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ABSTRACT

In this paper, we address the problem of equalization for filterbank
transceivers in the presence of a dispersive time-variant channel.
Filterbank transceivers can be adapted to the channel transfer func-
tion to yield intersymbol interference (ISI) cancellation. However,
when the channel is time-variant, the transceiver should be changed
whenever the channel evolves. In this paper, we will allow both the
transmitter and the receiver to change and satisfy the interference-
free condition, under the assumption of a zero-padded block trans-
mission. Two transmitter-receiver pairs are proposed by using a sin-
gular value decomposition (SVD) of the channel matrix, and they
are periodically adapted to the channel status relying on an SVD
tracking algorithm. Simulation results show that minimum perfor-
mance loss with respect to the ideal receiver can be achieved by the
proposed approach, while it clearly outperforms systems based on
a constant transmitter.

1. INTRODUCTION

Multicarrier techniques have been extensively employed in recent
communication systems both in wired and in wireless scenarios.
Filterbank transceivers are an attractive generalization of multicar-
rier systems [1]. With respect to classical systems, more degrees
of freedom are available to design systems that are more robust to
receiver impairments, such as synchronization errors and carrier fre-
quency offset [2].

Filterbank transceivers are multichannel systems in which data
transmission is usually block-based. Like multicarrier systems, they
suffer from both inter-symbol interference (ISI) and intercarrier in-
terference (ICI). The cancellation of both types of interference can
be achieved imposing an interference-free condition, usually re-
ferred to as zero-forcing (ZF), on the overall system, comprehend-
ing the transmitter, the channel and the receiver [3]. In the case
of a simple additive Gaussian noise channel, the theory of perfect
reconstruction (PR) filterbanks yields ZF transceivers [4].

If we consider a dispersive channel, the ZF condition is also
dependent on the channel distortion. Knowledge of the channel time
spread and the use of a proper guard interval allows us to remove
interblock interference (IBI) [5]. Moreover, the degrees of freedom
involved in the filter design can be exploited in order to maximize
some performance measure independently of the channel status [6].

In the most general case, both the transmitter and the receiver
can be chosen to fulfill the ZF condition while satisfying some opti-
mality criterion. If the channel is time-invariant, the ZF transceiver
can be set-up at the beginning of the transmission and then it re-
mains unchanged. When a time-variant channel is considered, the
optimum transceiver should change whenever the channel evolves.
This implies several problems. First, the transmitter and the re-
ceivers should be aware of common channel state information. Sec-
ond, high computational cost to derive the new ZF receiver filter-
bank at each adaptation may be necessary.

The aim of this paper is investigating the implementation of an
efficient transceiver in the case of transmission over a time-variant
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Figure 1: System model of M-subband filterbank transceiver

channel. We will assume that zero-padding is used at the transmit-
ter and that both the transmitter and the receiver can change to sat-
isfy the ZF condition. We will show that transmitter-receiver pairs
outperforming the classical pseudo-inverse (PI) solution [5] can be
computed under the ZF condition by using a singular value decom-
position (SVD) of the channel matrix. Moreover, we will highlight
that with a proper design of the transmit filters the proposed systems
outperform any other system based on the PI approach. In order to
provide a feasible implementation of the proposed transceiver in
the case of a time-variant channel, a fast receiver adaptation based
on SVD tracking is used. Simulation results show that minimum
performance loss with respect to the optimum transceiver can be
achieved by the proposed transceiver.

2. FILTERBANK TRANSCEIVER MODEL

The proposed system is shown in Fig. 1. The M input streams
xk(n), k = 0,1, ...,M −1 are upsampled by N and then fed into the
M transmit filters gk(i) whose output are added together to produce
the transmitted sequence u(i). The discrete time channel is modeled
as an FIR filter of length Lc followed by an additive white Gaussian
noise w(i). The output of the channel y(i) is filtered by the M receive
filters fk(i) and then each filter output is downsampled by N to pro-
duce the M output streams x̂k(n). Usually, we have N ≥ M, i.e., the
system is nonmaximally decimated, with a redundancy L = N −M.
In our system, we choose to have sufficient redundancy to avoid
intersymbol interference, i.e., L ≥ Lc −1.

