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ABSTRACT
In this paper we propose a variational Bayesian algo-
rithm for the blind image deconvolution problem. The
unknown point spread function (PSF) is modeled as a
sparse linear combination of kernel basis functions. This
model offers an effective mechanism to estimate for the
first time both the support and the shape of the PSF.
Numerical experiments demonstrate the effectiveness of
the proposed methodology.

1. INTRODUCTION

Image acquisition techniques often obtain blurred im-
ages, which can be modeled as the convolution of the
initial image with some blurring point spread function
(PSF) and the addition of some noise source. The blind
image deconvolution (BID) problem is the problem of es-
timating the initial image and the blurring PSF, given
only the observed image. This is a very difficult prob-
lem, because the observed data are significantly less
than the unknown quantities. Indeed, methods, such as
maximum likelihood, that depend only on the observed
data, lead to estimates that are governed by great vari-
ance and are not usefull. Instead, most BID algorithms
seek biased estimates, by assuming constraints on the
image and PSF, in order to reduce the variance of the
estimates.

Most existing methods apply heavy constraints on
the PSF, such as assuming specific support size, sym-
metric shape or similarity to an existing estimate of the
PSF. Such constraints can be elegantly represented un-
der the Bayesian framework by assuming prior distribu-
tions on the unknown parameters. However, because of
the complexity of the data generation model, Bayesian
inference using conventional methods, such as the Ex-
pectation Maximization (EM) algorithm, presents sev-
eral computational difficulties, since the posterior dis-
tribution of the unknown parameters can not be com-
puted. Recently, the Bayesian framework has been ap-
plied to the BID problem by modelling the PSF as Gaus-
sian random variable and using the variational method-
ology to achieve approximate inference[1][2]. In [1] a
non-stationary PSF model was used, while in [2] a hi-
erarchical stationary simultaneously autoregressive PSF
model was used. However, the PSF models described in
both [1] and [2] do not provide effective mechanisms to
estimate, in addition to the shape, the support of the
PSF.

The variational methodology[3] relies on considering
a class of approximate posterior distributions and then
searching to find the best approximation of the true pos-
terior in this class. This procedure can be accomplished

without computing the true posterior distribution, and
thus computations can be simplified by considering an
appropriate class of approximate posteriors. The vari-
ational methodology has been successfully applied to
many other complex Bayesian models and although it
does not benefit from proved convergence like the EM
algorithm, usually this is not an issue.

In this paper we propose an alternative Bayesian
method for the BID problem, which successfully esti-
mates the PSF support and shape. The unknown PSF
is modeled as a sparse linear combination of kernel func-
tions, similarly to the Relevance Vector Machine (RVM)
model [4][5]. Initially, the PSF is modeled as the super-
position of one kernel at each pixel. Even though in the
PSF model there are as many parameters as pixels, es-
timation of the PSF is very robust, because the sparse
prior distribution that is imposed on the kernel weights,
prunes kernels that do not fit the true PSF. The pro-
posed algorithm does not assume any constraints on the
PSF support and shape.

2. STOCHASTIC MODEL

We assume that the observed image g has been gener-
ated by convolving an unknown image f with an also
unknown PSF h and then adding independent Gaussian
distributed noise ε, with inverse variance β:

g = h ∗ f + ε, (1)

with
ε ∼ N(ε|0, β−1I). (2)

The blind deconvolution problem is very difficult be-
cause there are too many unknown parameters that have
to be estimated. In fact, the number of unknown param-
eters h, f is twice the number of observations g, and
thus robust estimation of these parameters can only be
achieved by exploiting prior knowledge of the character-
istics of the unknown quantities. Following the Bayesian
framework, the unknown parameters are treated as ran-
dom variables and prior knowledge is expressed by as-
suming that they have been sampled from specific prior
distributions.

The PSF h is modeled as a linear combination of a
fixed set of basis functions {φi}N

i=1:

h = Φw, (3)

where Φ = (φ1, . . . , φN ).
Thus the data generation model (1) can be written

as:

g = (Φw) ∗ f + ε = FΦw + ε = ΦWf + ε. (4)
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Matrices F , W are circulant matrices whose first rows
are f and w respectively, such that Fw = f ∗ w and
Wf = w ∗ f , where ∗ represents the circular convolu-
tion. The kernel basis function set consists of one kernel
centered at each pixel and thus the matrix Φ is also cir-
culant. Gaussian-shaped kernels are used in this paper
in order to produce a smooth PSF, but any other type
of kernel could be used as well. It is even possible that
many different types of kernels are used with small ad-
ditional computational cost.

