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ABSTRACT
This paper presents a low-complexity blind Maximum-
Likelihood (ML) detector for Orthogonal Frequency Divi-
sion Multiplexing (OFDM) systems in block fading chan-
nels. The receiver complexity is reduced by subcarrier
grouping (SG) for which the OFDM block is partitioned into
smaller groups, and then the data are detected on a group-
by-group basis. An identifiability analysis is also provided.
We show that the data in each group can be identified under a
more relaxed condition than that in [1], therefore enabling us
to use smaller group size for implementation efficiency. Our
simulation results show that the proposed detector can pro-
vide good symbol error performance even when the group
size is much smaller than the discrete Fourier transform size.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
been recognized as a promising modulation scheme for wired
and wireless communications due to its robustness against
frequency selective fading and low receiver complexity. The
OFDM modulator/demodulator transforms a frequency se-
lective fading channel into a multitude of flat fading subchan-
nels in the frequency domain, so that only one-tap equalizers
are needed to detect the data provided that channel state in-
formation (CSI) is available.

To estimate the CSI, either non-blind or blind meth-
ods can be considered. For non-blind methods, periodically
transmitted training blocks or pilot tones can be used to esti-
mate the CSI [2, 3]. However, these known data incur spec-
tral efficiency loss, especially for fast time-varying chan-
nels and at low signal-to-noise ratios (SNRs) [4]. For the
second-order statistics (SOS) based blind channel estimation
methods [5], many OFDM blocks are often required to esti-
mate the SOS. In these methods the channel is assumed to
be static for a long period of time, which may be violated
in block fading channels; i.e., when the channel coefficients
remain constant only for one OFDM time block. Differen-
tially encoded OFDM [6] only requires the channel to be
static over two consecutive OFDM blocks, but it incurs a 3
dB performance penalty in SNR. The blind channel estima-
tor in [10] estimates the channel in one OFDM block using
multi-receiver diversity, but its performance is sensitive to
noise effects and the channel length. In this paper, we focus
on a Maximum-Likelihood (ML) method for joint channel
estimation and data detection in one OFDM block, which is
suitable for block fading channels. In [7], a blind OFDM
ML data detector/channel estimator was presented and real-

ized by Sphere Decoding (SD) algorithm [8] and V-BLAST
algorithm [9]. The channel identifiability of this blind ML
detection/estimation method is proven in [1].

If we consider an OFDM system for which the number
of subcarriers is large (e.g., 1024 subcarriers), the blind ML
detector becomes computationally infeasible because it is a
large scale optimization problem under such circumstances.
In the paper, we propose a low-complexity implementation
alternative, called subcarrier grouping (SG). The idea is to
partition the OFDM block into smaller groups, and then ap-
ply the blind ML detection method to each group. We pro-
vide a data/channel identifiability analysis for the SG, and
show that for Gaussian distributed fading channels, the trans-
mitted data and channel can be identified up to a phase shift
in probability one sense. Unlike the condition in [1] which
depends on the signal constellation size, the presented con-
dition is independent of the signal constellation size, thereby
allowing us to have SG with smaller group size. Our simula-
tion results show that the proposed ML detector has promis-
ing performance and outperforms those based on the pilot-
assisted least-squares (LS) channel estimator in [3] and the
blind channel estimator in [10], even when the group size is
much smaller than the total number of subcarriers.

2. OFDM SIGNAL MODEL AND BLIND ML
DETECTION

2.1 Signal Model
Consider an OFDM system in which the standard procedures
of cyclic prefix insertion and guard interval removal are ap-
plied. Suppose that there are NR antennas at the receiver, and
let N denote the discrete Fourier transform (DFT) size (or the
OFDM block size). The received signal for the kth subcarrier
at antenna r is given by

yr(k) = Hr(k)s(k)+wr(k),

where k = 1, 2, ..., N, r = 1, 2, ..., NR,

s(k) ∈Q : transmitted symbol for subcarrier k where Q is
the signal constellation with size |Q|

Hr(k) : channel frequency response for subcarrier k
wr(k) : spatially uncorrelated additive white Gaussian

noise with variance σ
2
w for all r.