When a fading channel is considered, the coefficients of the FIR
channel filter are modeled as complex random time-variant vari-
ables. The parameters of the fading channel are assumed to change
slowly with time, and if an adequate time interval is observed, we
can consider the channel as locally stationary. In the proposed sys-
tem, the coefficients of the FIR channel are supposed to be constant
over an interval of Ns samples, where Ns ≥ N. In this way, for each
set of M input symbols at the modulator, the N corresponding output

samples are fed into a locally LTI system C(z) = ∑
Lc

n=0 c(n)z−n.

The system that has been previously described can be more con-
veniently represented as a Multiple-Input Multiple-Output (MIMO)
system. The input of the MIMO system is the vector x(n) =
[x0(n),x1(n), ...,xM−1(n)]T . The output vector x̂(n) is defined in
a similar way. The noise vector process is given by w(n) =
[w(nN),w(nN + 1), ...,w(nN + N − 1)]T and we define both the

transmitted vector u(n) = [u(nN), ...,u(nN + N − 1)]T and the re-
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ceived vector y(n) = [y(nN), ...,y(nN +N −1)]T .
The transmitter and receiver filters can be represented by

using Nth order type-I and type-II polyphase components, re-

spectively, to yield Gk(z) = ∑
N−1
l=0 Gk,l(z

N)z−l and Fk(z) =

z−N+1 ∑N−1
l=0

Fk,l(z
N)zl , where Gk,l(z) = ∑n gk(nN + l)z−n is the lth

polyphase component of the kth subband filter gk(n) (Fk,l(z) is de-
fined in a similar way).

The polyphase matrices yield a matrix representation of both
the receiver and the transmitter. The N ×M transmitter polyphase
matrix is defined as

[T(z)]m,n = Gn,m(z). (1)

whereas the M×N receiver polyphase matrix is given by

[R(z)]m,n = Fm,n(z).. (2)

Finally, since we have Lc < N, the channel matrix is given by

C(z) =





















c(0) · · · 0 z−1c(Lc) · · · z−1c(1)
...

. . .
. . .

...

c(Lc −1) z−1c(Lc)
c(Lc) 0

...
. . .

. . .
...

0 · · · c(Lc) c(Lc −1) · · · c(0)





















.

(3)
The resulting MIMO system is described by the polynomial

matrix
Ψ(z) = R(z)C(z)T(z). (4)

The condition that satisfies the zero-forcing (ZF) criterion, can be
expressed as

Ψ(z) = z−d0IM , (5)

where d0 indicates the transmission delay.

3. CHANNEL EQUALIZATION

Recently, it has been shown that zero-padding (ZP) precoders
achieve better results than cyclic prefix (CP) ones in a fading chan-
nel environment [5]. For this reason, we will restrict our attention
to the polynomial matrices T(z) and R(z) that arise when a zero
padding precoding is used.

The transmitter polyphase matrix of a system using ZP precod-
ing can be expressed as

T(z) =

[

G(z)
0L×M

]

, (6)

where G(z) indicates the polyphase matrix of a maximally deci-
mated synthesis filterbank. In the following, we will assume that

G(z) satisfies the paraunitary property, i.e. G̃(z)G(z) = IM , where

we define G̃(z) , GH(1/z∗). Moreover, G(z) is assumed indepen-
dent of the channel.

When a ZP transmitter is used, we can decompose the channel
matrix as C(z) = [ C0 C1(z) ], where C0 is a constant matrix
(see eq. (3)). It is easy to show that

C(z)T(z) = C0G(z). (7)

The PR condition in (5) can be achieved by means of several re-
ceivers. In this paper we will focus on the solution based on the
pseudo-inverse (PI) of C0, given by

R(z) = G̃(z)(CH
0 C0)

−1CH
0 . (8)

In the following, this receiver will be denoted as PI receiver.

