A NOVEL SPACE-TIME-FREQUENCY MASKING APPROACH FOR
QUANTIFICATION OF EEG SOURCE PROPAGATION WITH AN APPLICATI ONTO
BRAIN COMPUTER INTERFACING

Leor Shoker*, Saeid Sanei*, Kianoush Nazarpour*, and Alex Sumich’

* Centre of Digital Signal Processing, Cardiff School of Eregiring,
Cardiff University, Cardiff, CF24 3AA, UK

TBrain Image Analysis Unit, Institute of Psychiatry, Lond&ES5 8AF
e-mails:*{shokerl, saneis, nazarpo@@cf.ac.ukfa.sumich@iop.kcl.ac.uk

ABSTRACT Eie
A robust space-time-frequency signal extraction algo- Time Freduency
rithm has been developed with an application to brain com-
puter interface (BCI). The algorithm is based on extending '
time-frequency masking methods to accommodate the spa- Spatial Information
tial domain. The space-time-frequency masks are then clus- 1
tered in order to extract the desired source. Then the motion .
of the extracted source it tracked over the scalp. Findlly, t Space g e
trials are classified based on their directionality andtiocs I
over the scalp. The proposed method outperforms traditiona
systems by exploiting the motion of the sources. Clustering
L]
1. INTRODUCTION reco gnal
econstruciton
A brain computer interface (BCI) is a system which allows v
the user to interact with a computer using brain signals.only Extracting
BCls can be divided into two main categories; invasive and Directionality
non-invasive. The former uses intracranial electrodesibr s !
dural implanted deep inside or on the surface or the brain, -

Classification

whereas the latter uses surface electrodes placed over the
scalp. Here, we will focus on non-invasive BCIs. Current l
BCls use one of a number of extractable EEG signals, such as

rhythmicities [1] in the data or a particular component,suc
as slow cortical potentials (SCP) [2], or evoked potentials
(EPs) [3]. EPs such as P300 are time-locked events whidhigure 1: Block diagram of space-time-frequency based
are, generally, extracted by averaging many trials of theesa atom extraction and classification algorithm.

event.

The authors in [4] demonstrated that there is a causal
relationship between spatially neighboring channels ef th 2. METHODS
EEGs. Further works in [5] [6] showed that this can be used . . .
to distinguish between left and right finger movements fronin this section we show that cortical regions can be sepa-
the EEG. rated by assuming that thg EEG sources are disjointin space,
In this paper we demonstrate that in addition to the timdiMme, and frequency. Section 2.1 explains the method for ex-
and frequency information of the EEG signals, the spatidl anracting the space-time-frequency distribution (STFDir
directional information provide crucial indicators ofémded ~ the EEGs. Then section 2.2 describes the clustering tech-
left or right finger movement. A block diagram of the pro- Nique for extracting the atoms from the space-time-frequen
posed system is shown in Fig. 1. In the first section the EEGg]strlbutlons. Section 2.3 explains the re_construcuothef _
are converted into the time-frequency (TF) domain, then th&'gnals from the clustered STFD. In section 2.4 we describe
TF representation of each electrode is arranged into a ma?€ motion characterisation algorithm which forms one ef th
trix where each element represents the x-y coordinatesof t eatures used in the classification algorithm describeddn s
electrode. In the next block a space-time-frequency mask idon 2.5.
created and the components within the mask are clustered.
The cluster centres are one of the features used by the-classi  space-Time-Frequency Analysis
fier. The other significant feature is the directionality o t
moving reconstructed source signal which is deduced frorithe time frequency distribution (TFD) of each electrode is
its cross correlation with the raw EEGs. constructed using short term Fourier Transform (STFT) de-
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fined by Wherehy, andhy are the cluster compactness of the reference
datasets and EEG data, respectively. The optimum number of

Fs (t,f) = —; T w(t—1)s, (t)eior 1) clusters is then defined as the smallegthich satisfies
V2n
' Gap(k) > Gap(k+1) — Sc;1, 6)
wherew(-) is a window function and(t) is the j —th elec-
trode. The time-frequency plot for each electrode is aredng Where
into a four dimensional matrix such as S = /1+é Gi 7

N .

Pxyt,f)=F; j=1....N ©) whereoy is the standard deviation ¢foghyp }p—1..._g-
wherex andy are the spatial coordinations of the elec-

trodest is the time index, and is the frequency index. The )

first two dimensionsx andy are sufficiently large so that all Each of the atoms are reconstructed by choosing the data

the electrodes can be arranged as they are defined by the F@ints from the mask that belongs to each cluster. Mgt

20 electrode placement system. For examples 11 matrix ~ denote .the.mask with one cluster selected. The STFD for the

is sufficient for a 64 electrode EEG. The electrode Cz wouldluster is given by

be located at coordinates (6,6). The paramites the num-

2.3 Reconstruction

ber of electrodes. Po=Mc-P c=1,... Kkopt (8)
A space-time-frequency mask is constructed from the ) o )
STFD plot based on the following criterion, where the space-time-frequency indices have been omitted,

