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ABSTRACT

In this paper, we examine kernel-based estimators for the
Kirkwood-Rihaczek time-frequency spectrum of harmoniz-
able, nonstationary processes. Based on an inner product
consideration, we propose and implement an estimator for
the Kirkwood-Rihaczek spectrum. The estimator is con-
structed from a combination of the complex demodulate with
a short-time Fourier transform. Our proposed estimator is
less computationally intensive than a theoretically equiva-
lent, known estimator. We compare and test the results of the
proposed estimator with an existing estimator from a Mat-
lab time-frequency toolbox on simulated and real-world data.
We demonstrate that the proposed estimator is less sensitive
to unwanted cross-terms, and less affected by edge effects
than the Matlab time-frequency toolbox estimator.

1. INTRODUCTION

The Kirkwood-Rihaczek time-frequency distribution was in-
troduced by Kirkwood [8] in a quantum mechanics context,
and later by Rihaczek [12] in deterministic signal theory. The
Kirkwood-Rihaczek distribution is a bilinear time-frequency
distribution that is covariant to shifts in time and frequency.
Hence, it is a member of Cohen’s class [3]. It is related
to the Wigner-Ville distribution [18, 17] through a general
time-frequency distribution [2]. Unlike the Wigner-Ville dis-
tribution, the Kirkwood-Rihaczek distribution is a complex-
valued quantity.

Time-frequency analysis is an important tool for ana-
lyzing nonstationary random processes. In contrast to sta-
tionary processes, the frequency content of a nonstation-
ary process may change with time. Therefore, it would
be advantageous to represent the process as a function of
time and frequency simultaneously. When dealing with ran-
dom processes, we talk about time-frequency spectra, not
time-frequency distributions. The Kirkwood-Rihaczek time-
frequency spectrum of a harmonizable process is not a dis-
tribution of power/energy, but rather a distribution of cor-
relation, or a complex Hilbert space inner product between
the process and its infinitesimal stochastic Fourier genera-
tor [13].

In this paper, we examine kernel-based estimators for
the Kirkwood-Rihaczek time-frequency spectrum. Based on
the inner product consideration, we propose and implement
a kernel-based estimator for the Kirkwood-Rihaczek time-
frequency spectrum for harmonizable nonstationary pro-
cesses. This estimator is shown to be theoretically equivalent
to the time-domain based estimator with a factored kernel

that was proposed, but not implemented, in [13]. Our pro-
posed estimator requires much less computation time than
a direct implementation of the estimator in [13]. The perfor-
mance of the proposed estimator is compared with a different
estimator found in the Matlab time-frequency toolbox (TF
toolbox) [1], which is implemented from the general class of
spectral estimators in [10]. It is well known that Wigner-Ville
estimators suffer from interference problems, and this also
applies for the estimator for the Kirkwood-Rihaczek spec-
trum in [1].

2. THE KIRKWOOD-RIHACZEK
TIME-FREQUENCY SPECTRUM

Throughout this paper, X[n] will denote a zero-mean,
discrete-time, and real-valued process. The process is fur-
thermore assumed to be harmonizable, such that it has a spec-
tral representation [4]

X[n] = [ L) 1)

1/2

where dZ(f) is the complex-valued increment process of
X [n]. The increment process has the spectral correlation

E{dZ(f)dZ"(f = V)} = Sxx* (v, f)dvdf. 2)

Here, E{-} denotes the expectation operator, f is a global
frequency and Vv is a local frequency offset. We denote
Syx* (v, f) the dual-frequency spectrum (also known as the
Loeve spectrum [9]) of X [n].The temporal correlation func-
tion of X [n] can be written as

Myx+ [n,n] = E{X[n]X"[n —n]} 3)

where n is a global time variable, and 1) is a local time
shift. By inserting the spectral representation from (1) in (3),
we obtain the following relationship between the correlation
function and the dual-frequency spectrum

1/2

My lnn] = [[ PFmeP e {az(v+ 1142 (1)}
—1/2
1/2

- / / VAN (v, f)dvdf.

