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ABSTRACT

In this paper we address the problem of text-to-phoneme
(TTP) mapping implemented by neural networks. One im-
portant disadvantage of the neural networks is the conver-
gence interval which can be in some situations very large.
Even when the neural networks are trained in off line mode a
shorter convergence interval would be of interest due to var-
ious reasons. In the TTP mapping, decreasing the number
of necessary iterations is equivalent to relaxing the require-
ments for the dictionary size. In this paper, we show that
proper letter encoding can increase the convergence speed
of the multilayer perceptron neural network for the task of
TTP mapping. Experimental results that compare the perfor-
mance of several techniques that speed-up the convergence
of the multilayer perceptron, in the context of TTP mapping
are also presented.

1. INTRODUCTION

One important step in several speech processing applications
is the text-to-phoneme mapping. In speech synthesis, TTP
mapping is responsible for translation of the written text to
the corresponding phonetic transcriptions from which the
synthetic speech is then generated. In speech recognition,
a dictionary of phonetic transcriptions must be build by map-
ping the words to their phonetic transcriptions and this is
done by TTP mapping.

Several solutions, to the problem of TTP mapping, have
been proposed in the open literature. Some of the solutions
are based on decision trees [4] while others use neural net-
works to perform the TTP mapping [3], [5]-[11]. The ad-
vantage of the decision trees is that they provide a more ac-
curate mapping for known words (words that were used in
the training process). However, for new words that were not
used in the training process, neural networks provide supe-
rior phoneme accuracy compared to the decision trees [4].

The well known multilayer perceptron (MLP) neural net-
work have been applied with success to the problem of TTP
mapping [3], [5]-[11]. When MLP is trained with the back-
propagation with the momentum algorithm the adaptive sys-
tem is simple to implement and has a low computational
complexity. The setup of the training process is simple due
to the fact that only one parameter, that is constant during
the training , controls the stability and the modelling perfor-
mance of the NN. However, the MLP trained with the back-
propagation algorithm possess a slow convergence that rep-
resents a major drawback (the importance of a fast training
system in the context of TTP mapping will be emphasized
later in this paper). In order to deal with this problem several
approaches have been introduced.

It has been shown in several publications that the con-
vergence speed of the back-propagation algorithm can be in-
creased if a time-varying learning rate is implemented [7]-
[11]. Usually the learning rate is adapted using the output er-
ror, and the mechanism of learning rate adaptation increases
the computational complexity of the system. Another way to
increase the convergence speed of the neural networks is to
use orthogonal inputs that can increase the modelling accu-
racy as well [3]. In this regard, a self-organizing codebook
was proposed in [5] with the aim to increase the phoneme
accuracy in the TTP mapping task. In this approach, the in-
put letters are encoded using a separate small neural network.
Another way to increase the performance of the adaptive sys-
tem is to apply some transformation at the input of the NN.
This was done in [8] by using the discrete cosine transform
(DCT) to orthogonalize the NN’s inputs. The phoneme ac-
curacy obtained with the MLP neural network for different
orthogonal and non-orthogonal letter codes was also stud-
ied in [6]. In that paper, it was found that the random real
valued codes can give improved recognition rates compared
with other orthogonal and non-orthogonal letter codes for
small neural network complexities (small number of synap-
tic weights). However, in [6], the random real valued letter
codes were shorter than the orthogonal binary codes. More-
over, the main focus in [6] was the phoneme accuracy and
not the size of the training dictionary.

In this paper, we extend the work in [6] and we study
the convergence speed of the MLP neural network that uses
random codes for the input letters. We show that when the
input letters are encoded using vectors with equals lengths,
real random codes can provide faster convergence compared
to the orthogonal binary codes that are usually implemented.
We compare the results obtained using binary and random
valued codes with other two approaches that use a time-
varying learning rate and transform domain training. In
Section 2 we describe with the description of the text-to-
phoneme (TTP) mapping problem, and we give implemen-
tation details and discuss the importance of having a fast
converging TTP mapping system. In Section 3, we describe
the neural networks that are used in this paper and the en-
coding methods implemented for the input letters. Section 4
shows comparative experimental results and Section 5 con-
cludes the paper.

2. TEXT-TO-PHONEME MAPPING

In this section, we give a brief overview of the TTP mapping
outlining the necessity to have a fast converging system. In
all systems implemented to perform TTP mapping the in-
put consists of a set of letters and the output of the system
is represented by the corresponding phonemes. For imple-
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Letters Corresponding binary vectors
a 1 0 0 0 . . . 0 0 0
b 0 1 0 0 . . . 0 0 0
c 0 0 1 0 . . . 0 0 0
...

...
z 0 0 0 0 . . . 0 1 0
\0 0 0 0 0 . . . 0 0 1

Table 1: Binary orthogonal letter codes. Each vector has 27
elements of which only one is set to unity.

Letters Corresponding random real valued vectors
a -0.43 -1.59 0.59 0.79 . . . -0.94 1.47 0.03
b -1.66 -1.44 -0.64 0.94 . . . -0.37 1.13 -0.62
...

