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ABSTRACT
The FMICA is a method to extract the mixture of independent
sources when they are contaminated with multiplicative noise,
and notably improves the standard ICA methods in the pres-
ence of this kind of noise, although its results worsen when
the level of noise increases. In this paper, whether this wors-
ening is due to the existence of local minima or problems in
the convergence of the statistical functions used is studied by
a modification in the cost function that appears in FMICA.
This new cost function has the property that, asymptotically,
it does not present local minima, so it provides insights on the
global convergence of the original cost function and it leads
to the improvement of the behaviour of the FMICA for high
noise levels, increasing the applicability of the method.

1. INTRODUCTION

Multiplicative noise appears in many situations, the most
common being coherent images, such as synthetic aperture
radar, laser or ultrasound images. In these signals, the in-
formation in a pixel is the result of the coherent sum of dif-
ferent scattered waves with fluctuating phases, which can be
modelled as multiplicative noise [1]. The Independent Com-
ponent Analysis (ICA) has been widely applied to almost all
kinds of images (optical, stereo, video, multispectral, hyper-
spectral,. . . ) in the solution of many problems (unsupervised
classification, target detection, formation of thematic maps,
denoising,. . . ). However, there are quite few applications of
ICA to coherent images, mainly because the model of linear
mixture of independent sources that is assumed by the ICA
methods is not satisfied in this case, due to the presence of this
multiplicative noise. In [2], [3] and [4], ICA is applied to SAR
images, and in [5] and [6] to ultrasound images. Although in
[3] the noise is taken into account in the pre-processing step
of PCA, in all these works the ICA methods are used as if
there were no multiplicative noise, a fact that in theory and in
practice reduces their applicability.

On the other hand, the Fourth-order Multiplicative ICA
[7] (FMICA) is a method that tries to overcome the problem
of the multiplicative noise, in order to extend the ICA ap-
proach to signals with this kind of noise, as coherent images.

As shown in [7] and [8], the FMICA presents very good
results from low to medium noise levels, notably improving
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the standard ICA methods, and these results generally worsen
fastly as the noise level rises above a certain point. Therefore,
although the results of the FMICA are promising, to use it
in a real problem it is necessary for the noise level in that
situation to be within the application range of the FMICA. If
the noise level is higher, the method cannot be used. Thus, it
would be interesting to have an applicability range as broad
as possible in the noise. The goal of this paper is to extend the
application range of FMICA to higher noise levels, increasing
the applicability of the method. This is done studying the
global convergence of the FMICA method.

To overcome the limitations of the standard ICA meth-
ods in the multiplicative noise environment, firstly the Mul-
tiplicative ICA (MICA) method was designed in [9], using
the second- and third-order statistics of the noisy signals. Al-
though this method provides promising results, it also has se-
rious limitations that make its application to real problems
difficult. Specifically, it needs more than seven sources with
up to one symmetrical (symmetric power density function
(PDF) with respect to its mean). Due to the abundance of
the symmetrical signals in the nature, this limitation is dif-
ficult to accept for an applicable method. To overcome this
drawback, a new method, the FMICA method, was designed
in [7] and [8]. This method adds fourth-order statistics to
the available information of the signals, so that the method
can find the mixture for any sources, symmetrical or non-
symmetrical, and for any multiplicative noise. Also, the mini-
mum number of sources necessary for the method to converge
decreases from eight in MICA to just three in FMICA. Basi-
cally, FMICA builds a non-linear cost function that depends
on the inverse of the mixture, using the signal statistics up
to fourth-order, in such a way that the cost function presents
its minimum value at the correct solution. The local conver-
gence of FMICA is also studied, and it notably improves the
standard ICA methods in this situation.

The results of FMICA worsen when the noise level in-
creases, as is expected, and this worsening may be due to a
lack of convergence in the involved statistical functions or to
the existence of a local minimum, where the non-linear min-
imization method stops before it can reach the correct solu-
tion. If the cause is a lack of convergence, the behaviour can
be improved only by increasing the number of data, but if the
cause is the existence of local minima, it is possible to modify
the FMICA to avoid these minima and thereby achive better
results. This is what is proposed in this paper: to study the

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



global convergence of the FMICA method to improve its re-
sults. The paper is organized as follows. In Section II the
model followed by the signals and their statistics up to the
fourth order, are presented. In Section III the FMICA method
is briefly outlined. In Section IV a risk-averting modifica-
tion of the cost function of the FMICA is introduced to study
qualitatively the global convergence of the method. This will
provide a method, the risk-FMICA method, which can im-
prove the results of the FMICA, for high noise levels. This is
corroborated in Section V, where this improvement is shown
by simulations. The paper finishes with the main conclusions.