A hierarchical prior that enforces sparsity is imposed
on the weigths w:

p(w) =
N∏

i=1

N(wi|0, α−1
i ). (5)

Each weight is assigned a separate inverse variance pa-
rameter αi, which is treated as a random variable that
follows a Gamma distribution:

p(α) =
N∏

i=1

Γ(αi|aα, θα). (6)

During model learning many of these parameters αi

tend to infinity, thus the corresponding weights are con-
strained to zero and the corresponding kernel functions
are pruned from the model. This sparse PSF model, is
similar to the RVM model [4][5]. The importance of a
sparse model is that a very wide PSF can be initially
considered, e.g. by placing one kernel at each image
pixel, and those kernels that do not fit the true PSF
should be pruned automatically during learning. This
provides a robust methodology of estimating the PSF
shape and support.

The image is assumed to have been sampled from
the prior distribution:

p(f) = N(f |0, (γQT Q)−1), (7)

where Q is the Laplacian operator. This model is equiva-
lent to assuming a simultaneously autoregressive (SAR)
model on f :

f = Qf + ε̃, (8)

or

f(x, y) =
1
4

∑

(k,l)∈N

f(x + k, y + l) + ε̃(x, y), (9)

where ε̃ ∼ N(0, γ−1I) and N =
{(−1, 0), (1, 0), (0,−1), (0, 1)}. The variance parameter
γ is assigned a Gamma distribution:

p(γ) = Γ(γ|aγ , θγ). (10)

This image model, penalizes large differences in
neighboring pixels, and thus favors smooth images.
Edges and textured area, would be better modeled by a
non-stationary image model, such as:

p(f) = N(f |0, (QT ΓQ)−1), (11)

where Γ = diag{γ1, . . . , γN}, so that the smoothness pa-
rameter γ would be different at each pixel. This image

Figure 1: graphical model

model, although it has been successfully applied in the
image restoration problem where the PSF is assumed
known[6], it was not considered here, because it intro-
duces several computational problems.

The noise variance β is assumed to be a Gamma
distributed random variable:

p(β) = Γ(β|aβ , θβ). (12)

The relationships between the random variables that
define the stochastic model are represented by the
graphical model in fig. 1. Because of the complexity of
the model, the posterior distribution of the parameters
p(w, f, α, β, γ|g) cannot be computed and conventional
inference methods can not be applied. Instead, we re-
sort to approximations such as the variational Bayesian
inference methodology.

The hyperprior parameters of the model are set to a
small value aα = θα = aβ = θβ = aγ = θγ = 10−6, in
order to impose broad and rather uninformative hyper-
priors.

3. THE VARIATIONAL METHODOLOGY
FOR BAYESIAN INFERENCE

A probabilistic model consists of observed random vari-
ables D and hidden random variables θ = {θi}. Infer-
ence in such models requires the computation of the pos-
terior distribution of the hidden variables p(θ|D), which
is usually intractable. The variational methodology[3]
is an approximate inference method, which considers a
family of approximate posterior distributions q(θ), and
then seek values for the parameters θ that best approx-
imate the true posterior p(θ|D).

The evidence of the model p(D) =
∫

P (D, θ)dθ can
be decomposed as:

log p(D) = L(θ) + KL(q(θ)‖p(θ|D)), (13)

where

L(θ) =
∫

q(θ) log
p(D, θ)
q(θ)

dθ (14)

is called the variational bound and

KL(q(θ)‖p(θ|D)) = −
∫

q(θ) log
p(θ|D)
q(θ)

dθ (15)

is the Kullback-Leibler divergence between the approx-
imating distribution q(θ) and the exact posterior dis-
tribution p(θ|D). We find the best approximating dis-
tribution q(θ) by maximizing the variational bound L,
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which is equivalent to minimizing the KL divergence
KL(q(θ)‖p(θ|D)):

θ = argmax
q(θ)

L(θ) = argmin
q(θ)

KL(q(θ)‖p(θ|D)) (16)

In order to be able to perform the maximization of
the variational bound with respect to the approximating
distribution q(θ), we can assume a specific parametric
form for it and then maximize with respect to the pa-
rameters. An alternative common approach is the mean
field approximation, where we assume that the posterior
distributions of the hidden variables are independent,
and thus:

q(θ) =
∏

i

q(θi). (17)

Then, the variational bound is maximized by [3]:

q(θi) =
exp[I(θi)]∫
exp[I(θi)]dθi

, (18)

where

I(θi) = 〈log p(D, θ)〉q(θ\i) =
∫

q(θ\i) log p(D, θ)dθ\i.

