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ABSTRACT 
The iterative closest point algorithm is one of the most effi-
cient algorithms for robust rigid registration of 3D data. It 
consists in finding the closest points between two sets of 
data which are then used to estimate the parameters of the 
global rigid transformation to register the two data sets. All 
the steps of the algorithm are highly dependent upon the 
accuracy with which correspondence pairs of points are 
found. In this paper, a new enhanced implementation of the 
ICP algorithm proposes to use a look up matrix for finding 
the best correspondence pairs. It results in reducing the 
minimum mean square error between the two data sets after 
registration, compared to existing implementations. The 
algorithm was implemented and tested to evaluate its con-
vergence properties and robustness to noise. Performance 
improvements are obtained. The new algorithm has success-
fully been applied to register 3D medical data. 

1. INTRODUCTION 

The registration of 3D data sets is an important task in both 
Computer Vision and Photogrammetry, especially in the 
medical field. A detailed overview of image registration 
techniques can be found in [1], and different methods pro-
posed for medical image registration have been discussed in 
[2, 3]. 
The iterative closest point (ICP) algorithm, originally pro-
posed by Besl and McKey [4], is one of the most popular 
methods used for estimating the rigid transformation of 
roughly aligned 3D data sets. It is widely used for the regis-
tration of free-form surfaces where dense data is assumed, 
and a good initial estimate is available or can easily be ob-
tained. Additionally, all selected scene points from the scene 
surface are assumed to have correspondences in the refer-
ence surface. The first step of the ICP algorithm consists in 
choosing corresponding (closest) points in the two 3D data 
sets. Since the accuracy of the search for correspondence 
points highly affects the estimation of the transformation 
parameters, the output of the first step has a major impact 
over the following stages and strongly affects the overall 
performance of the algorithm. This step strongly depends 
upon both the selection of the points of the two surfaces, and 
the method used for finding the correspondence of the se-

lected points. The Original ICP algorithm [4], denoted OICP 
in this paper, searches for the closest point in the reference 
surface for each point in the scene surface without any re-
strictions. 
Widespread interest in 3D surface registration using the 
OICP algorithm has motivated the scientific community to 
propose other techniques to improve the different steps of 
the original algorithm. Many variants have been developed 
for speeding up the convergence and/or improving the per-
formance of the different phases of the algorithm [5]. A 
good review of these variants can be found in [6]. There has 
been significant interest regarding the selection of points 
used for the estimation of transformation parameters. In [7], 
the Trimmed ICP selects only a predefined number of esti-
mated matched pairs for the calculation of the ‘optimal mo-
tion’. The projection of the scene points onto the reference 
surface can also be used for the correspondence search [8]. 
The Picky ICP (PICP) [9] rejects all points previously esti-
mated to correspond to one reference point, except the one 
with the smallest distance. This approach reduces conver-
gence problems that may arise using the original ICP algo-
rithm, when a common reference point is assigned to multi-
ple points in the scene surface. However, this affects nega-
tively the performance of the algorithm in noisy situations, 
since many points are discarded in the estimation step. 
This paper focuses on the correspondence search of 3D sur-
face points. The aim is to enhance the performance of the 
correspondence search step of the OICP algorithm. The use 
of a new comprehensive look up matrix is investigated and 
evaluated. The proposed CICP (C for comprehensive) algo-
rithm ensures unique matches of correspondence pairs.  
The rest of the paper is organized as follows. First, the origi-
nal OICP algorithm is summarized. Next, the new CICP 
algorithm is described and performance analyses details are 
given. Results of comparisons based on both synthetic and 
medical data are then presented to show the performance 
improvement of the CICP algorithm. Finally some conclud-
ing remarks are given. 

2. OVERVIEW OF THE OICP ALGORITHM 

Assume that the given two surfaces to be registered can be 
described as point sets; the scene data points, P, with Np 
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points, {pi,  i=1, …, Np}, and the reference data points, M, 
with Nm points, {mi,  i=1, …, Nm}. Depending on the accu-
racy of the constructed surfaces, Np is not necessarily equal 
to Nm. Furthermore, the point pi of the scene surface does 
not necessarily represent 3D correspondence to the point mi 
of the reference surface. The search space, however, is de-
termined by the size of the scene data set; i.e., Np. The OICP 
algorithm can be summarized as follows: 
A. Initialization: 

1) Let the initial scene surface P0, be equal to P. 
2) Define the maximum number of iterations kmax. 
3) Initialize the translation vector and the rotation matrix 

as follows:  

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
0

T  and 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

R . (1) 

This corresponds to zero translation and no rotation. 
B. Iterations: 

1) For each point pi ( i=1, .... , Np) of the scene P, compute 
the closest point yi∈M from the model using the 
Euclidian distance. Let yi be the point on M correspond-
ing to the minimum distance pi. 