2. MULTIPLICATIVE ICA MODEL

The MICA model [9] assumes that the recorded signals are a
linear mixture of independent sources contaminated by mul-
tiplicative noise. This can be expressed as:

zi = vixi, i = 1, . . . ,N with x = As (1)

where s = [si, . . . ,sN ]T is the vector of independent sources,
with unit variance to eliminate the arbitrary scaling factor as-
sociated to all the ICA problems; v = [vi, . . . ,vN ]T is the mul-
tiplicative noise vector, which is formed by mutually indepen-
dent random variables with mean one, and the noise-free data
x and this noise are also independent [1]. A is the N ×N
mixing matrix and N is the number of signals. For simplicity,
real signals and the same number of sources and signals are
assumed in the paper, but these assumptions can be relaxed
without loss of generality. Independence of the elements of
s and v, and mean one in these last elements are the only
needed statistical conditions in the model.

The ICA methods use the statistics of the outputs of a lin-
ear transformation u = Wx to find the inverse of the mix-
ing matrix, called the unmixing matrix, since in the case
W = A−1 the outputs u are independent. As in the ICA
case, we are interested in the statistical properties of y = Bz,
when B = A−1. In order to study them, we define the covari-
ance, third- and fourth-order cumulants of the components of
y (noted σ y

i jk, γy
i j and κ y

i jkl respectively) as:

σ y
i j =E {(yi − µy

i )(y j − µy
j )}

γy
i jk =E {(yi − µy

i )(y j − µy
j )(yk − µy

k )}
κy

i jkl =E {(yi − µy
i )(y j − µy

j )(yk − µy
k )(yl − µy

l )}
−σ y

i jσ
y
kl −σ y

ikσ y
jl −σ y

ilσ
y
jk

(2)

where µ y
i is the mean of the component yi and E {·} is the

expectation operator, and all the indices go from 1 to N, as all
the indices will do in the rest of the paper, unless otherwise
stated. These functions can be expressed as function of the
mixing matrix and of the statistical properties of the noise
and of the sources, taking into account that it is assumed that
BA = I. To do so, we define the following parameters:

{γs
i ,κ

s
i ,ηi,ωi j,ρi,φi} (3)

where γ s
i and κ s

i are the skewness and kurtosis of si and the
rest of parameters are

ηi =
√

σ v
i µx

i ; ωi j =
√

σ v
i Ai j; ρi = γv

i /(σ v
i )3/2;

φi = κv
i (κ

x
iiii +4µx

i γx
iii +6(µx

i )
2σ x

ii +3(σ x
ii)

2 +(µx
i )

4)
(4)

with σ v
i , γv

i and κ v
i the variance, skewness and kurtosis of vi;

and µ x
i , σ x

ii, γx
iii and κ x

iiii the mean, variance, skewness and
kurtosis of xi. With these parameters, γ y

i j , σ y
i jk and κ y

i jkl result:
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with
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(6)

all the sums go from 1 to N, as all will do in the rest of the
paper unless otherwise stated; and for any arbitrary functions
fi jk, dependent on the indices i, j and k, and gi jkl , dependent
on the indices i, j, k and l, it is defined

� fi jk�i jk � fi jk + f jki + fki j

�gi jkl�i jkl �gi jkl +g jkli +gkli j +gli jk

�gi jkl�i jkl �gi jkl +gik jl +gil jk +g jkil +g jlik +gkli j

(7)

The last definitions have been made to avoid writing too
many terms in (5), which appear because the permutation
symmetries of the cumulants. A more detailed deduction of
the previous expressions can be found in [7].

It is important to point out that, as the problem is blind, the
parameters {ηi,ωi j,ρi,φi,γs

i ,κ s
i } are unknowns of the prob-

lem.

3. FOURTH-ORDER MULTIPLICATIVE ICA
METHOD

ICA searches for the linear transformation for which the out-
puts are as independent as possible. If the data satisfy the
ICA model, the solution is the inverse of the mixing matrix.
In the case of MICA model, the outputs of the inverse of the
mixing matrix are not independent but they possess a specific
statistical structure that can be used to find this matrix. This
is exactly how the FMICA finds the solution. This structure is
explicitly shown in (5), which will be satisfied if the unmix-
ing matrix B is the inverse of the mixing matrix, and the rest
of the parameters in (3) take their theoretical values.