An alternative formulation of the transmitter-receiver pair de-
scribed above can be found through the singular value decomposi-
tion (SVD) [7] of the channel matrix C0 given by

C0 = U

[

Σ
0(N−M)×M

]

VH (9)

where U and V are unitary matrices and Σ is an M ×M diagonal
matrix containing the singular values. In general, it is convenient
to rewrite the left matrix as U = [Us Uo], where Us is N × M
and Uo is N × (N −M), so that we obtain the more compact form

C0 = UsΣVH .
If we do not restrict our interest to a fixed transmitter scheme,

the transmitter polyphase matrix of our system can be expressed as

T(z) =

[

QG(z)
0L×M

]

, (10)

where Q is an M ×M channel-dependent precoding matrix. The
design of Q offers some degrees of freedom that can be exploited
for maximizing the performance of the system. Usually, it is
imposed that the system has a constant average transmit power

P0 = Mσ2
x /N, so that the precoding matrix Q has to satisfy

Tr
{

QHQ
}

= M.
In this paper, we have investigated two different solutions for

the design of Q, both satisfying a constant transmit power. The
first one imposes Q = V and, under the ZF criterion, leads to the
transmitter-receiver pair

T(z) =

[

VG(z)
0L×M

]

(11)

R(z) = G̃(z)Σ−1UH
s . (12)

The second one uses Q = VγΣ−1/2, where γ =
√

M/Tr
{

Σ−1
}

,

and leads to the transmitter-receiver pair

T(z) =

[

VγΣ−1/2G(z)
0L×M

]

(13)

R(z) = G̃(z)γ−1Σ−1/2UH
s . (14)

In the following, we will refer to the two systems as SVD-ZF1 and
SVD-ZF2, respectively.

3.1 MSE Performance Analysis

By using the fact that G(z) is paraunitary, the MSE for the PI re-
ceiver can be derived as

ζPI = σ2
wTr

{

(CH
0 C0)

−1
}

, (15)

whereas the MSE for the SVD-ZF1 and the SVD-ZF2 receivers
are given by

ζSVD−ZF1 = σ2
wTr

{

Σ−2
}

(16)

ζSVD−ZF2 =
σ2

w

M

(

Tr
{

Σ−1
})2

, (17)

It is straightforward to demonstrate that the PI and the SVD-
ZF1 receivers achieve the same MSE, since

ζPI =σ2
wTr

{

(CH
0 C0)

−1
}

= σ2
wTr

{

VΣ−2VH
}

=σ2
wTr

{

Σ−2
}

= ζSVD−ZF1,
(18)

where the second equality holds due to the fact that V in (9) is a
unitary matrix. On the other hand, both the PI and the SVD-ZF1
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systems achieve an higher value of MSE than the SVD-ZF2 system
independently of the channel status. This can be explicitly verified
by expressing the two MSEs as

ζSVD−ZF1 = σ2
w ∑

i

µ2
i (19)

ζSVD−ZF2 =
σ2

w

M

(

∑
i

µi

)2

, (20)

where µi = [Σ]−1
ii , and reminding that, thanks to Jensen’s inequal-

ity, (∑i µi/M)2 ≤ (∑i µ2
i )/M, where the equality holds if and only

if all the µi have the same value.

3.2 Error Probability Analysis

Although both PI and SVD-ZF1 receivers achieve the same MSE
on the received vector of symbols, the variance of the noise com-
ponents affecting individual symbols is in general different from
subcarrier to subcarrier. As noticed in earlier papers on OFDM sys-
tems [8], this fact greatly influences the bit error probability. The
bit error probability can be tightly approximated by

Pe ≈ αQ
(

√

βγb

)

, (21)

where γb is the equivalent SNR per bit, whereas α and β are para-
meters that depend on the modulation. For example, for BPSK and
QPSK we have α = 1 and β = 2.