2) Using the selected correspondence pairs, compute the 
transformation, rotation (R) and translation (T), that 
minimises the mean square error (MSE) of these pairs: 
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The resulting transformation from the minimization of 
the above equation will be denoted Rk and Tk. This step 
also provides the minimum distances which correspond 
to the matched pairs. 

3) Transform P according to (R, T) and restart a new itera-
tion if the change in the MSE is above a predefined 
threshold ζ, and if the maximum number of iterations 
kmax is not reached. If not, stop the iterations and exit. 

3. THE PROPOSED CICP ALGORITHM 

In previous variants of the OICP algorithm, the search pro-
cedures of corresponding pairs of points are based on a line-
by-line (vector) search within a P-M distance matrix de-
scribed in Table 1, where di,j is the distance between pi and 
mj. Duplicate matches may hence occur, since multiple mi 
(columns) can be assigned to different pi (lines). The PICP 
variant ensures unique matches by rejecting all duplicate 
pairs, except the one with the smallest distance. This can be 
described as a line-by-line followed by a column-by-column 
search within the P-M distance matrix. Unfortunately, this 
may lead to the exclusion of good markers from the estima-
tion procedure. To overcome this drawback, a more compre-
hensive search is needed.  
A novel effective evaluation metric is introduced for corre-
spondence search, called comprehensive lookup matrix 
measure. This measure ensures that every selected point on 
the scene surface has a unique match in the reference sur-
face. 

 

 m1 m2 … mNm 
p1 d1,1 d1,2  d1,Nm 
p2 d2,1 d2,2  d2,Nm 
:     

pNp dNp,1 dNp,2  dNp,Nm 

Table 1 – the P-M distance matrix. 

The CICP is different in that it sorts the di,j, distances in as-
cending order within the entire P-M distance matrix. More-
over, the point mj is not considered to be a correspondence 
to pi if either mj or pi has been previously assigned a corre-
spondence. This ensures that each point in the scene surface 
will have a different association in the reference surface. 
The CICP is the only ICP algorithm that makes use of all 
scene points in the search procedure to find the best and 
unique correspondence pairs. In other words, the P-M dis-
tance matrix is introduced to comply with the fact that a rota-
tion is a bijective (one to one) function. Previous ICP imple-
mentations are based on vector not matrix analysis of the 
assignment problem which can yield surjection correspon-
dences, incompatible with correct estimations of rotation 
parameters. In this case, some elements in M may be mapped 
by more than one element in P. When the number of points 
in the two sets to be registered is not the same, the CICP al-
gorithm considers the one with a smaller number of points as 
a scene data set to ensure bijectivity of the resulting corre-
spondence pairs. To reduce computation time introduced by 
matrix search procedure, fast assignment algorithms can be 
used. The CICP algorithm can be summarized as follows:  

1) For each point pi∈P, (i=1, ..., Np), the algorithm com-
putes the Euclidian distance to each point mj∈M, 
(j=1, ..., Nm). Then, for Np times, the algorithm: 
a. looks for the location (i,j) that corresponds to the 

minimum distance in the current look up matrix, 
b. assigns pi to mj as a correspondence pair, 
c. removes this correspondence pair from future 

consideration by eliminating the ith row and jth col-
umn. 

2) Using the estimated correspondence pairs, the algo-
rithm computes the transformation parameters (R, T), 
and transforms P accordingly. 

3) The algorithm computes the MSE between the refer-
ence and transformed scene data sets. If the change in 
the MSE is above a predefined threshold and kmax is 
not reached, the algorithm starts a new iteration. If 
not, the iterative procedure is stopped. 

Instead of leaving the decision of rejecting worse pairs till the 
end of every iteration as in [9], the CICP algorithm makes 
such a decision at the end of every selection of pair corre-
spondence. Such an approach improves the accuracy and the 
convergence of the ICP algorithms, as shown in the follow-
ing sections. 