On the other hand, the covariance, third- and fourth-order
cumulants of the output y can be estimated from the noisy
data, for any matrix B. If these three estimated functions are
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noted as σ̂ y
i j , γ̂y

i jk and κ̂y
i jkl , they can be obtained from the co-

variance, third- and fourth-order cumulants of the noisy data
z, which are noted as σ̂ z

i j, γ̂z
i jk and κ̂ z

i jkl , respectively. The ex-
plicit relation is straightforward to obtain, taking into account
the relation y = Bz, and it is:

σ̂ y
i j = ∑

mn
BimB jnσ̂ z

mn ; γ̂y
i jk = ∑

mnp
BimB jnBkpγ̂z

mnp

κ̂y
i jkl = ∑

mnpq
BimB jnBkpBlqκ̂ z

mnpq

(8)

It can be seen that the functions σ̂ y
i j, γ̂y

i jk and κ̂y
i jkl depend

only on the unmixing matrix B, while the functions σ y
i j, γy

i jk

and κ y
i jkl in (5) depend on the unmixing matrix and also on

the set of parameters in (3), which, as the problem is blind,
are unknown.

Hence, the estimated functions (8) will be equal to the
functions (5) when B = A−1 and the rest of the parameters
in (3), take their theoretical values, which will be called the
correct solution. To measure how well the structure is repro-
duced for a specific matrix B and a specific set of parameters
(3), a cost function J = J(Bi j,ηi,ωi j,ρi,φi,γs

i ,κ s
i ) can be built

as:

J =∑
i j

(µx
i ∑

k

ωikBk j −ηiδi j)2 + ∑
i≥ j

(
σ y

i j − σ̂ y
i j

)2

+ ∑
i≥ j≥k

(
γy
i jk − γ̂y

i jk

)2
+ ∑

i≥ j≥k≥l

(
κy

i jkl − κ̂y
i jkl

)2
(9)

with the definitions in (5) and (8). The first sum in the cost
function is included to take into account the theoretical rela-
tion between the parameters Bi j, ωi j and ηi. This function is
formed by N2 = N(N +1)/2((N +2)/3(1+(N+3)/4))+N2

terms, is function on the N1 = N(2N +5) parameters, and will
be zero at the correct solution.

Thus, the problem is reduced to find the value of the pa-
rameters {φi,ηi,ωi j,ρi,γs

i ,κ s
i ,Bi j}i, j=1,...,N that minimizes the

cost function (9), which means a problem of non-linear mini-
mization of J. Although the non-linear minimization method
that is most used in the ICA literature is the steepest descen-
dant method using the natural gradient, it is necessary to re-
sort to another minimization method here. The natural gra-
dient of the cost function is not easy to establish, since the
set of parameters is not a multiplicative group, and the stan-
dard steepest descendant method is too slow. In the FMICA
method, the minimization is accomplished using the quasi-
Newton method called BFGS (Broyden-Fletcher-Goldfard-
Shanno). In this method the set of parameters, which are
grouped in a N1 ×1 vector b, is updated in the step k as:

b(k +1) = b(k)− µ(k)H(k)∇kJ (10)

where µ(k) is the learning ratio in the step k, ∇kJ is the gradi-
ent of J in the step k, and the matrix H(k) is an estimation of
the inverse of the Hessian in the step k, which is forced to be
positive definite and symmetrical, and is obtained using the
value of the parameters and the gradient of J in the steps k
and k−1 as

H(k) = (I−ukpkqT
k )H(k−1)(I− ukqkpT

k )+ukpkpT
k
(11)

with pk = b(k) − b(k − 1), qk = ∇kJ − ∇k−1J and uk =
1/(qT

k pk).
The BFGS method keeps a great part of the speed of the

Newton method, but H is never singular and it is not neces-
sary to compute second derivates, as in the Newton method.
The readers are referred to the literature in non-linear opti-
mization for details about BFGS method, for example [10].

Only the gradient and the starting point are necessary for
the FMICA method to be completed. The first is omitted due
to lack of space, but can be found in [8]. As in most non-linear
optimization methods, adequate starting points are necessary
for the method to converge. Although the initial value for
most of the parameters can be determined by assuming a not
too high noise level, this is not possible for the initial values
of the unmixing matrix, B(0). To do so, it is necessary to
resort to a standard ICA method (the FastICA in this paper),
so its solution is taken as the initial value for B in the FMICA
method. Once this is done, ỹ = B(0)z it is defined, and with
it the starting point results:

B(0) =solution of FastICA method;

φi(0) =ρi(0) = 0; γ s
i (0) = γ̂ ỹ

iii; κ s
i (0) = κ̂ ỹ

iiii;