...
z -1.14 0.69 -0.01 0.23 . . . 1.47 -0.07 -0.20
\0 0.14 0.28 2.09 -0.13 . . . 0.70 -0.83 -1.08

Table 2: Random real valued letter codes of length 27. The
elements of each vector are randomly chosen from the inter-
val [−1,1].

Letters Corresponding binary vectors of length 5
a 1 0 0 0 0
b 0 1 0 0 0
c 1 1 0 0 0

. . . . . .
\0 1 1 0 1 1

Table 3: Binary non-orthogonal codes.

mentation the input letters are encoded as numerical values.
The encoding affects the accuracy and convergence speed of
the system and the first problem is to find the best encoding
scheme for the input letters.

Moreover, when TTP mapping systems are implemented,
they must be trained first on some set of letters for which the
phonetic transcriptions are known and after that the systemis
ready to use. Usually a specialist performs the transcription
of the training set, based on some phonetic rules. During
the training process, at each iteration, a group of letters (3,
5, 7 letters) are presented at the input of the neural network.
The output of the NN is the phoneme that corresponds to the
middle input letter. Due to this fact the number of iterations
during the training process is equal to the total number of let-
ters in the training dictionary. In order to ensure an increased
level of phoneme accuracy, usually a large training dictionary
is used. In a large dictionary, the number of repetitions of a
certain group of input letters is large enough to be properly
learned by the neural network. If the available training dic-
tionary is large enough, then the multilayer perceptron neural
network can be trained with good performance using a con-
stant learning rate [12]. However, it is not a trivial task to
build a large training dictionary and it can be very time con-
suming. As a consequence, it would be of practical interest
to have some training methodology that ensures convergence
in fewer number of iterations such that a smaller training dic-
tionary can be used.

In our experiments we have used the American English

Phonemes Corresponding binary vector
1 0 0 0 . . . 0 0 0

aa 0 1 0 0 . . . 0 0 0
...

...
zh 0 0 0 0 . . . 0 0 1

Table 4: Orthogonal phoneme codes. Each vector has 47
elements of which only one is set to unity.

Carnegie Mellon University (CMU) pronunciation dictionary
that contains around 105 words together with their phonetic
transcriptions. As one can observe, the total size of the
training dictionary that we have used here is huge (around
8×104 words). We will see in Section 4, that actually only
a small fraction from this dictionary is needed in some cir-
cumstances. In order to implement a TTP mapping system
based on neural networks the CMU dictionary must be pre-
processed first. The following steps were implemented in
order to perform pre-processing [12]:
• The words and their phoneme transcriptions were aligned

such that one-to-one correspondence was obtained be-
tween the letters of each word and their phoneme sym-
bols.

• In order to eliminate the ambiguity that can occur for
multiple pronunciations of the same word, only one pho-
netic transcription was chosen from each entry into the
dictionary.

• The whole dictionary was split into two parts. For the
first part we have randomly chosen 80% from the whole
CMU dictionary (each word with a single phonetic tran-
scription). The training dictionary used in our sim-
ulations contains the phonetic transcriptions of 86821
words. The testing set contained the rest 20% (22015
words) of the whole CMU dictionary. The set used for
training the NNs, and the set used for testing the NNs did
not contain words in common.

• Once we have obtained the training and test sets, they
were processed as follows: First, the order of the words
in both sets were randomized. Second, each letter in a
word is encoded using some numerical vectors. In our
paper, we have used three types of letter codes: the bi-
nary vectors shown in Tab. 1, the random real codes,
such as, shown in Tab. 2 and the binary non-orthogonal
codes of length 5 from Tab. 3. The character\0 is in-
troduced to represent thegraphemic null. The number of
letters in the English dictionary is 26, and together with a
graphemic nullwe have 27 letters. Therefore, each vec-
tor from Tab. 1 representing a letter or space between
words, has 27 elements. The random real codes have
also length 27 and their elements were chosen from a
sequence of real numbers with zero mean random Gaus-
sian distribution and unity variance. A similar encoding
scheme, using binary orthogonal codes, was also applied
for the phoneme transcriptions. Since English can be rep-
resented with 47 phonemes including thenull phoneme
andpseudo phonemes, the dimension of the binary vec-
tor that encodes the phoneme is 47 (see Tab. 4).

After the database containing the words is processed as de-
scribed above, the next step is to train the TTP mapping sys-
tem. Training of the neural networks used in this paper is
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Figure 1: The block diagram of the multilayer perceptron neural network (left) and of the transform domain multilayer
perceptron neural network (right).

done in online mode where the synaptic weights are updated
at each training iteration [1], [2]. After the NN were trained,
the performance in terms of phoneme accuracy is evaluated
on the test dictionary. The neural networks and the training
algorithms implemented in our experiments are briefly re-
viewed in the next section. Detailed description of the train-
ing algorithms are given in [3], [6]-[9].
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Figure 2: Phoneme accuracy obtained with the different neu-
ral networks as function of the size of the training dictionary.