—1/2

“

Thus, the correlation function and the dual-frequency spec-
trum is a two dimensional Fourier transform pair.
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The inverse Fourier transform of S+ (v, f) with respect
to v, or equivalently the Fourier transform of R, .+ [1, 1] with
respect to 1, is the Kirkwood-Rihaczek time-frequency spec-
trum [8, 12]

Vi [nof)df = E{Xln) (@217} )

of the process X[n]. This is a function of global time n and
global frequency f. The Kirkwood-Rihaczek time-frequency
spectrum is generally complex-valued, thus it cannot be in-
terpreted as a distribution of energy/power in time and fre-
quency. If we define the Hilbert space inner product between
Zand W as (Z,W) = E{ZW*}, we see that

Vyx [n.f)df = (X[n],dZ(f)e”™ ™). (©6)

The Kirkwood-Rihaczek spectrum can therefore be inter-
preted as a distribution of correlation over time and fre-
quency [13].

A complex-valued process can also have complementary
quantities [11, 14], originating from the fact that the pro-
cess itself may be correlated at different times with the com-
plex conjugated of the process in addition to the conventional
correlation in (3). We will not consider the complementary
functions in the following discussion, but all theoretical and
practical work in this paper can easily be generalized to the
complementary quantities.

3. ESTIMATION OF THE KIRKWOOD-RIHACZEK
TIME-FREQUENCY SPECTRUM

The Kirkwood-Rihaczek spectrum will have to be estimated
for any practical investigation of the time-frequency proper-
ties of X[n]. This can be done by estimating the dual-time
autocorrelation function or the dual-frequency spectrum, fol-
lowed by a discrete Fourier or inverse Fourier transform.
Based on the inner product in (5), we will instead propose a
direct and intuitive estimator which also provides additional
insight into the geometry of the Kirkwood-Rihaczek spec-
trum.

Let x[n], n =0,1,...,N—1, be N samples of a real-
ization of the random process X[n|. Since n is a global
time variable, we introduce a local data segment n + 7,
n = —Np,...,0,...,Nr. We calculate the tapered Fourier
transform of this local segment as

Np

Y[nkl= Y

n=-Nr

x[n+mn)ve[n]e 2N, ©)

where f; = k/(2Ng + 1), k = —Np,...,Np, and vp[n] is a
standard data taper (e.g., a Hanning taper).

Inserting the spectral representation from (1) in (7), we
see that the relationship between Y [n, k] and the increment
process dZ(f) is

Y[n,k]:/.l/2 NZF:

VE [n]e*ﬂn(fk*f)nejznfndz(f)
~1/2n="Np

- / l1//22 eIV (fi — £)dZ(f) ®)

. 1/2
~ e]Zﬂfkn \/_1/2 VF(fk —f)dZ(f),

where V() is the Fourier transform of vy [1]. The exponen-
tial is moved outside the integral under the assumption that
Vr(f) has a narrow main lobe.

We define the complex demodulate [6, 16] as

fB .
k= [ f PR (NAZ (fi+v), ()
—JB

where Vg(V) is the filter response of a low-pass filter. Fol-
lowing [16], we employ the estimate dZ[k] = Y[n,k]dVv of
the increment process. From the convolution in (8) we see
that the data taper vg[n] should have low sidelobes to avoid
spectral leakage in the estimate. We obtain an estimate of the
complex demodulate as

, B,
Z[n, m, k] = /27N / PV (V)Y [n,K]dv,  (10)

-8

where k' = k/(2Np + 1) + v. Note that Z[n,n,k] is a time-
domain quantity that can be interpreted as an estimate of the
complex modulated increment process, or the infinitesimal
stochastic generator [13], dZ(f)e/?™/™", for each frequency
fx valid for arbitrary time steps n = —Nr,...,0,...,Nr.

Finally, we apply time averaging as an approximation of
the expectation operator in the definition in (5) to obtain an
estimate of the Kirkwood-Rihaczek spectrum

Nr

Vyx [n.k] = Z

n=-Nr

x[n+nlvr[n] En,n,k)", A

where vr[n] is a time domain window controlling the time
resolution of the estimate. The main parameters in this esti-
mator are the time smoothing window vz[n] which controls
the time resolution of the estimate, and the tapers vg[n] and
vg[n] which collectively control the frequency resolution of
the estimate. Based on (10) and (11), we find it natural to
choose the length of vg[n] to 2Ny + 1.

