

mal noise (the dark part of the map) is presented (Figure 1). ' ‘ ‘ ‘ —
To emphasize the areas of impulsive clutter, Figure 2 repre- % - Mha
sents in 3 dimensions, the same range bin-azimuth map as or N

Figure 1: the third dimension (vertical) shows the power of X
the clutter. %

10°F N b

Cell under test : ¥ *

x\
Y
X\
XN
X
/ B A
1071 X i

PFA
%

10 , , , ,
“ 10° 10° 10* 10° 10°

t / Detection threshold A

\ / Figure 4: Validation of PFA-threshold relationship
\/ On Figure 4, the solid curve corresponds to the theoret-
Reference cells (CFAR mask) ical relationship "PFA-threshold” iM is known while the

dotted curve represents the theoretical relationship "PFA-
. threshold” wherM and is assumed unknown and estimated
Figure 3: CFAR mask by Mep.
The curve made of crosses ) represents the experi-

. : mental (made with CFAR masks by counting) relationship
The analysis of these radar data allows to adjust the dQPFA—threshold“ wherM is estimated by p. It perfectly

LAuthors are grateful to Thales Air Defence for the analysis of their datamatches the theoretical relationship. Obtaining this result has
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