Let hr ∈ CL×1 be the vector containing the channel impulse
response coefficients for the rth antenna, for r = 1, 2, ..., NR.
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Let Ξ ∈ CN×N be the DFT matrix with the kth row given by

(Ξ)k,• =
1√
N

[1,e− j 2π
N (k−1), . . . ,e− j 2π

N (k−1)(N−1)],

where (·)k,• denotes the kth row of a matrix. Then Hr(k) are
given by 

Hr(1)
Hr(2)

...
Hr(N)

=Ξ
[
hr
0

]
= [F, F̃]

[
hr
0

]

=Fhr, r = 1, 2, . . . , NR,

where F∈CN×L and F̃∈CN×(N−L). Therefore, the received
OFDM block can be expressed as

yr =[yr(1),yr(2), . . . ,yr(N)]T

=D(s)Fhr +wr, r = 1, 2, . . . , NR,

where

s =[s(1),s(2), . . . ,s(N)]T ,

wr =[wr(1),wr(2), . . . ,wr(N)]T ,

and D(s) ∈ CN×N which is a diagonal matrix with s on its
main diagonal. In this paper, we consider block channel fad-
ing where the channel coefficients remain static only for one
OFDM block, and we investigate methods for joint estima-
tion of hr and detection of s over one OFDM block.

2.2 Blind ML Detection
A blind ML detector [1, 7] for the aforementioned OFDM
system is briefly reviewed as follows. The blind ML detector
can be derived according to the deterministic ML criterion:

{ŝ,Ĥ}= arg min
s∈QN ,H∈CL×NR

||Y−D(s)FH||2F, (1)

where ‖ · ‖F denotes the Frobenius norm, and

Y =[y1,y2, . . . ,yNR ],
H =[h1,h2, . . . ,hNR ].

Assume that the signal constellation Q is constant modulus.
By exploiting the semi-unitary property of F (i.e., FHF = IL
where IL is the L×L identity matrix) and following the same
procedure as in [7], one can show that (1) can be reformu-
lated as a quadratic minimization problem

ŝ = arg min
s∈QN

sT Gs∗, (2)

where

G =
NR

∑
r=1

D(y∗r )
(
IN −FFH)D(yr).

Equ. (2) can be solved by using the optimal SD algorithm or
the suboptimal V-BLAST algorithm [7]. Moreover, the semi-
definite relaxation (SDR) algorithm [11–13] is an effective
suboptimal alternative for solving (2), which exhibits near-
optimal performance and has a polynomial-time worst-case
complexity of O(N3.5). (Note that the SD algorithm does not
have a polynomial-time worst-case complexity.)

2.3 Identification Condition
An important theoretical basis for the blind detection prob-
lem in (1) is data/channel identifiability. A sufficient con-
dition for unique channel identification has been presented
in [1]. Consider the signal constellation Q which is PSK
and satisfies two properties: i) if s ∈ Q, then s∗ ∈ Q , ii) if
s1,s2 ∈Q, then s1× s2 ∈Q. We reinterpret the identifiability
condition in [1] as follows:
Lemma 1 [1]: Assume that there is no noise; i.e., wr = 0 for
all r. For the blind OFDM ML detector in (1), the channel
H can be identified up to a phase shift if N ≥ |Q|L.

Though the channel can be properly identified under the
premises in Lemma 1, it is not necessarily true for data iden-
tification. The reason is that if for some k we have Hr(k) = 0
for all r = 1, 2, ..., NR, then s(k) can never be correctly de-
tected even when perfect CSI is available. Let us consider
the following channel fading assumption:
A1) The channel vectors hr, r = 1, 2, ..., NR, are Gaussian
distributed, and at least one of them has a positive definite
covariance matrix.