(19)
and θ\i denotes the vector of all hidden variables except
θi.

Computation of q(θi) is not straightforward, since
I(θi) depends on the approximate distribution q(θ\i).
Variational inference proceeds by assuming some initial
parameters θ0 and iteratively updating q(θi) using 18.
Even though convergence of this iterative scheme is not
proved, it is usually not a problem, especially if the ap-
proximation in 17 is not extreme.

4. VARIATIONAL BLIND
DECONVOLUTION ALGORITHM

In this section we apply the variational methodology to
the stochastic BID image model we described in sec-
tion 2. The observed variable of the model is g and the
hidden variables are θ = (w, f, α, β, γ).

The approximate posterior distributions of the hid-
den variables can be computed from (18) as:

q(w) = N(w|µw, Σw), (20)
q(f) = N(f |µf ,Σf ), (21)

q(α) =
∏

i

Γ(αi|ãα, θ̃α
i ), (22)

q(β) = Γ(β|ãβ , θ̃β), (23)

q(γ) = Γ(γ|ãγ , θ̃γ), (24)

where

µw = 〈β〉ΣwΦT 〈F 〉T g, (25)

Σw =
(〈β〉ΦT 〈FT F 〉Φ + diag{〈α〉})−1

, (26)

µf = 〈β〉ΣfΦT 〈W 〉T g, (27)

Σf =
(〈β〉ΦT 〈WT W 〉Φ + 〈γ〉QT Q

)−1
, (28)

ãα = aα + 1/2, (29)

θ̃α
i = θα +

1
2
〈w2

i 〉, (30)

ãβ = aβ + N/2, (31)

θ̃β = θβ +
1
2
〈‖g − FΦw‖2〉, (32)

ãγ = aα + N/2, (33)

θ̃γ = θα +
1
2
trace{QT Q〈ffT 〉}. (34)

The required expected values are evaluated as:

〈w〉 = µw (35)
〈w2

i 〉 = µ2
wi

+ Σwii (36)

〈WT W 〉 = U−1〈Λ∗wΛw〉U (37)
〈f〉 = µf (38)

〈ffT 〉 = µfµT
f + Σf (39)

〈αi〉 = ãα/θ̃α
i (40)

〈FT F 〉 = U−1〈Λ∗fΛf 〉U (41)

〈β〉 = ãβ/θ̃β (42)

〈γ〉 = ãγ/θ̃γ (43)

〈‖g−FΦw‖2〉 = gT g−2〈w〉T ΦT 〈F 〉T g+φT 〈WT W 〉〈FT F 〉φ
(44)

where U is the DFT matrix such that Ux is the DFT of
x, Λw = diag{λw1 . . . λwN } and Λf = diag{λf1 . . . λfN }
are diagonal matrices with the eigenvalues of W and F
respectively, and

〈λ∗wi
λwi〉 = (µw ∗ µw)i +

∑

k

Σwk,(k−i) , (45)

〈λ∗fi
λfi〉 = (µf ∗ µf )i + NΣfi . (46)

Notice that the matrix Σf can be easily computed,
since matrices Φ,W , Q and therefore Σf are circulant.
However, the matrix Σw is not circulant and thus its
computation involves inverting a N ×N matrix, which
requires O(N3) time.

Instead, we compute the posterior weight mean µw,
by solving the linear system:

Σ−1
w µw = 〈β〉ΦT 〈F 〉T g. (47)

The conjugate gradient method was used to solve the
above linear system, and in practice a good enough ap-
proximation is obtained in a few iterations.

When computing the expected value 〈w2
i 〉 and

〈WT W 〉, the matrix Σw in (36) and (45) is approx-
imated by its main diagonal. This approximation is
equivalent to assuming that the weights {wi}N

i=1 are in-
dependent and has been proved very efficient experimen-
tally.

Each iteration of the variational algorithm can be
splitted in two steps, first the computation of the poste-
rior probabilities in (25) to (34) and then the computa-
tion of the expected values in (35) to (46). Convergence
of the algorithm is obtained when the variational bound
L, which is computed at each iteration, stops increas-
ing. The variational bound L, is also used to ensure the
correctness of the implementation of the algotirhm, by
verifying that it increases at each iteration.
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Figure 2: Gaussian PSF with large support. Images (left to right) of the true PSF that was used to generate the
degraded image (top), the estimated PSF (bottom), the observed image and the estimated image.