ηi(0) =
√

σ̂ v
i µ̂ z

i and ωi j(0) =
√

σ̂ v
i [B(0)−1]i j

(12)

where σ̂ v
i is obtained as σ̂ v

i = σ̂ z
ii−∑k[B(0)−1]ik

∑k[B(0)−1]2ik+(µ̂z
i )2 . These last

estimatated values are inexact, due to the errors in B(0), but
this is not a problem since the values of σ̂ v

i are inside other
parameters (ηi and ωi j) that are updated in the minimiza-
tion process. In fact, a initial value of zero for all the σ̂ v

i
provides, in most of the cases, a good initialization, such as
the method converges, but the convergence is slower. The
FMICA method consists in the minimization of (9) with the
update formula (10), the gradient of J and the initialization
(12).

4. RISK-AVERTING COST FUNCTION

Although the FMICA method provides much better results
than does the standard ICA methods, these results worsen as
the noise level increases. This is expected, because the correct
solution is a minimum of the cost function only asymptoti-
cally, so for a finite number of data the convergence will not
be perfect and the correct solution is not exactly a minimum.
The higher the noise level the worse the approximation, and,
as the noise is multiplicative, the worsening increases faster
with the noise level than in the case of additive noise. The
performance of a method is characterized by the distance of
the global transformation C = BA to the identity or any per-
mutated sign-shifted version of it. A bad result, i.e. a large
distance between the global transformation and the identity,
may also be due to a local minimum where the method has
stopped. If the first of the two causes is responsible for a bad
result, the only way to improve is to increase the number of
data; but if the existence of a local minimum is the cause of
a bad result, it is possible to design a way to avoid the such a
minimum.

To distinguish between the two causes requires an analyt-
ical study of when and where local minima exit in the cost
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function (9). This means to study the global convergence
of the cost function, which is a very complex mathematical
problem. A non-exhaustive alternative to this analytical study
is to modify the cost function (9) in order to ensure that the
new cost function does not present local minima. This is pos-
sible, at least asymptotically, through the introduction of a
risk-averting cost function that tends to a convex cost func-
tion when a risk-sensitivity index increases to infinity. This
is always possible for any cost function [11], and in this case
the risk-averting cost function is:

G = ∑
i j

exp
(

τ(µx
i ∑

k

ωikBk j −ηiδi j)2
)

+∑
i≥ j

exp
(
τ(σ y

i j − σ̂ y
i j)

2)+ ∑
i≥ j≥k

exp
(

τ(γy
i jk − γ̂y

i jk)
2
)

+ ∑
i≥ j≥k≥l

exp
(

τ(κy
i jkl − κ̂y

i jkl)
2
)

(13)

where the index τ is called the risk-sensitivity index. It can
be proven that for a cost function as (13), when the risk-
sensitivity index τ increases to infinity, the region where G is
convex expands monotonically and tends to the whole space,
except for the possible intersection of a finite number of man-
ifolds of dimension smaller than the dimension of the param-
eter space [11]. So, except for the rare case where the mani-
folds all intersect at the same point (more difficult as the num-
ber N2 increases), it will always be possible, at least asymptot-
ically, to eliminate any local minimum. Of course, in practice
it is not possible to increase τ as much as desired, since the
minimization methods diverge if τ is increased above a cer-
tain limit. Thus, in practice, it would be possible to eliminate
some local minima, but not others, and the practical utility of
the G can be tested only by simulations.

It is straightforward to see that the correct solution is a
minimum of G, and therefore it is possible to repeat the same
steps as for the FMICA method. The BFGS is a non-linear
minimization method that can be applied to any cost func-
tion, so it can be used to find the minimum in G, with the
same initialization as in (12). To complete the method, only
the gradient of G is needed. This can be easily derived from
the gradient of J. To do so, we express the cost function
J as J = ∑N2

p=1( fp)2, where the explicit expression of f p for
p = 1, . . . ,N2 can be determined comparing the previous ex-
pression with (9). After this, the risk-averting cost function
can be written as G = ∑N2

p=1 exp
(
τ( fp)2

)
. Then, the compo-

nents of the gradient of both cost functions can be related,
taking into account that:

∂J
∂bi

= 2
N2

∑
p=1

fp
∂ fp

∂bi
and

∂G
∂bi

= 2τ
N2

∑
p=1

exp
(
τ( fp)2) fp

∂ fp

∂bi

(14)
The Risk-FMICA method will consist of the minimization

of (13), using the update formula (10), with the gradient of
G (which can be obtained from the gradient of J using (14))
and the initialization (12). If the Risk-FMICA method obtains
better results than the FMICA, it means that in the second
case the method stopped at a local minimum, and the method
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Fig. 1. Distance of the global transformation to the identity
(upper graph) and value of the cost function J (lower graph) as
function of τ , for four signals with a noise level of st = 0.09.
Solid line = Risk-FMICA, dotted line = FMICA and dashed
line = FastICA.

using G is preferred. If there is no difference, it would be
not possible to distinguish wheter the methods stopped at a
local minimum if the distance of the global transformation
to the identity is due to a poor convergence in the statistical
functions. In the next chapter, the utility of the risk-averting
cost function will be tested by simulations.