By inserting (7) in (10), and inserting the result in (11),
we can express the estimator of the Kirkwood-Rihaczek
spectrum as

2 Z x[n+nx*[n+ u]

T[——NT U=—Nr (12)
< vr[n]veulve[n — ple 21,

We have assumed that all three windows are real-valued. By
letting N — oo, Ny — oo, and performing a change of the
variables, we can write (12) as

x[n+1]®
I_Z_"mx_z_m ) (13)
X X [n41— A)e 727t
where
@[, A] = vr[l]vg[A]vr[l — A]. (14)

Thus, the estimator based on inner product considerations is
identical to the time-domain based estimator proposed, but
not implemented, in [13]. The estimator in [13] used the
kernel

Dyl A] = willwa[AJwal — A], (15)
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such that wy, wy and w3 from their estimator will have sim-
ilar interpretations as vy, vp and vp, respectively. Since
our proposed estimator is formally identical to the estima-
tor proposed in [13], the statistical properties found in [13]
apply to our estimator as well. For spectral analysis in gen-
eral, it is well known that direct estimation method using
a Fourier transform, and especially the Fast Fourier Trans-
form (FFT) algorithm, is faster than the corresponding time-
domain method. Our time-frequency spectrum estimator is
based on a short-time Fourier transform (evaluated by an
FFT), which significantly decreases the computational time
compared to the dual time-domain kernel proposed in [13].
Hence, the low computational cost of our estimator makes it
the estimator of choice.

4. NUMERICAL EXAMPLES

We will now estimate the Kirkwood-Rihaczek time-
frequency spectrum for two simulated data sets and one real-
world data set with the estimator in (11), and by using an
estimator in the Matlab TF toolbox [1]. For the estimator
in (11), we have to choose the windows vg[n], vr[n] and
vg[n] as well as the window lengths Ny and Nr. These pa-
rameters will control the time- and frequency resolution of
the estimate. This gives us flexibility in the estimator. The
windows and window lengths can be chosen to best match
any given data set.

The TF toolbox [1] includes a function that estimates the
pseudo Margenau-Hill spectrum of a signal. This estimator
is an implementation of a special case of the general class
of spectral estimators in [10]. The TF toolbox estimator first
estimates the Kirkwood-Rihaczek spectrum, and then takes
the real value of this estimate to obtain an estimate of the
Margenau-Hill spectrum. Thus, by omitting the real value
operator, we get an estimate of the Kirkwood-Rihaczek spec-
trum. This estimator has one parameter, a smoothing window
we denote ws[n]. We chose wg[n] to be the Discrete Prolate
Spheroidal Sequence (DPSS) [15] of order zero. The length
of the window N; and the time-bandwidth product N;W will
control the smoothing of the estimate, and thus, the resolu-
tion of the estimate. The values of Ny and N,W will have to
be decided for each data set.

Time-frequency analysis favors the use of analytic sig-
nals since it reduces the number of cross-terms that cause
interference in the spectrum [5]. Therefore, we carry out
the analysis on the analytic signal corresponding to the real-
valued signal. Since the underlying signal is real-valued,
it will only be necessary to consider the spectrum for pos-
itive frequencies. An analytic process is complex-valued,
and, in general, an analytic process corresponding to a real-
valued nonstationary process will have complementary cor-
relations [14]. However, as stated earlier, the complementary
quantities will not be considered here.

4.1 Chirp

In this example, we apply the estimators on simulated data.
We generate N = 256 samples x[n], n =10,...,N — 1, from a
real-valued chirp

x[n] = cos (wbn® +2man), (16)

with normalized starting frequency a = 0.1 and chirp rate
b =0.0012. We use the DPSS of order zero for all three
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Figure 1: ‘Vxx* [n,k]‘ for the chirp using (a) our proposed
estimator and (b) the estimator from the TF toolbox [1].

windows vr[n], vg[n] and vr[n], with time-bandwidth prod-
ucts 6, 10, and 20, respectively. The window lengths are
Nr = Nr = 110 samples. For the estimator from the TF tool-
box [1], we chose a time-bandwidth product NW = 3 and

a window length Ny = 65. Figure 1 shows ’Vxx* [n,k]’ using

the estimator proposed in this paper (upper panel) and the es-
timator from the TF toolbox [1] (lower panel). We see that
both estimators work well for this signal, there is not much
difference between the two estimates.

4.2 Two Pure Tones

We will now consider a simulated example containing two
periodic components. We generate N = 256 samples x[n],
n=20,...,N—1, of the sum of two pure tones

x[n] = cos(2mfin) + cos(27 fon), (17)

with normalized frequencies f; = 0.2 and f> = 0.4. The win-
dows and window lengths are the same as for the chirp in
Section 4.1. The estimate obtained with our proposed estima-
tor (upper panel) and the estimator from the TF toolbox [1]
(lower panel) is shown in Figure 2. Both estimators give the
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Figure 2: ‘Vxx* [n,k}‘ for the two pure tones using (a) our

proposed estimator and (b) the estimator from the TF tool-
box [1].

correct localization in frequency for the two tones. But here
we clearly see that the estimator from the TF toolbox [1] is
sensitive to cross-terms between components in the signal.
There is a pulsation of the lines which is periodic with fre-
quency f» — fi = 0.2. This pulsation is due to interference
between the two components of the process, a phenomenon
commonly referred to as a “beat”. The estimator we pro-
pose in this paper, however, does not suffer from any such
unwanted cross-terms.