4. PERFORMANCE ANALYSIS 

In this paper, the new CICP algorithm will be compared to 
the OICP and PICP as benchmarks. The robustness of the 
CICP algorithm will be studied under the presence of noise, 
with both synthetic and real medical data. 
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4.1 Noise generation 
Real data are usually corrupted by noise caused by a wide 
range of sources, e.g. detector variations, environmental 
variations, transmission or quantization errors, etc.  
Here, the performance of the selected ICP algorithms is in-
vestigated under the effect of Gaussian and impulsive noise. 
4.1.1 Gaussian noise 
Gaussian noise is added to the original data according to the 
following method: 

1) Transform all points of the data set from Cartesian to 
spherical coordinates: 

  p(xi, yi, zi) → p(θi, φi, ρi)  ∀ i= {1, …, Nm}, (3) 
2) Add noise to each resulting ρi ∀ i= {1, …, Nm} : 

  ρi = ρi + | ρi - µρ | ×× − 2010 /dB_SNR  rand(.), (4) 

where ,∑=
m

i
iρ ρµ

N

 rand(.) is a random Gaussian 

number generator with mean zero and variance one, 
and SNR_dB is the required signal to noise ratio in dB. 

3) Transform points back to Cartesian coordinates. 
4.1.2 Impulsive noise 
Impulsive noise is commonly referred to as outliers. In this 
case, a set of h% of the data points is assumed to be cor-
rupted by impulsive noise. To generate outliers, replace step 
2 of Gaussian noise generation by: 

2a) Randomly select h% of the total data points. 
2b) Modify each selected point: ρj ∀ j= {1,..., h×  Nm/100} 

  ρj = ρj ×  (1+ β )  (5) 
where β represents the distribution of the outliers rela-
tive to the points of the original data set. 

4.2 Performance parameters 
To compare the performance characteristics of the CICP al-
gorithm to OICP and PICP algorithms, two parameters are 
taken into consideration: the percentage of correct matches 
and the mean square error (MSE) between the registered data 
sets. 
4.2.1 Percentage of correct matches 
Correct matches analysis can be carried out when exact ori-
entation of the data sets is known. Under such a hypothesis, 
the percentage of correct associations of corresponding 
points from the scene and reference surfaces is counted at 
each step of the algorithm. This measurement is a straight-
forward indicator of the performance of the correspondence 
pair search method. 
4.2.2 Mean Square Error 
The convergence property of the algorithm can be estimated 
by computing the mean square error (MSE) between the ref-
erence and the registered data sets, at each iteration of the 
algorithm. When orientation is known for both registered 
surfaces, MSE is given by computing the mean square dis-
tances between correspondence pairs of points. Otherwise, 
3D to 2D mesh interpolation can be integrated, and MSE can 
be calculated with the corresponding non-zero elements of 
the resulting 2D meshes 

5. SIMULATED SCENE SURFACE RESULTS 

The CICP algorithm was tested under a noise-free situation 
as well as with Gaussian noise (with SNR of 5 dB, 10 dB, 15 
dB and 20 dB) and outliers (with percentage of outliers of 5 
%, 10%, 15 % or 20 % of the data set) conditions. The con-
vergence properties and the accuracy of the proposed CICP 
algorithm have been evaluated using two types of point sets: 
synthetic and real medical data sets. 
5.1 Registration of synthetic data 
In the first experiment, the ‘Rabbit’ synthetic data set1 was 
used as a reference, as shown in Figure 1a. Figure 1b shows 
an example of noise-free scene data, rotated -29°, -4° and 8° 
around the x-axis, y-axis and z-axis, respectively. The num-
ber of reference and scene data points is the same, i.e., 1000 
points. The OICP, PICP and CICP algorithms were tested to 
register the reference surface (Figure 1a) with the scene sur-
face (Figure 1b), corrupted with Gaussian and outlier noise. 

   
 (a) (b) 

Figure 1 – Bunny data. a) Reference surface. b) Scene surface (rota-
tion, noise free). 

5.1.1 Correct matches evaluation 
Figure 2 and Figure 3 show the percentage of correct 
matches at each iteration of the OICP, PICP and CICP algo-
rithms. It can be seen that the CICP gives the highest number 
of correct matches, in fewer iterations, compared to both 
OICP and PICP algorithms, for most noise situation tests. 
5.1.2 MSE comparison 
Figure 4 and Figure 5 show the evolution of the mean square 
error computed at each step of the OICP, PICP and CICP 
algorithms. Under 5dB Gaussian noise data corruption, the 
CICP algorithm reaches minimum MSE faster (4 iterations) 
than the OICP and PICP algorithms (respectively 17 and 37 
iterations). Similar results are obtained for other amounts of 
Gaussian noise, as well as for noise-free scene data. 
In the case of outliers, the CICP algorithm reaches minimum 
MSE faster than for the OICP and PICP algorithms. More-
over, the change in outlier ratio slightly affects the number 
of iterations of the CICP, compared to OICP and PICP algo-
rithms. 
To evaluate the repeatability of the results presented above 
with particular scene data rotation, the same experiments 
were carried out on more than twenty randomly selected ro-
tations, within 30° around each x, y and z axis. In all cases, 
the CICP algorithm showed improvements compared to the 
OCIP and PICP algorithms. 
                                                           
1 Special thanks go to Mr A. Ajmal, at The University of Western Australia, 
for providing us with the data.  
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Figure 2 – Accuracy performance in the case of Gaussian noise. 