5. RESULTS

In this section, the behaviour of the Risk-FMICA method is
compared with the FMICA method in [7] and with the Fas-
tICA method [12].

In the simulations, the mixture of four sources contam-
inated with Rayleigh multiplicative noise is studied. The
sources are obtained through the exponentiation of uniform
signals, and therefore their PDFs are truncated logarithmic.
We have selected this kind of sources and noise because both
are non-symmetrical and it has been shown in [8] that in this
case the FMICA presents its worst results. The number of
data per signal is 100,000.

The sources are mixed with a 4×4 matrix, generated ran-
domly, and the mixed signals are contaminated with multi-
plicative Rayleigh noise of standard deviation st. The cost
function J is built and then minimized using the BFGS algo-
rithm. When this is done, the results of FMICA are much
better than the results of the FastICA method up to a noise
level of st = 0.09, as it can be seen in Figure 2. This is the
typical behaviour of the FMICA method, i.e. the method no-
tably improves the results of the FastICA method until a noise
level where the improvement is reduced. There is always a
rather wide region in st where the FMICA results are much
better than those of the FastICA, which will be the applica-
bility region, and in this example corresponds with the region
st ∈ [0,0.8]. The goal of this paper is to extend this applica-
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Fig. 2. Distance of the global transformation to the identity as
function of the st for four signals. Solid line = Risk-FMICA,
dotted line = FMICA and dashed line = FastICA.

bility region to higher st values.
For the same signals, keeping st = 0.09, the risk-averting

cost function G is built for a different risk-sensitivity index
τ . That cost function is minimized with the BFGS method
and the distance of the resulting global transformation to the
identity is plotted in the upper graph in Figure 1, for different
values of τ (solid line). The dotted line corresponds with the
value of the distance for the FMICA method and the dashed
line corresponds to the result for the FastICA method (both
independent of τ). Also, the value of the cost function J for
the parameters derived as the result of the minimization of
G are plotted in the lower graph (solid line), where the dot-
ted line represents with the value of J for the solution of the
FMICA method. This figure shows how it is possible to attain
a global transformation very close to the identity for some τ
values, although this does not happen for a uniform region in
τ , but just for specific values. Fortunately, the τ values with
better results are also the ones with smaller values in the cost
function J (the cost function built with the parameters result-
ing from the minimization on G). Hence, it is possible to find
the τ values that improve the results of the BFGS method by
finding the τ values that produces smaller values in J.

This procedure has been repeated for different sources,
noises and mixtures, with the result being that only between
τ equal to one and τ near ten, does Risk-FMICA method pro-
vide better results than the FMICA method. Values of τ much
greater than 10 cause the BFGS to diverge. Thus, in practice,
the search for the optimum value of τ is limited to the pre-
vious region. Although this could be considered as a time-
consuming approach, the greater the value of τ the faster the
BFGS method converges. For the results presented in Figure
2, the search has been made for values of τ i = 1+(i−1)0.04
for i = 1, . . . ,125, which corresponds to a grid of the region
τ ∈ [1,5]. In practice, it is faster to obtain the 125 minimizing
G than only one minimization of J, for high noise levels and τ
in the previous region (it takes just few minutes in a standard

PC). The results of the comparison of FastICA, FMICA and
Risk-FMICA are shown in Figure 2.

It can be shown how it is possible to improve the results
of the FMICA method through the introduction of a risk-
averting cost function, extending in this way the applicability
region of the methods.

This study has been repeated for different PDFs for the
sources and the noise, different number of sources and num-
ber of data per signal, and the behaviour is similar to that
shown here, although they are omited due to lack of space.

6. CONCLUSIONS

The introduction of a risk-averting cost function has facil-
itated the study of global convergence of the FMICA. Al-
though the study is not exhaustive, through an easy analysis it
is possible to design a method to improve the FMICA method
using a risk-averting cost function. The method so designed,
the Risk-FMICA, improves the result of the FMICA method
in the region where this fails, extending the applicability re-
gion that the FMICA possessed.
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