4.3 Guitar Data

We will now examine a real-world data set. The data are
recordings of electric guitar sound emitted by a tube ampli-
fier [7]. The data we consider here is a recording to disk via
a microphone of a plectrum plucked D-string of a high-end
electric guitar, referenced to standard A=440 Hz. The funda-
mental frequency, or pitch, occurs at 147 Hz. The guitar was
an Infeld Andreas Shark guitar, equipped with Harry Hiussel
humbucker pickups. We used a Custom Audio Amplifier
OD-100SH in a “clean” sound mode. The recording was
made in an anechoic room, using an Earthworks M50 om-
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Figure 3: log, ‘\A/XX* [n,k}‘ for the guitar data using (a) our

proposed estimator and (b) the estimator from the TF tool-
box [1].

nidirectional calibrated wideband measurement microphone.
The M50 has a flat frequency response within +1/ —3 dB
in the frequency range 3 Hz — 50 kHz. The output from the
M350 was sent trough a high-end professional “Kiwi” micro-
phone cable manufactured by BLUE, to a Roland VS-2480
hard disk recorder. The signal was recorded with 24 bit res-
olution and a 44.1 kHz sampling rate.

The data have been downsampled with a factor 10 prior to
our analysis, thus, the effective sampling frequency is 4410
Hz. The data set consists of N = 1024 points. We used the
DPSS of order zero for v [n] and vg[n] with time-bandwidth
product 4 and 8, respectively. We used a Hanning window
for vp[n], since the frequency resolution is more critical for
these data than for our other examples, and the Hanning win-
dow is known for good frequency resolution. The window
lengths are Ny = 128 = Np = 128 samples. For the estimator
from the TF toolbox [1], we chose a time-bandwidth product
N;W = 2 and a window length of Ny = 251 samples.

The normalized estimates are shown on a log-scale in
Figure 3. When comparing the estimates in Figure 3, we no-
tice the following. First, the pitch component at fy = 147 Hz,
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and all its harmonics at integer multiples of fj, contain inter-
ference induced beats for the TF toolbox [1] estimate (lower
panel), but not for our proposed estimator (upper panel). Sec-
ond, the TF toolbox [1] estimate seems to be severely af-
fected by edge effects, while our estimator is much less af-
fected. In particular, the detailed time-frequency behavior of
the onset of the guitar pluck is masked for the TF toolbox [1]
estimator. Important details concerning the time-frequency
evolution of the onset of the guitar tone is evident from the
proposed estimator. E.g., we see that the tone starts below
pitch, but swings into place subsequently. We also see that
the 2nd, 5th, 6th and 7th harmonic make their presence be-
fore any of the other harmonics (including the pitch). These
interesting details are hard to discern from the TF toolbox [1]
estimate.

5. CONCLUSION

We proposed and implemented a kernel-based estimator of
the Kirkwood-Rihaczek time-frequency spectrum, based on
a Hilbert space inner product interpretation of the spectrum.
The estimator was shown to be theoretically equivalent to the
estimator proposed in [13]. However, the implementation of
our estimator has a far lower computational complexity than
the estimator from [13]. The time- and frequency resolution
of the estimate are controlled by the choice of the three win-
dows vr[n], vg[n] and vp[n], and the lengths of the windows
Nr and Np. This gives us many parameters to choose for
any given data set, which provides the estimator with great
flexibility.

We compared the performance of our proposed estima-
tor with that of an estimator from the TF toolbox [1], which
is implemented from a general class of spectral estimators
proposed in [10]. We observed that for the chirp, which is
a single-component signal, the two estimators gave similar
results. However, in the example of the two-component sig-
nal, the estimator from the TF toolbox [1] suffered from un-
wanted interference between the two components. Our pro-
posed estimator had no such interference problems. Finally,
we considered a real-world recording of a guitar pluck. In
this example, the estimate obtained from [1] was severely af-
fected by edge effects in addition to the interference between
components. These edge effects masked important details in
the time-frequency spectrum, details that were evident in the
estimate from our proposed estimator.
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