In the case of a simple AWGN channel, we have γb = Eb/N0.
When considering a time-dispersive channel equalized by a ZF re-
ceiver, the equivalent SNR per bit measured at the kth subcarrier
becomes

γb =
Eb

N0η(k)
, (22)

where η(k) models the noise enhancement due to ZF equalization

and can be expressed as η(k) = 1
2π j

∮

[

R(z)R̃(z)
]

k,k
z−1dz. Let us

define the function

f (x) , αQ

(

√

βEb

N0x

)

. (23)

The above function is monotonically increasing in the variable x
and it is convex for 0 < x < βEb/3N0 and concave for x > βEb/3N0.
Moreover, we can express the average BER of a multicarrier system
having M subcarriers as

Pe =
1

M

M−1

∑
k=0

f
(

η(k)
)

. (24)

Now, if we assume to operate at an SNR value so that

Eb

N0
>

3

β
η(k), ∀k,0 ≤ k < M, (25)

then all the functions f (x) involved in (24) are in the convex region
and, thanks to the Jensen’s inequality, we have

1

M

M−1

∑
k=0

f
(

η(k)
)

≥ f

(

1

M

M−1

∑
k=0

η(k)

)

= f

(

ζ

Mσ2
w

)

, (26)

where the leftmost equality holds if and only if all the η(k) have
the same value. Hence, given two receivers yielding the same MSE,
equation (26) implies that for high SNR values the BER is mini-
mized by designing the transmit filters so that the values of the η(k)

are constant over all the subcarrier index. In the following, we will
say that these filters satisfy the equal gain (EG) property.

In the case of the PI receiver, the values of η(k) are derived as

ηPI(k) =
1

2π j

∮

[

G̃(z)VΣ−2VHG(z)
]

k,k
z−1dz

=∑
i

[

GGG′′′(i)HΣ−2GGG′′′(i)
]

k,k

=∑
i

∑
r

∣

∣

∣
g′k,r(i)

∣

∣

∣

2
µ2

r = ∑
r

κ ′
k,rµ2

r ,

(27)

where we define VHG(z) = ∑i GGG′′′(i)z−i, g′k,r(i) = [GGG′′′(i)]k,r, and

κ ′
k,r = ∑i |g

′
k,r(i)|

2. In order to have the values ηPI(k) independent

of the index k, we should design the transmit filters so that κ ′
k,r does

not depend on k. However, since G(z) is assumed to be channel-
independent, there is no choice of G(z) satisfying the EG property.
As a consequence, the PI receiver can not achieve the lower bound
on the error probability given in (26).

On the other hand, when considering the SVD-based systems,
the values of η(k) can be expressed as

ηSVD−ZF1(k) =
1

2π j

∮

[

G̃(z)Σ−2G(z)
]

k,k
z−1dz

=∑
i

[

GGG(i)HΣ−2GGG(i)
]

k,k

=∑
i

∑
r

∣

∣gk,r(i)
∣

∣

2
µ2

r = ∑
r

κk,rµ2
r

(28)

ηSVD−ZF2(k) =
γ−2

2π j

∮

[

G̃(z)Σ−1G(z)
]

k,k
z−1dz

=γ−2 ∑
i

[

GGG(i)HΣ−1GGG(i)
]

k,k

=γ−2 ∑
i

∑
r

∣

∣gk,r(i)
∣

∣

2
µr = γ−2 ∑

r

κk,rµr,

(29)

where we consider G(z) = ∑i GGG(i)z−i and κk,r = ∑i |gk,r(i)|
2. In

this case, the values ηSVD−ZF1(k) and ηSVD−ZF2(k) can be made
independent of the index k. In fact, the values κk,r do not depend

on the channel status, and several choices of G(z) satisfying the EG
property can be found. In particular, two well known transmitters

satisfying this condition are given by G(z) = WH , where W is the
DFT matrix and G(z) = H , where H is the Hadamard matrix [8].
Therefore, the following conclusions hold:

• given an SVD-ZF1 system equipped with filters satisfying the
EG property, there always exists an SNR value γb,svd−zf1 so that
for γb ≥ γb,svd−zf1 the SVD-ZF1 system outperforms any other
PI system;

• given an SVD-ZF2 system equipped with filters satisfying the
EG property, there always exists an SNR value γb,svd−zf2 so that
for γb ≥ γb,svd−zf2 the SVD-ZF2 system outperforms both any
other SVD-ZF1 system and any other PI system.