Figure 3: Gaussian PSF with small support. Images (left to right) of the true PSF that was used to generate the
degraded image (top), the estimated PSF (bottom), the observed image and the estimated image.

5. NUMERICAL EXPERIMENTS

In this section we present numerical experiments that
demonstrate the ability of the algorithm to robustly es-
timate the support and shape of the PSF. We generated
degraded images g by convolving an initial image f with
a PSF h and then adding white Gaussian noise with vari-
ance σ2 = 10−6. In order to demonstrate the ability of
the algorithm to estimate the support and shape of the
PSF, we examined several different PSF choices.

The proposed algorithm was then used to obtain an
estimate of the initial image f̂ for each PSF choice. In
practice, the shape and size of the kernels that are used
to model the PSF should be selected according to any
known PSF characteristics, e.g. uniform kernels should
be used to model a uniform PSF. However, in these ex-
periments, we always used the same kernels, in order
to demonstrate the effectiveness of the algorithm with-
out assuming any prior knowledge for the PSF type.
Furthermore, the algorithm parameters were always ini-
tialized at the same values.

Specifically, the kernels φ that were used to model
the PSF, were Gaussian-shaped with variance σ2

φ = 4.

Parameters αi, β and γ were always initialized to values
αi = 10−5, β = 103, γ = 102 and the estimated image
f̂ was always initialized as the observed image g. The
algorithm does not depend on an initial estimate of the
PSF h, since it is initially estimated using the image
initialization f̂ = g.

In order to evaluate the quality of the estimated im-
age, we calculated the improved signal to noise ratio
(ISNR), which is a measure of the improvement of the
estimated image f̂ with respect to the observed image
g:

ISNR = 10 log
‖f − g‖2
‖f − f̂‖2 . (48)

In the first experiment we used a Gaussian shaped
PSF with variance σ2

h = 20 and additive noise with vari-
ance σ2 = 10−6. Figure 2 shows the degraded image, the
true PSF and the image and PSF estimations provided
by the algorithm. The ISNR of the estimated image was
0.92 and the euclidean distance between the true PSF
and the estimated PSF was ‖h− ĥ‖ = 3.5× 10−2.

The next experiment demonstrates the ability of the
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Figure 4: Square-shaped PSF. Images (left to right) of the true PSF that was used to generate the degraded image
(top), the estimated PSF (bottom), the observed image and the estimated image.

algorithm to determine correctly the support of the PSF.
We used again a Gaussian shaped PSF but with vari-
ance σ2

h = 5 and applied the algorithm, initializing the
parameters to exactly the same values as before. The re-
sults are shown in fig. 3. The ISNR of the estimated im-
age was 2.05 and the euclidean distance between the true
PSF and the estimated PSF was ‖h− ĥ‖ = 4.3× 10−2.

Another experiment was performed with a uniform
square-shaped 7× 7 PSF . Notice in fig. 4 that though
the estimated PSF ĥ is not perfectly square shaped, it
has the same support as the true PSF. The ISNR of the
estimated image was 0.95 and the euclidean distance
between the true PSF and the estimated PSF was ‖h−
ĥ‖ = 9.13× 10−2.

In several other experiments that were performed,
the algorithm was found to be very insensitive to initial
values for the parameters α. On the other hand, the
parameters β and γ should be initialized to reasonable
values in order to obtain good performance. Extremely
bad initialization may lead to poor performance, for ex-
ample, initializing γ at a very large value may lead to a
very smooth image estimation.

6. CONCLUSIONS

We presented a Bayesian treatment to the BID prob-
lem in which the PSF was modeled as a superposition
of kernel functions. We then applied a sparse prior dis-
tribution on this kernel model in order to estimate the
support and shape of the PSF. Because of the complex-
ity of the model, we used the variational framework to
achieve inference. Several experiments have been carried
out, that demonstrate the robustness of the method.

An improvement to the proposed method would be
to allow many different types of kernels at each pixel.
Thus, one could consider, for example, both rectangu-
lar and Gaussian kernels and the best one depending
on the true PSF would be selected automatically. An-
other interesting enhancement to the method would be
to consider a non-stationary prior model for the image,
which would contain a different γi parameter for each
pixel. This image prior, would model better edge and

textured area, however, there are several computational
difficulties to be treated.
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