One can easily show that under A1), the probability of
the event {Hr(k) = 0, r = 1,2, ...,NR} is of measure zero for
any k = 1, 2, ..., N. Thus the following lemma is obtained
from Lemma 1:
Lemma 2: Under the premises of Lemma 1 and under A1),
the data vector s can be identified up to a phase shift with
probability one.

3. LOW-COMPLEXITY IMPLEMENTATION VIA
SUBCARRIER GROUPING

The direct application of the aforementioned blind ML de-
tector would be computationally too complex for large DFT
size. For example, for a typical DFT size of N = 256, the
complexity of using SDR to implement the ML detector is of
the order of 2563.5 which is obviously unaffordable in prac-
tice. To tackle this complexity issue, a subcarrier grouping
(SG) method is proposed in Section 3.1. Then, an identifia-
bility condition for SG is developed in Section 3.2.

3.1 Subcarrier Grouping
As mentioned earlier, the idea of SG is to partition the OFDM
block into smaller groups, and then deal with each group in-
dependently. Let us partition the OFDM block into P groups
with equal size M; i.e., N = PM. Let Sp = {i1,p, i2,p, . . . , iM,p}
be the subcarrier index set associated with group p. These
index sets satisfy S1 ∪ S2 ∪ ·· · ∪ SP = {1,2, . . . , N}, and
Sp∩Sq = /0 for all p 6= q (i.e., nonoverlapping subcarrier in-
dices). The received signal associated with the pth group can
be represented by

Yp = D(sp)FpH+Wp, (3)

where sp = [si1,p ,si2,p , . . . ,siM,p ]
T , and

Yp =

(Y)i1,p,•
...

(Y)iM,p,•

 ,Fp =

(F)i1,p,•
...

(F)iM,p,•

 ,Wp =

(W)i1,p,•
...

(W)iM,p,•

 .

(4)
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If the subcarrier index sets Sp are chosen such that Fp
is semi-unitary (i.e., FH

p Fp = (M/N)IL) for all p, the blind
OFDM ML detector in (2) then can be directly applied to
each individual group in (3), thereby reducing the receiver
complexity. It has been shown [14] that if the subcarrier in-
dex sets Sp are chosen to be

Sp =
{

p, p+
N
M

, p+
N
M
·2, . . . , p+

N
M
· (M−1)

}
, (5)

[i.e., ik,p = p + N
M (k− 1)] where M divides N and M > L,

then the associated Fp in (4) are semi-unitary for all p.
Suppose that SDR algorithm is used to handle the blind

ML problem associated with SG. Then the receiver com-
plexity is O(PM3.5) = O(NM2.5), which, for the choice of
M � N, is a significant reduction compared to the complex-
ity O(N3.5) required by the full blind ML detector. In the
simulation results shown in the next section, it will be illus-
trated that SG can provide good performance for M � N.

3.2 Data Identifiability of SG
For SG, one can show, following the proof in [1], that the
identifiability conditions in Lemmas 1 and 2 are also true;
that is, each SG data vector sp and the channel H can be
identified up to a phase shift with probability one if H satis-
fies the fading assumption A1) and M ≥ |Q|L. In the follow-
ing, we provide another data identifiability condition which
is more relaxed than the above mentioned:
Theorem 1: Assume that there is no noise, and that A1)
holds. For the blind OFDM ML detector using the SG as
given in (3)-(5), the data vector sp for every p = 1, 2, ..., P
and the channel H can be identified up to a phase shift with
probability one if M > L.

The proof of Theorem 1 is given in the Appendix.

4. SIMULATION RESULTS

In the following simulation examples, we show the efficacy
of the proposed blind OFDM ML detector using SG. The
coefficients of frequency selective fading channels are zero-
mean i.i.d. complex Gaussian distributed, and change from
block to block. We define the SNR as

SNR =
E{‖H‖2

F}
Nσ2

w
.