(-) is the elementwise multiplication. Next the time series
signal is reconstructed by computing the inverse shorg-tim

[ 1, 20logP(xy,t,f))>u Fourier transform (ISTFT) of:(x,y,t, f) defined as
Myt f) = { 0, othetwise ©) o
_ 1 1 j T
whereu is a threshold, which is empirically chosen to be Adt) = I_DIZlZT; Zw(t— DRyt @) ()
0.25maxFs; ).
_ WhereAy(t) k=1,... kop is the reconstructed atorp,is
2.2 Clustering the number of electrodes that fall within spatial coord#sat

In order to extract the atoms from the STFD, the regions oPf &l0mk.

activity (atoms) in space-time-frequency must be idemtifie . o

and is)(l)lgted fr())m thz backgrounquEG?/We used the kmeg4 Motion Characterisation

clustering algorithm [7] to identify and separate the agtiv In this section we quantify motion of the sources in order
regions in the STFD masM (x,y,t, f). Since the number of to determine whether there is left or right finger movement.
clustersk, is unknown we first estimate the optimum numberwe find the extracted atom'#y(t), cross correlation with

of clusters by using the GAP statistic method [8]. The clustethe raw EEGs over an overlapping window of lengthand
compactness is given by with an overlapO. Then the absolute maximum value for
each window of cross correlation is used as the location of
the atom, given by

P(t) = max(|E{A(t)s; (1) }]) (10)

k n

he=S 3 llaf — |2 @)
r;ie v I

whereq are the points within the clustek € {1,...,K} . . _ .

is the number of clusters arid is the maximum number and the location (coordinates) is deduced by the inddsor

of clusters,C; are points within cluster, m, is the cluster example, if the maximum cross correlation occurred in elec-
centre, i.e. the mean. Traditionally the optimal number ofrodeC; att = 1 then inCsz att = 2, the transition would
clusters is chosen by finding mgx(hx — hy_1), known as ~ be from coordinatep(1) = {6,6} to p(2) = {4,6}. Since
the L-Curve method. However the problem with this methodhe atom is disjoint in time space and frequency, there shoul
is that the difference betweéh, — hi_1) is not normalised, b€ only one peak in the cross correlation function for each
which may give an incorrect estimate of the optimal num-window. Finally the average direction is given by

ber of clusters. The solution to this problem was proposed

by the authors in [8] by comparing the clusters to a refer- dy = 1 Zpk(t) (11)
ence dataset; = 1,...,B, whereB is the total number of T

reference datasets. The reference dataset is formed by scal

ing a uniformly distributed random dataset by the range ofvheredy is the direction for atonk, andT is the number of
the principal components of the clusters. Then the referenaross correlation windows.

dataset is clustered amg, is evaluated, wherb=1,...,B.

The Gap statistic is computed as 2.5 Classificaiton

We use an SVM as our classifier, due to its generalization
(5) and its established empirical performance [9]. The goal of

Gap(k) = an SVM is to find an optimal separating hyperplane (OSH)

W~

B
Z loghy, — loghy.
b=1



for a given feature set. The OSH is found by solving the Cluster centres for x-y coordinates
following constrained optimisation problem, T = ‘

Frontal

’ *  Left finger
O Right finger

st g(z-g—b)+y>0 i=1,...,1 (12)

where||z||? = 2"z is the squared Euclidean norm af)

is the dot product. The parameterdetermines the ori-
entation of the separating hyperplang,is the i-th posi- 6
tive slack parametei; is a vector containing the features

G = (Mo (1), My (1), O (1), Ay () Mg (1), My 1),
Oy (1), Gy (1)]T, Wheremy, (i) andmy, (i) are thex andy

components of the cluster centrelg, (i) anddy, (i) are the o

x andy components of the directional vector. Herés the 1ol

number of training vectors argl € {41} are the output tar- Occipital
gets. The non negative parameeis the (misclassification) B S

penalty term, and can be considered as the regularization pa
rameter and is selected by the user. A lai@és equivalent

to assigning a higher penalty to the training errors. The pa-
rametelC is usually set to a high value to avoid any training
error. SVs are the points from the dataset that fall clogest t
the separating hyperplane. Any vectyrthat corresponds
to a non-zeray; is a support vector (SV) of the optimal hy- .
perplane. It is Idesirablpc)apto have thé nu)mber of Sst sma){l tgable 1: The performance of the classifier based on the aver-
have a more compact and parsimonious classifier. The OSRg€ number of correctly classified points. Three kernels are
(generally nonlinear) is then computed by solving (12) gsin compared in the classification.

igure 2: The cluster centres for the extracted atoms for lef
finger movement.