 
Figure 3 – Accuracy performance in the case of outliers. 

 
Figure 4 – Convergence comparison in the case of Gaussian noise. 

 
Figure 5 – Convergence comparison in the presence of outliers. 

5.2 Registration of medical data 
The second experiment considers a set of 922 points of real 
data of human Lung2 as a reference surface (Figure 6a). The 
scene data set is simulated by rotating the reference scene 
data of -29°, -4° and 8° around the x-axis, y-axis and z-axis, 
respectively (Figure 6b). In the case presented, the number 
of points in the reference and scene data sets is equal.  

  
 (a) (b) 

Figure 6: Lung data. a) Reference lung data. b) Scene lung data 
(rotation, noise-free). 

The MSE between the reference and registered surfaces is 
measured at each iteration of the OICP, PICP and CICP al-
gorithms, considering scene surface degraded with Gaussian 
noise (Figures 7) and outliers (Figure 8). 
Figure 7 confirms the performance enhancement of the CICP 
algorithm, which reaches the minimum MSE faster than the 
OICP and PICP algorithms. Figure 8 shows similar results 
with outliers. 

 
Figure 7: Convergence comparison in the case of Gaussian noise. 

 
Figure 8: Convergence comparison in the case of outliers.  

                                                           
2 Special thanks go to Dr Fabienne Thérain, Chef du service de Médecine 
Nucléaire, Centre Hospitalier Régional d’Orléans, France.  
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6. MEDICAL APPLICATION 

In this experiment, we consider the registration of the real 
lung data of Figure 6a, to a lung atlas presented in Figure 9a. 
The atlas data set consists of 1150 points, whereas a set of 
922 points were uniformly selected from the scene lung 
data. The motion parameters that “best” align the lung data 
set with the atlas are estimated using the three OICP, PICP 
and CICP algorithms. The corresponding registered data  are 
displayed in Figure 9. 
For the experiment carried out, the MSE threshold ζ between 
the reference surface and the registered scene surface is set to 
a low value (10–3), and the maximum number of iterations 
(kmax) is not limited. This ensures that the estimation of the 
motion parameters is correct. The algorithm stops when the 
estimated motion parameters are constant within several it-
erations, and MSE between the reference and registered sur-
faces is computed. With lung atlas and lung data, the CICP, 
PICP and OICP algorithms achieve convergence in 31, 135 
and 84 iterations, respectively. 
In Figure 9, when stability of motion parameters is reached, 
the CICP algorithm (Figure 9d) seems to give a better regis-
tration of the two data surfaces (Figure 9a), compared to the 
OICP (Figure 9b) and PICP (Figure 9c) algorithms. This 
qualitative result was confirmed by an expert in the field of 
medical imaging. Further experiments will be conducted to 
quantify precisely these preliminary results. 

  
 (a) (b) 

  
 (c) (d) 

Figure 9: a) Initial views: lung atlas (reference surface, black) and 
lung data (scene surface, red). Registered data using (b) OICP, (c) 

PICP, (d) CICP algorithms. 

7. CONCLUSION 

In this work, a novel enhanced implementation of the ICP 
algorithm is presented. The use of the complete look-up 
distance matrix during the point association procedure guar-
antees that unique matches are obtained for all points from 
the scene data. The substitution of a vector by a matrix 
based search of correspondence pairs ensures correct rigid 
registration, in agreement with the bijective property of the 
rotation. Computing time expansion due to the switch from 
vector to matrix search can be limited by using many valu-
able techniques used to solve assignment problems. Com-
pared to other ICP implementations, the proposed CICP al-
gorithm provides: a faster convergence, in terms of number 
of iterations, a more precise estimation of pair of points cor-
respondence, and a better resilience to additive Gaussian 
noise and outliers. The accuracy of the proposed CICP has 
been investigated and very promising results have been 
shown for 3D real medical data registration. 
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