3. NEURAL NETWORKS

In this paper, we study the convergence speed of two neural
network structures such as multilayer perceptron neural net-
work and the transform domain multilayer perceptron neural
network. Also three types of encoding vectors for the in-
put letters are analyzed and two training algorithms: the er-
ror back-propagation with momentum and fixed learning rate
and the error back-propagation with momentum and time-
varying learning rate.

The block diagram of the MLP neural networks imple-
mented in our experiments is depicted in Fig. 1. The MLP

has one input layer, one hidden layer of neurons and one out-
put layer. The number of outputs is 47 which is equal to the
length of the phoneme codes. The MLP takes five adjacent
letters at the input such that the number of inputs for the MLP
was:

Nin = 5×Lin +1 = 136 (1)

whereLin is the length of the letter codes that is 27 for or-
thogonal binary codes and for real valued random codes (see
Tab. 1 and Tab. 2). In (1) the number of inputs contain also
the input bias term this is why the unity is added.

The transform domain multilayer perceptron neural net-
work has also one input layer, one hidden layer of neurons
and one output layer. A number of 47 outputs and a number
of 26 inputs (25 inputs due to the 5 input letters and one input
bias term) are used in the TDMLP neural network.

The activation function used in the hidden layer, of both
MLP and TDMLP neural networks was the hyperbolic tan-
gent activation function described by the following formula:

f (1)
i (n) =

1−exp(y(1)
i (n))

1+exp(y(1)
i (n))

(2)

wherey(1)
i (n) is the output of theith hidden neuron at itera-

tion n, f (1)
i is the output after activation function that is prop-

agated in the next layer and exp() is the exponential function.
At the output both MLP and TDMLP have tangential ac-

tivation function described by:

f (o)
i (n) =

exp(y(o)
i (n))

47
∑
j
exp(y(o)

j (n))

(3)

wherey(o)
i (n) is the output of theith output neuron at iteration

n, f (o)
i is the output of the neural network.
The training algorithm for the TDMLP neural networks

is derived from the standard error back-propagation with mo-
mentum in which the orthogonal transformation of the neural
network inputs is included. The details of this training algo-
rithm are given in [8] and in [10].
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The multilayer perceptron neural network was trained
with both fixed learning rate and time-varying learning rate.
The training algorithm that used a fixed learning rate was
the error back-propagation with momentum (see [1], [2] and
[10] for more details). For the case of a time-varying learn-
ing rate, we have used the training algorithm introduced in
[7]. All compared neural networks were fully connected and
had equals numbers of synaptic weights.

4. EXPERIMENTS AND RESULTS

In this section, we show the comparative results obtained for
the problem of TTP mapping. We emphasize that our main
goal here is to study the influence of the training algorithm
and input letter encoding on the convergence speed of the
neural networks. As we have explained earlier in this paper,
in the context of TTP mapping application, a fast converg-
ing TTP system enable a smaller training dictionary which
in some practical cases can be of interest.

In our experiments, we have used several setups of the
TTP mapping system. A MLP neural network that uses
binary orthogonal letter codes and it is trained using the
error back-propagation with momentum algorithm with a
fixed learning rate. We have denoted this by MLP. Another
TTP mapping system is composed of a MLP neural network
that has random real valued letter codes at the input and
it is trained with a fixed learning rate (we denoted this by
RVMLP). The third compared system is composed of a MLP
neural network that uses binary orthogonal letter codes at the
input and it is trained by an algorithm with adaptive learning
rate that was also derived from the error back-propagation
with momentum algorithm (we denoted this by MLPVLR).
Finally the fourth TTP mapping system is based on the trans-
form domain MLP that uses the non-orthogonal binary codes
from Tab. 3 to encode the letters and the training algorithms
introduced in [8] to update the synaptic weights (this is de-
noted by TDMLP).

All compared neural networks were trained in online
mode on the training dictionary that contained around 8×104

words. In order to study the phoneme accuracy for small dic-
tionary sizes, the synaptic weights of all the compared sys-
tems were saved at 1%, 2%,. . ., 100% from the training dic-
tionary. The tests were done for all these synaptic weights
and the results are shown in Fig. 2. For instance in Fig. 2 the
phoneme accuracy at 5% is obtained after training the neural
networks with 4000 words. As we can see from this figure,
for very small training dictionaries (up to 2000 words) the
TDMLP offers better phoneme accuracy compared with the
other neural networks. For higher sizes of the training dic-
tionary, the MLP that uses random real valued letter codes
provides the best mapping accuracy. For very large size of
the training dictionary, the performances of the four neu-
ral networks tends to stabilize around the same level of the
phoneme accuracy.

5. CONCLUSIONS

In this paper, the problem of text-to-phoneme mapping im-
plemented by neural networks was addressed. We have
shown that random real valued codes used for input letters
can increase the convergence speed of the multilayer percep-
tron neural network in the context of TTP mapping appli-
cation. Although, TTP mapping is usually done in off line

mode, a fast converging system bring some advantages. Be-
sides, reduction of the processing (training) time, implement-
ing a fast TTP mapping system greatly reduces the required
size of the training dictionary.
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