Karush-Kuhn-Tucker conditions [10] as a decision surfdce 0 garel Average classification rate (%) (s.d.)
the form Overall | Right [ Left

Ls Gaus. RBF || 75.50(1.0) | 75.16 (1.2) | 69.43 (1.5)

f(g) = sgn(Zqi aiK(gr,9) + b) : (13) [ Cubic Poly. || 65.30 (1.4) | 66.15 (1.0) | 64.36 (1.0)

i= Linear 61.01(1.3) | 60.34(1.4) | 56.51(1.0)

In this formula sg) € {+1}, g’ are SVs,K(g,9) is the
nonlinear kernel function (iK(g°,g) = g7 - g the SVMis lin-

. ; In order to test the overall classification rate we used d-fol
ear). A Kernel for a nonlinear SVM projects the samples Qg yalidation (CV) with no overlap, i.e. using 75% of the

a feature space of higher dimension via a nonlinear mappingaa for training and 25% for testing. The CV was performed

function. Among nonlinear kernels thezradlal based fumctio 1 g times. with each time the data was chosen at random from

(RBF) defined a&(g;, 9) = exp(—|g—g;|*/(2a)), wherethe o\ yia| nool. The classifier was used with three kernets, li

adjustable parameter governs the variance of the function, g5 RBF and cubic polynomial, for which the error is shown

is widely used due to having quasi-Gaussian distribution o, Tapje 1. For our dataset the value chosen for the parameter

datasets of large samples. C was 64 and for the case of the RBF kernel the parameter
o was set to 0.5. The paramet@mwas set to 18 reference

3. EXPERIMENTS datasets and the maximum number of clustérsyas set to
3.1 Data Collection 6. We used a Hanning window function for the STFT algo-

rithm. The window length, L, for the motion characterisatio

The data was provided by King's College Hospital and aréyjgorithm was set to 2000 samples, and the overlap, O, was
available from our website [11]. The EEG was collected; ggg samples.

using 64 electrodes using Neuroscan. The electrodes were
placed using the extended 10-20 system referenced to link
mastoids. During acq_uisition the electrode impedance wag,
kept bfﬁlow SD :]'he S|gn?fl ¥vas sample? g(t)ngz and Iot\)/;/- sphere very close 16, electrode location, which is located
pass filtered with a cutoff frequency o Hz.. An able o er the motor cortex. For right finger movements the loca-

bodied subject was seated with arms resting on a table al n of the cluster centre is at electro@g which is associ-
pressed a microswitch approximately every 5 seconds alyaq with right finger movments as explained in [12]. Figure
ternating left and right fingers. The data was divided |nt((>f hows the time frequency representation for the atoms of
epochs of 4 seconds, 2 seconds before the movement an hi left finger movement trial. It shows that the clusters are
seconds after the movement. formed from the Alpha band activity. There are two clusters
. . for each trial because of the desynchronisation in the Alpha
3.2 Testing the Algorithm band during finger movement. At this point the Alpha band
In our study we tested the features using 100 trials in t&tal; power falls below the thresholdi, and is interpreted as a
for left finger movement and 50 for right finger movement.separate cluster by the kmean clustering algorithm.

The cluster centres in the spatial domain are shown in
g. 2. From the figure it can be seen that the cluster centres
r the left finger movement occur on the contralateral hemi-



The Time-Freguency Representations of the Extracted Atoms
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- application to voluntary finger movemeni,Neurosc
Meth, vol. 110, pp. 113-124, 2001.

L. Shoker, S. Sanei, and A. Sumich, “Distinguishing
between left and right finger movement from EEG us-
ing SVM,” Procs. |EEE Engineering in Medicine and
Biology Society 2005, Shanghai.

[7] A. Jain and K. Karu, “Learning texture discrimination

masks,”|EEE Trans. Pattern Analysis Machine Intelli-
gence, vol. 18, no. 2, pp. 195-205, 1996.

R. Tibshirani, G. Walther, and T. Hastie, “Estimating
the number of clusters in a dataset via the gap statistic,
Journal of the Royal Satistical Society, B, vol. 63, pp.
411-423, 2001.

S. Gunn, “Support vector machines for clasification and
regression,” Univ. of Southampton, Tech. Rep., 1998.

Figure 3: The time-frequency representation of the ex#@ct [10] R. FletcherpPractical methods of optimisation, 2nd Ed.

atoms for a left finger trial.

[11] Centre

The average number of support vectors calculated when
using the RBF kernel was 35.5% of the training examples.

John Wiley, 1987.

of DSP, Cardiff Univer-
sity website, [Online], Available:
http://www.engin.cf.ac.uk/research/groups/cdspknicken.

When using the linear kernel the average number of SVEL2] G. Pfurtscheller and C. Neuper, “Synchronization of

found was 80.2% and for cubic polynomial it was 65.5%.
The training error was found by using the training data as
test data. The training error was found to be 0.5% (ave.)
and the test error was 0.7% (ave.). Since the two errors
are close together this gives an indication that overfittiag
been avoided.

4. CONCLUSION

We have presented a new method for distinguishing between
left and right finger movements from scalp EEGs using the
features corresponding to the activity of Alpha rhythms and
directionality of the sources. The experiments herein demo
strated that for the test dataset the signals are corrdatgie

fied by using the introduced features. Using k-mean cluster-
ing followed by the Gap statistic method enables to estimate
the number of disjoint factors, representing the braintsvac
sources, accurately. A higher classification rate is aiev
when the RBF kernel is used for the SVM.
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