If not mentioned specifically, the signal constellation was
BPSK. The blind OFDM ML detector was implemented by
the SDR algorithm [11]. The performance (in terms of sym-
bol error rate (SER)) of the proposed blind OFDM ML de-
tector was compared to its coherent counterpart, and the de-
tectors based on the blind channel estimator in [10] and the
pilot-based LS channel estimator in [3]. The number of pi-
lots used for the pilot-based LS channel estimator was al-
ways L (the minimum number of pilots to uniquely estimate
the channel). The phase ambiguities of the proposed detec-
tor and the blind channel estimator in [10] were solved by
assuming that one symbol is known. The number of trials
of the simulation was 5× 104. We should mention that the
blind OFDM ML detector without SG [7] is computationally
too intensive to use in the following examples because the
considered DFT size is large.

Fig. 1. Computational complexity (Average FLOPs vs. P)
of the proposed blind ML detector using SG for N = 256,
NR = 4, L = 3, |Q|= 2 and SNR= 20 dB.

Fig. 2. Performance (SER vs. SNR) of the proposed blind
OFDM ML detector using SG for N = 256, NR = 2, L = 10
and |Q|= 2.

Figure 1 shows the average computational complexity
performance (in terms of floating point operations (FLOPs)
[13]) of the proposed detector using the SDR algorithm for
N = 256, NR = 4, L = 3, and SNR= 20 dB. One can see that
the receiver complexity is reduced when P increases.

Figure 2 shows the results of the proposed blind OFDM
ML detector using SG for N = 256, NR = 2, and L = 10.
It can be seen that the proposed detector significantly out-
performs the method in [10]. One can also see that for the
proposed detector with P = 16 (M = 16), the data can be
identified under the condition of M > L in spite of M < |Q|L
(|Q|= 2 for BPSK). Moreover, we observe that there is a per-
formance gain when P reduces from 16 to 8 (or M increases
from 16 to 32). This verifies the expectation that increasing
the group size improves performance.

Figure 3 shows the results for N = 256, NR = 4, L = 16,
and P = 4 (thus M=64). One can see from the figure that the
proposed detector outperforms the pilot-assisted LS channel
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estimation method in [3]. Note that the LS channel estima-
tor requires at least L = 16 pilots, whereas the proposed ML
detector requires only one pilot. Moreover, it can be seen
from the figure that the proposed detector using P = 4 has
performance loss less than 3 dB compared to its coherent
counterpart as SER=10−6. This demonstrates that the perfor-
mance loss compared to that without SG [7] is small while
the complexity reduction of the proposed detector is apparent
(see Fig. 1). Similar results can also be observed in Fig. 4
for N = 64, NR = 4, L = 8, P = 2 (thus M=32) and the QPSK
constellation.

5. CONCLUSION

We have presented a blind ML receiver for OFDM in block
fading channels. The proposed detector, using subcarrier
grouping (SG), is a group-wise ML method aiming to gain
computational efficiency, a benefit that is inherently not pos-
sible when applying the full ML detector [7] to a large scale
OFDM system. An identifiability condition for the proposed
detector is also derived. In particular, our identifiability con-
dition is more relaxed than that in [1], in that the former en-
ables the possibility of using smaller group size for compu-
tational efficiency. Simulation results show that SG exhibits
affordable complexity while maintaining promising perfor-
mance.

6. APPENDIX
PROOF OF THEOREM 1

Let us rewrite the deterministic ML criterion in (1) for the
received signal in (3) as

{ŝp,Ĥ}= arg min
sp∈QM

{
min

H∈CL×NR
||Yp−D(sp)FpH||2F

}
,

(A.1)
where the subscript ‘p’ is the index of the subcarrier group,
and Fp is semi-unitary (i.e., FH

p Fp = (M/N)IL). The inner
minimization term of (A.1) is actually a least-squares prob-
lem given ŝp, and has a closed-form solution