4. SVD TRACKING ALGORITHM

If we suppose to adapt both the transmitter and the receiver at each
transmitted symbol, the complexity of the SVD computation would
make the solution in (11) and (12) quite unfeasible for a practical
implementation. To reduce the computational complexity, we could
update the receiver at time intervals longer than a single symbol
duration. However, if the time interval between two consecutive re-
ceiver updates becomes comparable to the channel coherence time,
the performance of the system will decrease very quickly. For these
reasons, in this paper we use an algorithm to track the SVD from
the channel coefficient estimates, without computing it explicitly at
each received symbol.
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Consider the SVD of C0 rewritten as

C0 = [ Us Uo ]

[

Σs

0

]

VH
s . (30)

The above equation is identical to (9) if Σs = Σ and VH
s = VH .

Consider now a slowly time-varying channel. The channel co-
efficients are assumed constant within a symbol duration but they
vary from one symbol to another. Relying on this model, if we de-

note with C
(n)
0 the channel matrix as it appears at time n, we can

express the channel matrix at time n+1 as

C
(n+1)
0 = C

(n)
0 +∆C

(n)
0 , (31)

where ∆C
(n)
0 is a small matrix perturbation. Assuming that U

(n)
s ,

U
(n)
o , Σ

(n)
s and V

(n)
s are the matrices deriving from the SVD of

C
(n)
0 , we can express the corresponding matrices at time n+1 in a

similar way. It is possible to give a first-order approximation of the

matrix perturbations of the above matrices as a function of ∆C
(n)
0 .

The equations take the following form

∆Us ≈ UoU
H
o ∆C0VsΣ

−1
s (32)

∆Uo ≈−UsΣ
−H
s VH

s ∆CH
0 Uo (33)

∆Σs ≈ UH
s ∆C0Vs (34)

∆Vs ≈ 0, (35)

where the time index has been dropped since all quantities refer to
the same index n. If we suppose to be able to estimate the channel
perturbation ∆C0 at each received symbol, then we can recursively
apply (32)-(35) to track the SVD. The algorithm can be summarized
in the following steps:

1. Compute the SVD of C0 to initialize the algorithm.

2. Estimate channel matrix perturbation ∆C0.

3. Derive perturbations of SVD matrices according to (32)-(35).

4. Update matrices Us, Uo and Σs.

5. Go back to step 2.

4.1 Algorithm Details

Since SVD perturbations are approximated, the algorithm gives at
each iteration a coarser estimate of the channel SVD. Hence, the ini-
tialization step has to be performed periodically to reset the SVD.
In the following, we will refer to the time interval between two ini-
tialization steps as Treset .

The singular values update matrix ∆Σs is only approximately
diagonal and not necessarily real, even though Σs is real and di-
agonal. This requisite is not necessary in order to implement the
SVD-based system. However, the proposed algorithm could benefit
from a reduced computational complexity by requiring Σs to be at
least diagonal.

In the following, we propose two variations of the SVD tracking
algorithm. In the first one, the singular values update matrix is com-

puted as ∆Σs = diag
{

UH
s ∆C0Vs

}

, so that the matrix Σs is kept
diagonal. This procedure will be referred to as Tracker-1 algorithm.
The second one uses at each step the expression for ∆Σs as given
in (34) and will be denoted as Tracker-2 algorithm. For making
comparisons, a system where the receiver is kept unchanged over
Treset as well as an ideal system, i.e., where the SVD is computed
at each received symbol, have been considered. These systems will
be denoted as Fixed and Ideal, respectively.

4.2 Complexity Issues

The computational complexity of Tracker-1 and Tracker-2 algo-
rithms as a function of the number of subcarriers M and of the zero-
padding length L are given by, respectively

C1 = 6L2M +8LM2 flops (36)

C1 C2 CPI CSVD

100% 233% 34% 1075%

Table 1: The complexity of Tracker-1 and Tracker-2 algorithms
with respect to CSVD and CPI, for M = 64 and L = 16.
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Figure 2: BER performance for different ideal systems.