Ĥ =
(

N
M

)
FH

p DH(ŝp)Yp. (A.2)

Let s′p ∈ QM be the transmitted data vector for group p. For
the noise-free case, the received signal in (3) is given by

Yp = D(s′p)FpH. (A.3)

It is easy to verify that s′p and H are a solution set to (A.1)
for the noise-free case. If s′′p ∈QM and H2 are also a solution
set to (A.1) (for the noise-free case), then we have

D(s′p)FpH = D(s′′p)FpH2. (A.4)

According to (A.2) and (A.3), we can express H2 as

H2 =
(

N
M

)
FH

p D((s′′p)
∗� s′p)FpH, (A.5)

where � is the Hadamard product. Substituting (A.5) into

Fig. 3. Performance (SER vs. SNR) of the proposed blind
OFDM ML detector using SG for N = 256, NR = 4, L = 16,
P = 4 and |Q|= 2.

Fig. 4. Performance (SER vs. SNR) of the proposed blind
OFDM ML detector using SG for N = 64, NR = 4, L = 8,
P = 2 and |Q|= 4.

(A.4) and through some manipulations, one can reexpress
(A.4) as((

M
N

)2

IL−FH
p DH(s′p� (s′′p)

∗)FpFH
p D(s′p� (s′′p)

∗)Fp

)
·H = 0, (A.6)

or alternatively as(
FH

p DH(s′p� (s′′p)
∗)
((

M
N

)
IM −FpFH

p

)
D(s′p� (s′′p)

∗)Fp

)
·H = 0. (A.7)

Let Fp =
√

N
M [Fp, F̃p] ∈ CM×M which is a unitary matrix

where F̃p ∈ CM×(M−L). Then we have(
M
N

)
FpF

H
p = FpFH

p + F̃pF̃H
p =

(
M
N

)
IM. (A.8)
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Substituting (A.8) into (A.7) gives rise to

UpH = 0, (A.9)

where Up = F̃H
p D(s′p� (s′′p)

∗)Fp. Because the probability

Pr (UpH = 0) = Pr

(
NR⋂
r=1

Uphr = 0

)
≤ Pr (Uphr = 0)

for any r = 1, 2, ..., NR. By A1), let the covariance matrix of
hr be positive definite. It can be shown that the probability
of the event Uphr = 0 is of measure zero unless Up = 0.
Therefore, (A.9) implies

F̃H
p D(s′p� (s′′p)

∗)Fp = 0 (A.10)

with probability one. Now we show that (A.10) holds only if
s′′p = e jθs′p where e jθ ∈Q. According to (4) and (5), one can
show that F̃p can have the kth row given by

(F̃p)k,• =
1√
N

[e− j 2π
N ik,pL,e− j 2π

N ik,p(L+1), . . . ,e− j 2π
N ik,p(M−1)],

(A.11)
where ik,p = p+ N

M (k−1). Let

D(s′p� (s′′p)
∗) = diag

{
e− jθ1 ,e− jθ2 , . . . ,e− jθM

}
, (A.12)

where e− jθi ∈ Q for all i. According to (4), (5), (A.11) and
(A.12), the (m,n)th element in (A.10) can be shown to be

1
N

M−1

∑
i=0

e− jθi+1e j 2π
N (p+ N

M i)(L+m−n) = 0 (A.13)

for m = 1, 2, ..., M−L, and n = 1, 2, ..., L. Let ` = L+m−n.
Then (A.13) becomes

1
N

M−1

∑
i=0

e− jθi+1e j 2π
M i` = 0 for ` = 1,2, . . . , M−1,

which implies θ = θ1 = · · · = θM , i.e., s′′p = e jθs′p, by the
DFT property [15]. Hence the data vector s′p can be identified
up to a phase shift with probability one. Substituting s′′p =
e jθs′p into (A.5) gives rise to

H2 = e− jθH,

i.e., the channel H can also be identified up to a phase shift
with probability one. Thus we have completed the proof.
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