C2 = 6L2M +10LM2 +8M3/3 flops. (37)

As to the complexity of the Ideal system, we consider the cost of a
direct SVD computation at each step with the Golub-Reisch algo-
rithm [9], from which we obtain

CSVD = 14LM2 +22M3 flops. (38)

For making a comparison, we derive also the complexity of a
Moore-Penrose pseudo-inverse computation. In this case, the com-
putational complexity can be expressed as

CPI = 3LM2 +13M2/4 flops. (39)

In Tab. 1 we compare the cost of the proposed algorithms nor-
malized to the value of C1, assuming M = 64 and L = 16. It is ev-
ident that the Tracker-1 algorithm yields a less burdensome imple-
mentation than the Tracker-2 one, since it relies on the inversion of
a diagonal matrix. On the other hand, both Tracker-1 and Tracker-
2 algorithms are characterized by a sensibly increased complexity
with respect to the computation of a Moore-Penrose pseudo-inverse.
Hence, this additional complexity is justified only if the SVD-based
schemes can guarantee a sufficient performance gain with respect
to the PI scheme.

5. SIMULATION RESULTS

For the test of the proposed algorithm we have designed a system
with 64 subcarriers equally spaced in a 20 MHz bandwidth, with
a carrier frequency of 5 GHz. A guard time of 16 null samples
is appended after each modulated symbol. The modulation used
is QPSK. As to the PI system, we have considered a DFT-based

system, i.e., with G(z) = WH
M , denoted as PI-DFT, and a single

carrier system, i.e., with G(z) = IM , denoted as PI-ID. As to the
SVD-based systems, for the sake of simplicity we have considered
only DFT-based systems. The channel is modeled according to the
specifications of model A in [10]. In particular, we suppose a maxi-
mum mobile speed of 3 m/s, corresponding to a channel coherence
time ∆tc of 20 ms. The simulations have been conducted under the
hypothesis of perfect channel knowledge.

In Fig. 2, we compare the performance of the different sys-
tems assuming an ideal update of the channel status. As can be
seen, when increasing the SNR value the proposed SVD-ZF2 sys-
tem achieves the best BER performance. On the other hand, the
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Figure 3: BER performance of tracking schemes with different
Treset values: (a) Treset = ∆tc/100; (b) Treset = ∆tc/50; (c) Treset =
∆tc/20.

SVD-ZF1 system does not guarantee a sensible performance gain
with respect to the single carrier PI system, even though it outper-
forms the PI system that is based on the same transmit filters.

According to the previous results, the performance of the two
tracking algorithms has been evaluated using only the SVD-ZF2
scheme. The proposed systems have been tested with several
choices of Treset , ranging from ∆tc/20 to ∆tc/100. The bit error rate
(BER) is reported in Fig. 3. As can be seen, the Tracker-2 algorithm
yields results very close to the ideal case, confirming the tightness of
the proposed approximation. In particular, the Tracker-2 algorithm
allows us to outperform the PI system in all the proposed cases.

On the other hand, a sensible degradation can be observed when
the Tracker-1 algorithm is used. We deem that the loss of perfor-
mance of the Tracker-1 algorithm with respect to the Tracker-2 one
is mainly due the fact that in our algorithm Vs is kept constant,
since its perturbations are of order greater than one, and hence, after
few steps, it produces only a coarse diagonalization of the channel
matrix.

6. CONCLUSIONS

In this paper, different schemes of filterbank transceivers have been
proposed to deal with a time-variant frequency-selective channel.
The performance of the proposed schemes has been evaluated both
analytically and by means of computer simulation. In particular, our
analysis demonstrates that the scheme denoted as SVD-ZF2, with
a proper design of the transmit filters, outperforms any other linear
scheme based on zero-forcing equalization. A fast transceiver adap-
tation algorithm has been used based on SVD tracking. Simulation
results show that minimum performance loss can be achieved with
our tracking algorithm, while the complexity remains reasonable if
compared with that of classical ZF approaches.
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